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The Chishui River Basin, a vital waterway in Southwest China, has experienced
rapid urbanization, leading to significant ecological and environmental changes,
among which the urban heat island (UHI) effect is particularly pronounced. The
UHI effect not only affects the quality of life for residents but also influences urban
energy consumption and climate change, underscoring the need for in-depth
study of its spatial distribution and contributing factors. The unique karst
topography of the region further complicates UHI research, necessitating an
investigation that can inform urban planning and sustainable development
strategies. This study leveraged Landsat 8 TIRS satellite remote sensing
imagery to examine the land surface temperature (LST) and UHI effect in the
Chishui River Basin during the summers of 2016 and 2021. Employing the Mono-
window Algorithm (MWA), the research quantitatively inverted the LST and
analyzed its spatial distribution and the spatiotemporal characteristics of the
surface urban heat island (SUHI) effect. The findings indicated a notable increase
in average summer temperatures between the 2 years, with a 1.67°C rise from
2016 to 2021. Despite this increase, there was an observed reduction in the extent
of SUHI areas, suggesting potential mitigation efforts. Additionally, the study
revealed that karst regions were more susceptible to forming “abnormal” heat
islands due to their distinct geomorphological features. The implications of this
research are critical for urban development planning and the pursuit of
sustainable urbanization in the Chishui River Basin. By understanding the
thermal dynamics and their relationship with urbanization and karst
landscapes, policymakers and urban planners can devise strategies to
minimize the adverse effects of SUHI while promoting ecological balance and
environmental health. Future research should extend the temporal analysis,
employ higher resolution data, compare findings with other regions, and

OPEN ACCESS

EDITED BY

Qiong Wu,
Jilin University, China

REVIEWED BY

Tommaso Orusa,
University of Turin, Italy
Fengxiang Guo,
Helmholtz Association of German Research
Centres (HZ), Germany

*CORRESPONDENCE

Ruixue Fan,
fanruixue2015@163.com

Guangjie Luo,
luoguangjie@gznc.edu.cn

†These authors have contributed equally to
this work

RECEIVED 30 June 2024
ACCEPTED 08 August 2024
PUBLISHED 22 August 2024

CITATION

Wu Y, Wu H, Li S, Wu L, Guo C, Zhang Z, Fan R,
Yang X, Zhou G, Yang J, Yuan P and Luo G
(2024) Integrating urban development and
ecological sustainability: a study on land surface
temperature and urban heat island effect in a
Karst River Basin.
Front. Built Environ. 10:1457347.
doi: 10.3389/fbuil.2024.1457347

COPYRIGHT

© 2024 Wu, Wu, Li, Wu, Guo, Zhang, Fan, Yang,
Zhou, Yang, Yuan and Luo. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 22 August 2024
DOI 10.3389/fbuil.2024.1457347

https://www.frontiersin.org/articles/10.3389/fbuil.2024.1457347/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1457347/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1457347/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1457347/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1457347/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2024.1457347&domain=pdf&date_stamp=2024-08-22
mailto:fanruixue2015@163.com
mailto:fanruixue2015@163.com
mailto:luoguangjie@gznc.edu.cn
mailto:luoguangjie@gznc.edu.cn
https://doi.org/10.3389/fbuil.2024.1457347
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2024.1457347


provide a detailed examination of mitigation efforts to enhance the robustness and
applicability of the conclusions, provide stronger scientific evidence for the
ecological sustainability of the Chishui River Basin.

