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Adaptive compensation for
multi-axial real-time hybrid
simulation via nonlinear
parameter estimation

Santiago Ruiz and Wei Song*

Department of Civil, Construction and Environmental Engineering, The University of Alabama,
Tuscaloosa, AL, United States

For Real-time hybrid simulation (RTHS) to be stable and accurate, it is
essential to address the time desynchronization issue between the numerical
and physical substructures. Desynchronization is primarily caused by time
delays, inherent dynamics of the control plant, system uncertainties, and
noises. While existing adaptive compensators have shown effective tracking
performance in single-input single-output (SISO) RTHS, their effectiveness in
multi-inputmulti-output (MIMO) RTHS has not been fully demonstrated. MIMO-
RTHS presents additional challenges due to its larger solution space, and
significant dynamic coupling between actuators. To address these challenges,
this study introduces an adaptive compensation framework for MIMO-RTHS.
The proposed framework utilizes a control law based on the inverse dynamics
of the control plant, incorporating real-time adaptive parameter updates
through Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF)
methods. Both the transfer function (TF) and discrete-time state-space (SS)
models of the plant are employed in distinct parameter estimation cases.
The performance of the proposed compensation is validated through a
multi-axial RTHS (maRTHS) benchmark problem. Extensive simulations on the
maRTHS incorporating various earthquake inputs, sensor noise, and model
uncertainties, demonstrated an excellent tracking performance and strong
robustness across four parameter estimation cases (EKF-TF, UKF-TF, EKF-SS,
and UKF-SS). The use of UKF with SS model (UKF-SS) achieved superior
performance, effectively managing nonlinearities and noise without requiring
low-pass filtering.

KEYWORDS

real-time hybrid simulation, MIMO control, adaptive compensation, actuator tracking,
uncertainty, hydraulic actuator, extended Kalman filter, unscented Kalman filter

1 Introduction

Real-time hybrid simulation (RTHS) is an experimental technique to perform dynamic
evaluation of complex structural systems (Nakashima et al., 1992). This technique divides
the emulated structure into two parts: the numerical substructure (NS), which is simulated
by a computer program, and the physical substructure (PS), which is tested in a laboratory.
The interface between the NS and the PS is imposed by a transfer system (e.g., servo
hydraulic actuator) in real-time. The transfer system along with the PS is often refer
to as the control plant. While RTHS offers a cost-effective and spatially economical
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alternative to traditional structural tests (Gomez et al., 2014), it
faces a critical issue of desynchronization at the NS-PS interface.
This issue can cause significant experimental errors or even failure,
impacting the accuracy and stability of RTHS (Darby et al., 1999;
Horiuchi et al., 1999; Zhao et al., 2003). A primary cause of
desynchronization is “actuator time delay” or simply “time delay”,
which originates from the closed-loop nature of RTHS, inherent
dynamics of the control plant, and data acquisition limitations
(Hayati and Song, 2017; Hayati and Song, 2018). This issue is
further exacerbated by system modeling uncertainties (Silva et al.,
2020), and process and measurement noises (Song and Dyke, 2013;
Song, 2018; Song et al., 2020).

To mitigate the desynchronization issue, numerous
compensation strategies have been developed. Traditional strategies
assume constant time delay and rely on pre-estimations of system
parameters. These strategies include polynomial extrapolation
(Horiuchi et al., 1999; Nakashima and Masaoka, 1999; Darby et al.,
2002), phase lead compensation (Zhao et al., 2003; Jung et al.,
2007), and inverse compensation (Chen et al., 2009; Chen and
Ricles, 2009). However, in RTHS, time delays are not constant due
to frequency-dependent uncertainties in actuator dynamics and
specimen characteristics (Dyke et al., 1995; Darby et al., 2002; Hayati
and Song, 2017; Hayati and Song, 2018). Consequently, traditional
compensation strategies fall short when dealing with significant
system uncertainties (Silva et al., 2020; Condori Uribe et al.,
2023). Recently, adaptive compensation strategies have gained
considerable attention due to their ability to dynamically adjust
their parameters in real-time, responding to changes and
uncertainties in the system (Chae et al., 2013; Chen et al., 2015;
Ouyang et al., 2019).

Parameter estimationmethod is a popular and effective adaptive
control approach, and it has already been introduced into RTHS
compensation domain. Chae et al. (2013) developed the adaptive
time series (ATS) compensation, which updates the coefficients of a
transfer system using the least squares (LS) method for single-input
single-output (SISO) RTHS. Palacio-Betancur and Gutierrez Soto
(2019) extended this method by implementing recursive least
squares (RLS) for parameter estimation in SISO-RTHS. Further
studies byWang et al. (2020) andNing et al. (2022) explored adaptive
control schemes for SISO-RTHS based on discrete system models
with time-varying coefficients using the LSmethod, while Ning et al.
(2020) implemented Kalman filter (KF) as the parameter estimator.
To enhance the robustness of adaptive control in SISO-RTHS,
nonlinear parameter estimators, such as the Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) have been employed.
The EKF linearizes the system around the current estimate to
handle nonlinearities, while the UKF uses a deterministic sampling
approach to capture the mean and covariance more accurately (Wan
and Van Der Merwe, 2000). The computational efficiency, ability
to provide timely updates, and robustness against nonlinearities
and noises of EKF and UKF, make these estimators suitable for
real-time nonlinear model updating (Song and Dyke, 2013; Song
and Dyke, 2014). Strano and Terzo (2016) developed an adaptive
compensation scheme based on EKF, to continuously adjust system
parameters, enhancing the accuracy and stability of hydraulic
actuator control in RTHS. Huang et al. (2023) and Wang et al.
(2024) investigated adaptive compensation with UKF, exhibiting
good robustness.

Despite the demonstrated effectiveness of adaptive control
using nonlinear parameter estimation methods in SISO-RTHS,
its application to multi-input multi-output (MIMO) RTHS remains
unverified. The transition from SISO- to MIMO-RTHS enables
the simulation of more realistic loading scenarios and complex
structural responses; however, it introduces unique challenges. In
MIMO-RTHS, control actions applied to one actuator can affect
responses in other actuators due to interdependencies across the
MIMO control plant, creating cross-coupling effects that prevent
the direct application of existing SISO strategies. Furthermore, the
development ofMIMO-RTHS involves a higher level of complexities
than the SISO counterparts, including a larger and more intricate
solution space, complex actuator kinematics, and increased
computational demand (Mercan et al., 2009; Condori Uribe et al.,
2023; Najafi et al., 2023). To address these challenges and achieve
effective compensation, this study presents a robust adaptive
compensation strategy forMIMO-RTHS, validated through amulti-
axial RTHS (maRTHS) benchmark problem (Condori Uribe et al.,
2023). The contributions of this work are twofold: (i) the
development of a comprehensive adaptive compensation framework
based on nonlinear parameter estimations (EKF and UKF),
which provides a systematic approach for MIMO-RTHS; (ii) the
system formulation for parameter estimation, which considers the
control plant in two commonly-adopted dynamic system models,
namely the transfer function (TF) and the discrete-time state-
space (SS) models, resulting in four distinct parameter estimation
cases: EKF-TF, UKF-TF, EKF-SS, and UKF-SS. The proposed
framework allows for implementation flexibility and performance
comparison among the different estimation techniques and system
formulations. Through a comparative study using the maRTHS
benchmark problem (Condori Uribe et al., 2023), it is shown
that the proposed compensation framework can account for the
interactions and dependencies betweenmultiple inputs and outputs,
effectively managing the dynamic coupling between actuators
during MIMO-RTHS.

The remainder of this paper is organized as follows. Section 2
presents the proposed adaptive compensation methodology.
Section 3 details the implementation and results of the virtual
maRTHS. Finally, Section 4 summarizes the main findings and
conclusions of this research.

2 Methodology

In this section, the proposed adaptive compensation framework
for MIMO-RTHS is presented, to mitigate the desynchronization
between the NS and PS, such that the output of the control
plant tracks the “desired” (or “target”) signals. This compensator
employs a control law based on the inverse dynamics of the control
plant, which aims to cancel the plant dynamics. Thus, the control
plant model is a key aspect for the formulation of the presented
methodology. This work explores two distinct models of the control
plant: (a) a transfer function model; (b) a discrete-time state-space
model. Bothmodels are utilized for parameter estimation in distinct
cases. However, only the transfer function model is used during the
command generation (control law).
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2.1 Control plant

2.1.1 Transfer function model
The control plant that comprises the PS in aMIMOproblem can

be generally represented by a matrix of transfer functions (TFs) as,

H(s) =
[[[[

[

H11(s) ⋯ H1j(s)

⋮ ⋱ ⋮

Hi1(s) … Hij(s)

]]]]

]

(1)

where s denotes the Laplace variable, and Hij(s) is the ij-th
transfer function entry for the different input (j)-output (i) pairs of
H(s). Each transfer function Hij(s) is a fraction with a numerator
polynomial Nij(s) and a denominator polynomial Dij(s), expressed
in factored form as,

Hij(s) =
Nij(s)
Dij(s)
=

bij,0(s− zij,1)(s− zij,2)…(s− zij,nij)

aij,0(s− pij,1)(s− pij,2)…(s− pij,mij
)

(2)

where bij,0 and aij,0 are scaling coefficients, zij,k (for k = 1,2,…,nij)
and pij,l (for l = 1,2,…,mij) are respectively the zeros and poles of
the transfer function, which generally can be identified through a
system identification process. Note that, to ensure that the system is
physically realizable, the transfer functionHij(s)must be proper, i.e.,
the order of the numerator polynomial must be less than or equal to
the order of the denominator polynomial (nij ≤mij).

In this work, the zeros and poles from Equation 2 are expressed
as a parameter vector, θ. According to the benchmark problem
definition (Condori Uribe et al., 2023), uncertainties, represented
as Δθ, are introduced to θ due to model imprecisions in the
control plant. These uncertainties effectively modify the transfer
function matrix in Equation 1 asH( s|θ,Δθ).

2.1.2 Discrete-time state-space model
The identified transfer function of the plant fromEquation 1 can

be used to obtain a state-space (SS) realization in discrete time as,

zk+1 = A(θ)zk +B(θ)uk (3)

xk = C(θ)zk +D(θ)uk (4)

where A,B,C, and D are the state-space matrices derived in terms
of the plant parameters θ; zk is the state vector at time step k,
determined by the chosen realization; uk is the system input, i.e.,
the command signal sent to the plant; and xk is the plant output.
Here, θ follows the same definition from Equation 2, along with the
associated uncertainties, Δθ.