KEYWORDS

Landsat 8 TIRS, spatiotemporal UHI characteristics, urban planning strategies, thermal
environment assessment, Chishui River Basin

1 Introduction

From a global perspective, the accelerated urbanization process
has brought numerous ecological and environmental issues, with
urban heat island (UHI) effects being particularly prominent
(Mannstein, 1987). The UHI not only affects the quality of life
for residents but also has profound impacts on urban energy
consumption and climate change (Galdies and Lau, 2020;
Vujovic et al., 2021). Therefore, studying the spatial distribution
characteristics and influencing factors of UHI is of great significance
(Rizwan et al., 2008). The Chishui River Basin, an important river in
Southwest China, has seen rapid urbanization in recent years.
However, its unique karst topography makes UHI research more
complex and challenging (Liao et al., 2022). Recently, the severe
ecological environmental problems in this area have attracted
widespread attention from scholars. They have studied the
ecological conditions of the Chishui River Basin from aspects
such as ecological environmental quality (Zhou et al., 2023),
vegetation cover (Liu et al., 2021), ecosystem services (Luo et al.,
2021), and eco-hydrology (Ge et al., 2021), but research on the UHI
effect in the Chishui River Basin is relatively limited.

Currently, LST has been widely used in studies such as
vegetation monitoring (Masiello et al., 2015), drought assessment
(Grazia et al., 2016) and urban climate evaluation (Weng, 2009).
Remote sensing technology has been applied in various fields,
including ecological protection and climate change (Orusa and
Mondino, 2019; Orusa and Borgogno Mondino, 2021; Viani
et al., 2024). The methods for assessing UHI effects mainly
include ground monitoring and remote sensing technology
(Diem et al., 2024). Ground monitoring data is highly accurate
but has limited coverage and high costs. In contrast, remote sensing
technology has become the primary means for studying UHI due to
its wide coverage, timeliness, and relatively low cost (Wang et al.,
2024). Various algorithms have been developed to retrieve land
surface temperature (LST) from thermal infrared data obtained by
different remote sensors, including the radiative transfer equation
method (Wan and Dozier, 1996; Sekertekin, 2019), single-channel
algorithm (Jiménez-Muñoz et al., 2014), Mono-window Algorithm
(Kwarteng and Small, 2010), split-window algorithm (Mostovoy
et al., 2006; Xu, 2015), andmulti-channel algorithm (Shi et al., 2021).
The single-channel algorithm, applicable to all thermal infrared
bands, requires fewer parameters and achieves high retrieval
accuracy, making it widely used (Wang et al., 2018). The Mono-
window Algorithm (MWA), derived from the single-channel
algorithm, simplifies parameter requirements and improves
retrieval accuracy, especially in karst regions (Wang et al., 2018).

In the Aosta Valley region of northwestern Italy, as well as in
many cities in other countries, remote sensing technology has been
used to study the UHI effects (Deilami et al., 2018; Orusa and

Mondino, 2019; Orusa et al., 2023). These studies show that while
there are common factors affecting UHI effects in different regions,
such as urban layout, surface materials, and green space coverage
(for example, areas with high green space coverage can reduce
temperatures through shading and evaporation (Gunawardena
et al., 2017; Deilami et al., 2018), the UHI effects are also
significantly influenced by the unique geographical and climatic
conditions of each region (Liao et al., 2022). By retrieving LST,
research has shown that different terrains and land cover types
significantly impact UHI (Abdullah and Barua, 2022; Liao et al.,
2022). Additionally, mapping UHI is of great significance for
promoting ecological sustainability. By analyzing the spatial
distribution characteristics of the UHI, urban planners can
identify areas most affected by the heat island effect and take
measures such as increasing green space coverage and optimizing
urban layout to mitigate the heat island effect (Feng et al., 2021).
These measures not only help to lower urban temperatures and
improve residents’ quality of life but also promote the restoration
and protection of ecosystems, enhancing the environmental
resilience of cities.

Given this background, the primary objective of this study is to
investigate the surface urban heat island (SUHI) within the Chishui
River Basin, with a focus on understanding its spatiotemporal
dynamics and the influence of karst topography. To achieve this,
we select the Chishui River Basin as the study area. Using Landsat
8 TIRS satellite imagery and the MWA, we quantitatively retrieve
LST for the summers of 2016 and 2021 to obtain the spatial
distribution of LST in the Chishui River Basin and analyze the
spatiotemporal distribution characteristics of the SUHI. The main
contents of the study include: 1) Retrieval of LST in the Chishui
River Basin; 2) Analysis of LST changes between 2016 and 2021; 3)
Exploration of the impact of karst topography on the SUHI; 4)
Proposing mitigation strategies for the SUHI in the Chishui River
Basin. This study aims to provide a scientific basis for urban
development planning and ecological protection in the Chishui
River Basin, promoting its sustainable development.