2.2 Adaptive compensation framework

While adaptive control schemes have been developed for SISO-
RTHS (e.g., Strano and Terzo (2016), Huang et al. (2023)), they
have yet to be applied in MIMO-RTHS. In this work, the proposed
adaptive compensation framework is realized for coupled MIMO
systems, such as those presented in Equations 1–4, accounting
for system uncertainties (Δθ) and capturing cross-coupling effects
between actuators. A typical maRTHS scheme incorporating the

proposed adaptive compensation framework is shown in Figure 1.
The input signal to the system (i.e., external force), is denoted by
Fext; the restoring force vector from the experimental substructure
is denoted as f m; the desired and measured signal vectors are
xd and xm, respectively; uc is the command signal vector; and
the control plant is represented in Laplace domain as H( s|θ,Δθ)
[as shown in Section 2.1]. Hereafter, the control plant is simply
denoted asH(s).

The collection of blocks (I), (II), and (III) in Figure 1 generates
the control law, which is realized by utilizing the inverse dynamics of
the control plant derived from the transfer function in Equation 1.
The control law incorporates adaptive parameters that are estimated
by block (IV) at each time step. The parameter estimation process is
described in Section 2.3. The remainder of this section explains the
control generation process.

The transfer function matrices H(s) and G(s) relate the desired
signal xd to the command uc and the measured signal xm as follows,

Xm =H(s)U c (5)

U c = G(s)Xd (6)

where Xm, Xd, and U c denote the signals xm, xd, and uc in
Laplace domain, respectively. From Equation 5 and Equation 6, it
can be seen that the plant dynamics are cancelled when G(s) =
H−1(s), leading to the measured signal matching the desired signal
(Xm = Xd). However, a direct inverse of H(s) results in improper
transfer functions forG(s) (Carrion et al., 2009; Phillips et al., 2014).
To compute this inverse effectively, the proposed compensator
makes use of the time derivatives of the desired signal. First, a
common denominator polynomial of H(s) is found and denoted as
∆(s). The polynomial ∆(s) incorporates poles and zeros from each
actuator (2 actuators in this benchmark problem–see Section 3.1),
capturing the coupling dynamics in the MIMO system. Then,
by introducing Xm = Xd and G(s) =H−1(s), Equation 5 can be
rewritten as,

Xd = G−1(s)U c =
1
Δ(s)

H̃(s)U c (7)

where H̃(s) = Δ(s)H(s), and thanks to Δ(s), the ij-th entry of H̃(s),
H̃ij(s), is a polynomial rather than a fraction and its inverse can be
properly realized. It should be noted that the output in Equation 7
is now considered as Xd, under the assumption that the desired
and measured signals match (Xm = Xd). Further manipulation of
Equation 7 yields the command signal vector U c to the plant,
expressed as,

U c = R( s|θ̂k)Δ(s)Xd(s) = R( s|θ̂k)Ψd (8)

where R( s|θ̂k) = H̃
−1(s) is a matrix of transfer functions that can

be properly realized. The term Δ(s)Xd(s) is realized in the time
domain by computing the function ψd = g(γ, θ̂k), shown as the
block (II) in Figure 1, where γ = (xd, ẋd, ẍd,…) denotes the collection
of the time derivatives of xd [see block (I)]. The number of required
time derivatives is determined by the order of the polynomial Δ(s).
θ̂k denotes the estimated plant parameters at time step k, and Ψd
denotes the Laplace transform of the signal ψd.

The presented approach addresses the issue of improper transfer
functions in G(s) and facilitates the command generation. The
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FIGURE 1
maRTHS scheme and proposed adaptive compensator.

following section describes the parameter estimation process for
the updating of the plant poles and zeros (θ̂) used in the
control law of Equation 8.

2.3 Nonlinear parameter estimation

The physical domain of RTHS is subject to disturbances such
as imprecisions in experimental setup, unmodeled process and
dynamics (e.g., friction), and process and measurement noises,
which introduce uncertainties to the plant (Δθ) during RTHS,
as indicated in Section 2.1. To address the desynchronization
issues caused by these uncertainties, this work employs online
parameter estimation to update the plant parameters in real-
time during the command generation. As observed from the two
control plant formulations from Equations 1, 2 (for the TF model)
and Equations 3, 4 (for the discrete-time SS model), the system
formulations are nonlinear with respect to θ. Therefore, nonlinear
estimators, EKF and UKF, are employed to estimate θ with the two
introduced control plant models (see Section 2.1).

Both EKF and UKF are formulated for a general discrete-time
system model expressed as,

State transition: ϕk = f(ϕk−1,μk−1) +wk−1 (9)

Observationmodel: yk = h(ϕk,μk) + vk (10)

where f(ϕk−1,μk−1) is the process function; ϕk is the state vector;
μk is the system input vector; wk is a white noise with zero mean
and covariance matrix Q; yk is the system output vector; h(ϕk,μk)
is the observation function; and vk is a white noise with zero mean
and covariance matrix R. It should be noted from Equations 9, 10,
that both process andmeasurement noises are considered as additive
in this work.