2 Materials and methods

2.1 Study area in a semiarid region

The Chishui River Basin (104°09′E to 107°10′E and 26°49′N
to 28°54′N), nestled at the confluence of Yunnan, Guizhou, and
Sichuan provinces, marks a transitional zone between the
Yunnan-Guizhou Plateau and the Sichuan Basin. This
expansive basin, which emanates from the Yudong River in
Zhenxiong County, Yunnan Province, eventually merges with
the Yangtze River at Hejiang County, Sichuan Province. It
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encompasses an area of 19,100 km2, with a main stream
extending 436.5 km and maintaining an average annual
discharge of 9,890 m³/s (Huang, 2003). The basin traverses
through 13 counties, including regions in Yunnan, Guizhou,
and Sichuan provinces as previously described (Liu et al., 2021).
The Chishui River Basin boasts a sophisticated network of
waterways (Figure 1), including the notable tributaries of the
Xishui River, Erdao River, and Tongzi River. It stands out as an
ecologically pristine river among the major tributaries of the
upper Yangtze River (Xu et al., 2020), historically serving as a
vital artery for the circulation of materials across Yunnan,
Guizhou, and Sichuan. Notably, it is the sole primary
tributary of the Yangtze River in China that lacks a cross-
provincial dam power station, thus safeguarding its rich and
intricate ecological system (Chen et al., 2022). Climatically, the
Chishui River Basin falls within the mid-subtropical to south-
subtropical zone, endowed with a warm and humid climate, an
extended frost-free period, and plentiful precipitation. The
region’s average annual temperature hovers around 16.3°C,
with annual rainfall varying between 749 and 1,286 mm,
creating an environment conducive to diverse biological
activity and ecological processes.

2.2 Data sources and processing

Satellite Remote Sensing Data: This study utilized two sources of
remote sensing data (Table 1), both obtained from the Geospatial
Data Cloud platform of the Computer Network Information Center,
Chinese Academy of Sciences. The first source is four ASTER
satellite GDEMV2 30 m resolution digital elevation data. These
data were processed using ArcMap 10.2 software to obtain the
Chishui River Basin boundary, providing an accurate study area
boundary for subsequent work. The second source is four Landsat
8 remote sensing images from the summers of 2016 and 2021, which
fully cover the study area and have relatively low cloud cover
(Table 2). Data preprocessing included operations such as
radiometric calibration, atmospheric correction, cloud detection,
and cloud masking.

Temperature Product Data: MOD11A1 LST daily product data,
corresponding to the Landsat 8 time in the study area, were obtained
from NASA’s official website. With a spatial resolution of 1,000 m,
the original images were reprojected to WGS 1984 UTM Zone 48 N
using MRT software with the nearest neighbor method and
resampled to a 100 m resolution to validate the accuracy of the
subsequent LST inversion results.

FIGURE 1
Overview of the Chishui River Basin EPSG:32648.
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Meteorological Monitoring Data and Other Information:
Meteorological observation data for the summers of 2016 and
2021 were collected from 13 counties: Zhenxiong, Weixin,
Xishui, Chishui, Qixingguan, Dafang, Jinsha, Renhuai, Tongzi,
Hejiang, Xuyong, Gulin, and Bozhou from http://lishi.tianqi.
com/. This data was used as parameters for calculating LST.
Atmospheric correction parameters were obtained using the
atmospheric correction parameter calculator from NASA’s official
website by inputting the basic information of the images to acquire
the atmospheric transmittance of each image.