Depending on the plant model employed for the application
of EKF or UKF, the corresponding estimation system models are
explained below.

a) Transfer function model

For the control plant in transfer function (TF) form, the state
vector and process function at time step k in Equations 9, 10 are
defined as the plant parameters at that time step, resulting in the
following state transition function,

θk⏟
ϕk

= θk−1⏟⏟⏟⏟⏟⏟⏟
f(ϕk−1,μk−1)

+wTF
k−1⏟⏟⏟⏟⏟⏟⏟⏟⏟

wk−1

(11)

The observation function is set as the command signal uc to the
control plant. Therefore, Equation 10 becomes,

uc,k⏟⏟⏟⏟⏟
yk

= ũc,k(θk,γxm)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
h(ϕk,μk)

+vTFk⏟⏟⏟⏟⏟
vk

(12)

In this formulation, the nonlinearity arises from Equation 12,
where the computation of the system output vector uc,k (uc at the
k-th time step) involves the polynomial expansion of the plant poles
and zeros, as described in Section 2.2 (Equation 8). Note that ũc,k
denotes the observation function for uc,k, and wTF

k and vTFk are
the additive noise vectors for the state vector (i.e., parameter θk)
and observation vector (i.e., command signal uc,k), respectively.
Additionally, unlike in Section 2.2 where xd is used to calculate uc,
the parameter estimation step utilizes the measured signal xm and
its respective time derivatives γxm [i.e.,; γxm = (xm, ẋm, ẍm,…)].

b) Discrete-time state-space model

When the discrete-time state-space (SS) model of the control
plant is used for parameter estimation, the original states
of the system from Equations 3, 4 are augmented with the
parameters that need to be estimated. Thus, the state transition and
observation functions for the augmented discrete-time SSmodel are
formulated as,

zak⏟⏟⏟⏟⏟
ϕk

= Aak−1(θk−1)zak−1 +Bak−1(θk−1)uc,k−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
f(ϕk−1,μk−1)

+wSS
k−1⏟⏟⏟⏟⏟⏟⏟⏟⏟

wk−1

(13)

xm,k⏟⏟⏟⏟⏟⏟⏟
yk

= Cak(θk)zak +Dak(θk)uc,k⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
h(ϕk,μk)

+vSSk⏟⏟⏟⏟⏟
vk

(14)

where zak is the augmented state vector at the k-th time step,
i.e., zak = [zk,θk]

T, of dimension (p+ n), with p and n being the
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FIGURE 2
EKF and UKF state estimation.

dimensions of the original state-space vector zk, and the parameter
vector θk, respectively. The input and output system vectors
correspond to the command andmeasured signals uc,k and xm,k.The
additive noise vectors for zak and xm,k are denoted as wSS

k and vSSk ,
respectively. Aak , Bak , Cak , and Dak are the augmented state-space
matrices at the k-th time step, computed using the forward Euler
method as,

Aak(θ) = I(p+n)×(p+n) +Δt ⋅
[

[

A(θ)p×p 0p×n
0n×p 0n×n

]

]
(15)

Bak(θ) = Δt ⋅
[

[

B(θ)p×h
0n×h
]

]
(16)

Cak(θ) = [D(θ)h×p 0h×n] (17)

Dak(θ) =D(θ)h×h (18)

where Δt is the sampling time of the RTHS, and h is the dimension
of uc,k or xm,k, which is assumed to be the same. This formulation
introduces the nonlinearity through the dependence of the state-
space matrices on θk, as indicated in Equations 13–18.

Regardless of the selected system model (TF or SS), both EKF
and UKF can be applied for parameter estimation. The estimation
methods are depicted in Figure 2 utilizing the general system
formulation of Equations 9, 10.

EKF and UKF are extensions of the standard Kalman filter,
designed to handle nonlinear systems (Song, 2011). Both methods

consist of two recursive steps: the prediction step and the update
step, as shown in Figure 2. In the prediction step, the process
function f is used to predict the prior state estimate (ϕ̂−k ) and its
covariance (P−k ). In the update step, this prediction is updated by
incorporating the observation function h to obtain the posterior
state estimate (ϕ̂k) and its covariance (Pk), while minimizing the
mean square error of the estimates with the Kalman gain Kk. The
details for the implementing EKF and UFK algorithms are omitted
here, but can be found in (Song, 2011; Song and Dyke, 2013; Song
and Dyke, 2014).

The primary difference between these estimation methods lies
in handling the nonlinearities of the process and observation
functions. The EKF approximates the nonlinear functions by
linearizing them around the current state estimate using a first-
order Taylor series expansion, which involves calculating their
respective Jacobians ∇fϕ and ∇hϕ (see Figure 2). The calculation
of the Jacobians is omitted here for succinctness. In contrast, UKF
uses a deterministic sampling scheme known as the Unscented
Transform (UT) to generate a set of “sigma points” that capture
the mean (e.g., ϕ̂−k ) and covariance of the state distribution (e.g.,
P−k ) without the Jacobian calculations (Julier, 2002). The sigma
points, indicated in Figure 2 with the superscript “SP”, are carefully
chosen to accurately reflect the state distribution. These sigma
points are directly propagated through the nonlinear functions,
resulting in transformed points ϕ̂

∗−
k and ŷ

∗−
k for the state and

output, respectively. The mean and covariance of the predicted state
and observation are then computed as a weighted sum of their
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FIGURE 3
maRTHS nonlinear parameter estimation cases.

respective transformed sigma points (Wan and Van Der Merwe,
2000). Additionally, both EKF and UKF require an initialization
of the state and covariance, indicated in Figure 2 as ϕ̂0 and P0,
respectively, along with the selection of appropriate covariances
Q and R, which involves a search process (Song et al., 2017;
Song, 2018).

By replacing the general system formulation of Equations 9,
10 in Figure 2 with the selected control plant formulations from
Equations 11, 12 (for the TF model) or Equations 13, 14 (for
the discrete-time SS model), four (4) parameter estimation cases
can be obtained: EKF-TF, UKF-TF, EKF-SS, and UKF-SS. These
cases are illustrated in Figure 3, showing the architecture inside of
block IV from Figure 1.

As shown in Figure 3, the same low-pass filter is applied
to the signals uc and xm. The low-pass filter is indicated with
dashed lines in block (IV.b) because this work also explores the
option of not applying low-pass filtering for the SS model case
(see Section 3.4). A difference between the TF and SS approaches
is the definition of the system input and output vectors, μk
and yk. In the TF model (see Equations 11, 12), the input is
γxm [i.e.,; γxm = (xm, ẋm, ẍm,…)], which is related to the measured
displacement of the plant xm and its time derivatives, and the
output is the command signal uc. In contrast, the SS model
(see Equations 13, 14) swaps the two with uc as the input and
xm as the output, and therefore without the need for its time
derivatives.

3 Results

3.1 maRTHS benchmark problem

The proposed methodology is applied to the maRTHS
benchmark developed by Condori Uribe et al. (2023), which
provides a virtual RTHS (vRTHS) platform that allows the
implementation of customized compensators. In this benchmark
problem a three-story, three-bay moment resisting frame is
subjected to seismic base excitation corresponding to scaled ground
acceleration records of El Centro 1940, Kobe 1995, andMorgan Hill
1984. The central frame of the structure (one-story, one-bay, simply
supported) acts as the experimental substructure (see Figure 4), and
the remaining structure is the numerical substructure. Displacement
and rotational degrees of freedom (DOFs) are used as target signals
at the NS-PS interface (control node). These DOFs are refer to as
“frame coordinates”, and are represented in Figure 4 asψes,28 andψes,4,
where the subscripts 28 and 4 denote the corresponding rotational
and translational DOFs defined by Condori Uribe et al. (2023). The
NS-PS connection is accomplished through a transfer system that
consists of two hydraulic actuators and a steel coupler (see Figure 4).
The coupler transfers the linear displacement of the two actuators to
produce the desired frame coordinates. The desired and measured
actuator linear displacement vectors are referred to as “actuator
coordinates”.Thus, a coordinate transformation is performed during
the simulation to transition between these two coordinate systems.
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FIGURE 4
Experimental substructure. Adapted from Condori Uribe et al. (2023).

The virtual RTHS is run with a fixed sampling frequency of 1,024
Hz (i.e., the sampling period Δt = 0.976ms).

In this work, the compensation is performed in the actuator
coordinates domain. Therefore, the desired signal is specified as
xd = [ηn1 ηn2]

T, where ηn1 and ηn2 denote the desired linear
displacements for actuators 1 and 2, respectively. The command
signal is set as uc = [u1 u2]T, where u1 and u2 correspond to the
linear displacement commands to actuators 1 and 2, respectively.
Likewise, the measured signal is indicated as xm = [ηm1 ηm2]

T,
where ηm1 and ηm2 denote the measured linear displacements of
actuators 1 and 2, respectively, as shown in Figure 4.

The control plant model for the maRTHS benchmark problem
is given as Equation 19,

H(s) = [

[

H11 H12

H21 H22

]

]
(19)

where the subscripts represent the input-output pairs for actuator
1 and actuator 2, respectively. Specifically, u1 and u2 are the inputs
to the system, while ηm1 are ηm2 are the outputs. The adaptive
compensator is designed considering the nominal plant model
identified by Condori Uribe et al. (2023), which has the following
transfer functions,

H11(s) =
K11(s+B1) (s+B2)

(s+A1) (s+A2) (s+C1 +C2j)(s+C1 −C2j)
(20)

H12(s) =
K12 (s+ P1)

(s+D1) (s+D2) (s+C1 +C2j)(s+C1 −C2j)
(21)

H21(s) =
K21(s+B1) (s+B2)

(s+A1) (s+A2) (s+C1 +C2j)(s+C1 −C2j)
(22)

H22(s) =
K12 (s+ P2)

(s+D1) (s+D2) (s+C1 +C2j)(s+C1 −C2j)
(23)

From Equations 20–23, C1, and C2 denote the poles of the
numerical substructure; B1,B2,P1, and P2 represent the zeros of
the transfer functions of the transfer system (i.e., actuators and
steel coupler); A1,A2,D1, and D2 denote the poles of the transfer
functions of the transfer system; and K11,K12,K21, and K22 are the
corresponding transfer function gains.

TABLE 1 Tuned EKF and UKF parameters for maRTHS
Benchmark Problem.

Parameter estimation
scenario

P0 Q R

EKF-TF I10×10 10−5 ⋅ I10×10 10−1 ⋅ I2×2

UKF-TF I10×10 10−4 ⋅ I10×10 101 ⋅ I2×2

EKF-SS I22×22 022×22 10−3 ⋅ I2×2

UKF-SS I22×22 10−11 ⋅ I22×22 10−1 ⋅ I2×2

3.2 Parameter estimation settings

The parameters in Equations 20–23 are updated in real-time
during RTHS, while the transfer function gains are considered
as constants. This approach results in the definition of θ,
as shown in Equation 24.

θ = [A1 A2 B1 B2 C1 C2 P1 P2 D1 D2]T (24)

Once the control plant model H(s) and the nominal parameter
θ
∗

are established, the four parameter estimation cases are
formulated as described in Section 2.3.

As indicated in Section 2.3, a search process is performed to
select the initial values of ϕ̂0 and P0, and the covariances Q and R.
The details of the search are omitted here but readers can refer to
(Song, 2011; Song et al., 2017; Song, 2018) for more information.
This search processmay not guarantee to yield the optimal selection,
and other search methods can be also considered. The selected EKF
and UKF parameters (covariances) are presented in Table 1.

In addition to the covariances presented in Table 1, scaling
parameters used during the sigma points computation in UKF
were adjusted to enhance the estimation performance. The values
for these scaling parameters are set as follows: α = 0.4, κ = 0,
and β = 2. Details on how these parameters influence the sigma
points distribution can be found in Wan and Van Der Merwe
(2000) and Song (2011).

3.3 Adaptive compensator performance in
maRTHS

The proposed adaptive compensator is validated through the
vRTHS platform inMATLAB/Simulink R2023b (Mathworks, 2024).
The performance is evaluated with a set of 10 performance criteria
defined in Condori Uribe et al. (2023). Performance indices (PI),
J𝓃,𝓂, are utilized for each criterion, where 𝓃 indicates the criteria
number and𝓂 depends on the type of evaluation. For example, PIs
from J1,𝓂 to J4,𝓂 evaluate the tracking performance in actuators
coordinates (𝓂 denotes the actuator number). PIs J5,𝓂 and J6,𝓂
indicate the tracking performance in frame coordinates (𝓂 denotes
the DOFs of the control node). PIs from J7,𝓂 and J10,𝓂 indicate
the global RTHS performance, which seek to minimize the error
between the reference structure response and the hybrid system
response (𝓂 denotes theDOFs of the control node and upper stories
levels). Lower PIs values indicate better compensation performance,
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TABLE 2 Evaluation criteria of maRTHS subjected to 0.4 scaled El Centro Earthquake (1,000 simulations).

Performance criteria PI J𝓃,𝓂 Units BM-LQG EKF–TF UKF–TF EKF–SS UKF–SS

Mean SD Mean SD Mean SD Mean SD

Tracking control

Time delay
J1,1 ms 2.0 0.00 0.05 0.41 0.88 0.00 0.00 0.00 0.00

J1,2 ms 2.9 0.00 0.00 0.47 0.51 0.00 0.00 0.00 0.00

Normalized
tracking error

J2,1 % 4.8 2.71 0.05 3.16 0.40 2.87 0.02 2.68 0.02

J2,2 % 9.4 1.48 0.04 1.79 0.16 1.68 0.02 1.42 0.01

Max. peak
tracking error

J3,1 % 5.3 2.50 0.26 3.55 0.75 2.91 0.26 2.45 0.22

J3,2 % 10.3 1.62 0.22 2.07 0.42 1.99 0.16 1.76 0.16

Estimation

Time delay
J4,1 ms 1.9 0.00 0.05 0.41 0.88 0.00 0.00 0.00 0.00

J4,2 ms 2.9 0.00 0.00 0.47 0.51 0.00 0.00 0.00 0.00

Normalized
estimation error

J5,4 % 6.7 1.85 0.03 2.18 0.18 2.06 0.01 1.82 0.01

J5,28 % 17.8 1.17 0.21 1.79 0.62 1.03 0.08 0.85 0.03

Max. peak
estimation error

J6,4 % 7.4 1.82 0.21 2.43 0.50 2.30 0.18 1.93 0.18

J6,28 % 18.8 1.57 0.49 2.34 0.49 1.38 0.18 1.61 0.10

Global RTHS
Performance

Normalized RTHS
error

J7,4 % 10.6 9.69 0.06 9.69 0.34 9.61 0.01 10.00 0.01

J7,28 % 16.8 7.38 0.06 7.34 0.52 7.80 0.01 7.96 0.01

Normalized RTHS
error at upper

levels

J8,2 % 1.8 6.86 0.05 7.31 0.33 7.38 0.03 7.19 0.01

J8,26 % 3.4 6.19 0.08 6.67 0.25 6.63 0.04 6.40 0.01

J8,3 % 2.1 6.51 0.06 6.97 0.30 7.01 0.03 6.80 0.01

J8,27 % 3.0 6.24 0.07 6.71 0.26 6.70 0.04 6.48 0.01

Max. peak RTHS
error

J9,4 % 11.9 8.12 0.36 9.28 0.55 7.93 0.14 8.16 0.15

J9,28 % 18.1 5.89 0.29 6.02 0.26 6.00 0.11 6.13 0.05

Max. peak RTHS
error at upper

levels

J10,2 % 1.8 5.16 0.12 5.55 0.25 5.59 0.04 5.48 0.02

J10,26 % 2.7 5.05 0.14 5.43 0.21 5.45 0.04 5.36 0.02

J10,3 % 1.8 5.01 0.12 5.41 0.25 5.46 0.04 5.35 0.02

J10,27 % 2.4 5.08 0.13 5.44 0.23 5.50 0.04 5.40 0.02

TABLE 3 Average simulation time for each earthquake input case (1,000 simulations).

Scaled earthquake input [duration (s)] EKF–TF UKF–TF EKF–SS UKF–SS

El Centro [41.2 s] 7.7 42.7 2.6 28.8

Kobe [50.9 s] 9.4 52.1 7.8 35.3

Morgan [40.0 s] 3.0 68.4 2.8 27.7
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FIGURE 5
maRTHS tracking performance in actuator coordinates (actuator 1) for UKF-SS case with the largest J2,1 (0.4 scaled El Centro Earthquake as input).

FIGURE 6
Parameter tracking with 0.4 scaled El Centro Earthquake as input and control plant with uncertainties. (A) EKF-SS (B) UKF-SS. (C) EKF-TF (D) UKF-TF.
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FIGURE 7
Tracking performance in actuator and frame coordinates for all input earthquakes. Mean PIs obtained from 1,000 simulations for each earthquake input.

TABLE 4 Tracking performance criteria of maRTHS subjected to 0.4 scaled El Centro Earthquake (1,000 simulations)–SS formulation without
low-pass filter.

Performance criteria PI
J𝓃,𝓂

Units EKF–SS
(No low-pass)

UKF–SS
(No low-pass)

Mean SD Mean SD

Tracking control

Time delay
J1,1 ms 1.55 20.70 0.00 0.00

J1,2 ms −0.38 9.58 0.00 0.00

Normalized tracking error
J2,1 % 7.65 27.64 2.76 0.02

J2,2 % 3.03 7.98 1.64 0.01

Max. peak tracking error
J3,1 % 15.64 54.54 2.64 0.22

J3,2 % 4.33 10.53 2.18 0.16

Estimation

Time delay
J4,1 ms 1.55 20.70 0.00 0.00

J4,2 ms −0.38 9.58 0.00 0.00

Normalized estimation error
J5,4 % 4.52 16.22 1.96 0.01

J5,28 % 6.20 24.63 1.46 0.05

Max. peak estimation error
J6,4 % 8.54 39.11 2.31 0.19

J6,28 % 14.09 49.43 2.16 0.17

as they correspond to smaller errors in both tracking and global
performance.

A total of 1,000 vRTHS simulations were executed to
demonstrate the control robustness, each incorporating system

uncertainties (Δθ) through random variations in the plant
parameters (i.e., poles and zeros), which were modeled as
normal random variables. Details in generating the above
random variations are described in the benchmark problem
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FIGURE 8
Tracking performance criteria for EKF-SS and UKF-SS with and without low-pass filtering.

definition in Condori Uribe et al. (2023). The initial values of
the estimated parameters are set to the values of the nominal
plant provided in Condori Uribe et al. (2023). All simulations
were performed on a personal computer equipped with an Intel
Core i7-14700 processor and 64 GB of RAM, running Microsoft
Windows 11.

The mean and standard deviation (SD) for each performance
indicator (PI) across the four parameter estimation cases using 0.4
scaled El Centro Earthquake as input, are presented in Table 2.
Additionally, the results from the linear quadratic regulator (LQR)
controller presented in the benchmark (BM) by Condori Uribe et al.
(2023) are included in the table for comparison. Results utilizing 0.4
scaled Kobe and 0.4 scaledMorgan earthquakes are presented in the
Supplementary Material. Furthermore, Table 3 presents the average
simulation time for each earthquake input to evaluate computational
efficiency.

The results from Table 2 demonstrate the effectiveness and
robustness of the parameter estimation cases for the proposed
compensator using the 0.4 scaled El Centro Earthquake as input.
The robustness is confirmed by the performance across the 1,000
simulations, which resulted in small PIs with small standard
deviations. For time delay, all cases were effective, with the highest
mean time delay of 0.47ms, obtained in the UKF-TF case. The
tracking performance was effective in both actuator and frame
coordinates (J1,𝓂 to J6,𝓂) with the largest PIs obtained for theUKF-
TF case. For the global RTHS evaluation, all performance estimation
cases outperformed the BM-LQG for the degrees of freedom at the
control node, although higher errors were obtained at DOFs of the
upper levels of the reference structure. Overall, the UKF-SS case
exhibited the best tracking performance with PIs values of J2,1 =
2.68± 0.02 and J2,2 = 1.42± 0.01 (actuator coordinates), and with
J5,4 = 1.82± 0.01 and J5,28 = 0.85± 0.03 (frame coordinates). The
largest obtained PIs from the 1,000 simulations for the same UKF-
SS case were J2,1 = 2.75 and J2,2 = 1.47 (actuator coordinates), and
with J5,4 = 1.86 and J5,28 = 0.96 (frame coordinates). Figure 5 shows
the desired and measured displacements in actuator coordinates of
actuator 1 for the UKF-SS case with the largest J2,1, demonstrating
the close match of the signals over time. Similar tracking
performance is observed for actuator 2 and for signals in frame
coordinates. Therefore, the time history plots for these signals
are not included here. Figure 6 illustrates the parameters tracking
history (all normalized to the initial nominal values) across the

four parameter estimation cases, with the 0.4 scaled El Centro
Earthquake as input. This figure demonstrates that meaningful
parameter estimation begins around 5 s, when the earthquake input
starts (see Figure 5). Parameters continue to update until reaching
a stable value to minimize the estimation error. Although starting
with the same initial values, the updating histories among the four
cases are not consistent. For example, among all the parameters,
P1 shows the largest variation in the EKF cases, with changes of
∼ 12% in EKF-SS and ∼ 30% in EKF-TF. In contrast, the UKF cases
exhibit the largest variations with D2 (∼ 10%) in UKF-SS and with
P2 (∼ 2%) in UKF-TF. Figure 7 illustrates the tracking performance
of the proposed compensation for all three input earthquakes
in both actuator and frame coordinates. The height of each bar
represents the mean value of the PI for the respective parameter
estimation case, while the error bars indicate one standard deviation
(+SD) of the corresponding PI value. Overall, the small PIs values
in the bar graph demonstrates the effectiveness and robustness
of the compensator across the three earthquake input scenarios.
For each earthquake input, the UKF-SS yields the smallest PIs
among all compensation cases, while UKF-TF shows the largest PIs
and standard deviations, likely due to its less active updating in
parameter tracking (see Figure 6D).

Although the UKF-SS shows superior tracking performance
compared to the other cases studied, it is also more computationally
expensive, as shown in Table 3.This increased computational cost is
likely due to the requirement for the UKF algorithm to generate and
propagate multiple sigma points, which involves additional matrix
operations. Note that, the simulation time indicated in Table 3 is
measured during the numerical simulations in MATLAB under
Windows environment, not in a real-time computing environment.
But by considering the same computational environment, Table 3
can still offer a relative comparison of the computational efficiency
of each algorithm.

3.4 Effect of low-pass filter in state-space
formulation

Results presented in Section 3.3 are obtained with the use of
a 6th-order Butterworth low-pass filter with a cutoff frequency of
20 Hz, applied to uc and xm (see Figure 3). The low-pass filter helps
attenuate high-frequency noise present in themeasured signals.This
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noise is exacerbated during time differentiation when using the TF
model, making the use of the low-pass filter crucial to ensure the
stability of EKF-TF andUKF-TF cases. In contrast, the discrete-time
SS model does not involve time derivatives of the signals and only
deals with measurement and process noises.Therefore, the low-pass
filter can potentially be removed when using the discrete-time SS
model. Table 4 presents the tracking performance PIs (J1,𝓂 to J6,𝓂)
for EKF-SS and UKF-SS cases without low-pass filtering, using 0.4
scaled El Centro earthquake as input in 1,000 simulations.The EKF-
SS results, compared to those in Table 2, showed significant decrease
in performance, leading to large SDs in Table 4. However, for the
UKF-SS case, the obtained PIs are consistent with the values in
Table 2, with only a small increase in the PIs. Additionally, Figure 8
shows the bar charts for J2,1 and J2,2 (values from Tables 2, 4) for
thementioned EKF-SS andUKF-SS cases with andwithout low-pass
filter. The bar height shows the mean PI value, while the error bars
indicate one standard deviation (+SD) of the corresponding PI.

These results reveal that UKF can handle noises and
nonlinearities in the system model more effectively than EKF when
low-pass filter is not present. This capability is advantageous in
RTHS because the use of low-pass filter can potentially introduce
signal distortion leading to unwanted dynamics with potentially
nonlinear systems, and therefore compromise the compensation
performance and the accuracy of the simulated response.

4 Conclusion

An adaptive compensation framework for MIMO-RTHS is
proposed in this paper. The proposed methodology employs a
control law based on the inverse dynamics of the control plant, with
adaptive parameters updated in real-time. Parameter estimation
utilizes the plant model in TF and discrete-time SS forms, combined
with nonlinear parameter estimators EKF and UKF, leading to four
proposed estimation cases: EKF-TF, UKF-TF, EKF-SS, and UKF-SS.

The proposed compensation has been examined in a maRTHS
benchmark problem, through RTHS simulations incorporating
sensor noise, uncertainties in the plant model, and three earthquake
inputs. The results for the four parameter estimation cases of
the proposed compensation framework showed effective tracking
performance at the NS-PS interface node in both actuator and
frame coordinates, and strong robustness against uncertainties and
noises, with the UKF-SS case exhibiting the best performance
in compensation tracking (see Table 2; Figure 7) and robustness
against uncertainties and noises (see Table 4; Figure 8). From
the implementation of the proposed adaptive compensation, the
following additional observations are listed:

• EKF exhibits a higher computational efficiency than UKF,
which is reflected by the shorter simulation times of EKF-
TF and EFK-SS cases in comparison to UKF-TF and UKF-
SS cases (see Table 3). The higher computational complexity
of the UKF might pose a challenge in meeting real-time
constraints. Therefore, based on the results from Table 3, the
EKF-SS case is an efficient choice when the system does not
exhibit nonlinearities.

• Utilizing the TFmodel for parameter estimation (cases EKF-TF
and UKF-TF) resulted in a smaller solution space compared to

the SSmodel, but its implementationwasmore computationally
expensive because of the calculations of time derivatives, as
indicated by γxm in Equation 12.

• From the results in Section 3.4, it is shown that the UKF-SS
case maintains good tracking performance without the need
of low-pass filtering. Therefore, when RTHS system exhibits
strong nonlinearities where low-pass filtering is not suitable,
the UKF-SS is the preferred choice due to its robust tracking
performance against uncertainties and noises with or without
low-pass filtering.

• The implementation of EKF was more involved than
UKF, because the high nonlinearity in the system
formulations (see Section 2.3) makes the derivation of the
Jacobians cumbersome and prone to errors.

The proposed adaptive compensation framework shows
significant potential for tracking performance and robustness
in MIMO-RTHS. Future research will focus on strengthening
the efficiency and robustness of this framework by investigating
alternative system formulations and exploring more advanced
parameter estimation methods.
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