Annual China Land Cover Dataset (Yang and Huang, 2021) and
Weltkarte der Karstaquifere (WHYMAP WOKAM) Data: These
datasets were used to investigate the reasons for the spatial
distribution of the SUHI. This study utilized ENVI 5.3.1 software
and ArcMap 10.2 for data processing and mapping. Figure 2
illustrates our technical roadmap, detailing the complete process
from data collection and preprocessing to final analysis.

2.3 Research methods

2.3.1 Mono-window Algorithm
The MWA is one of the algorithms for inverting LST. It is

designed for TM remote sensing images with only one thermal
infrared band (Qin et al., 2001). Compared to other commonly
used LST inversion algorithms, the MWA requires fewer
parameters and offers higher accuracy, making it more
suitable for long-term series data from the Landsat satellite
series (Hu et al., 2017). According to previous research, this
algorithm is suitable for inverting LST from Landsat 8 TIRS
remote sensing images and provides high accuracy (Su and Yu,

2018). The Single Channel Algorithm and MWA are more
suitable for inverting LST in southern karst areas of China
with high atmospheric water vapor content (Wang et al.,
2018). Therefore, this study selects Landsat 8 TIRS Band 10 as
the data source and uses the MWA to invert LST. The
expression is:

TS � a p 1 − C − D( ) + [b p 1 − C − D( ) + C + D[ ] p T10

− D p Ta]/C (1)

where TS is the LST in Kelvin. When the LST is in the range of
0–70°C, a and b are constants with values a � −67.355351, b �
0.458606.

2.3.2 Calculation of relevant parameters
2.3.2.1 Surface emissivity

The emissivity values for typical land cover types of Landsat
8 TIRS Band 10 were obtained from the ASTER Spectral Library
(http://speclib.jpl.nasa.gov) (Wang et al., 2018): vegetation
εV � 0.972; water εW � 0.991; cement buildings εB � 0.962; bare
soil εS � 0.966; and calcium carbonate rock εR � 0.958. Surface
emissivity is primarily calculated through NDVI, and then the
surface emissivity of mixed pixels composed of different land
cover types is calculated based on the urban characteristics of the
karst region (Wang et al., 2010).

Water bodies:

ε � εW (2)

Mixed pixels composed of buildings and vegetation:

ε � PvRvεv + 1 − Pv( )RBεB + dε (3)

TABLE 1 Data sources.

Name Data Type Accuracy Source

Basin DEM TIFF 30 m http://www.gscloud.cn

River Imagery GeoTIFF 30 m http://www.gscloud.cn

MOD11A1 HDF 1000 m https://ladsweb.modaps.eosdis.nasa.gov/search/order/

Near-Surface Air Temperature TXT — http://lishi.tianqi.com/

Atmospheric Transmittance TXT — https://atmcorr.gsfc.nasa.gov/

WHYMAP WOKAM Shp — https://services.bgr.de/grundwasser/whymap_wokam

China Land Cover Dataset TIFF 30 m https://zenodo.org/records/8176941

TABLE 2 Landsat 8 image information.

Image ID Date Cloud Cover (%) Longitude Latitude Atmospheric transmittance

127/40 2016/05/16
2021/08/02

12.02
0.75

+107.2739
+107.2755

+28.8694
+28.8631

0.85
0.62

127/41 2021/08/02 9.76 +106.9099 +27.4254 0.65

128/40 2016/07/26
2021/06/06

15.4
55.02

+105.7393
+105.7025

+28.8692
+28.8628

0.45
0.76

128/41 2016/07/26
2021/06/06

5.18
24.87

+105.3733
+105.3369

+27.4315
+27.4253

0.58
0.82
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Mixed pixels composed of vegetation and soil:

ε � PvRvεv + 1 − Pv( )RSεS + dε (4)

Mixed pixels composed of karst peaks vegetation and calcium
carbonate rocks:

ε � PvRvεv + 1 − Pv( )RRεR + dε (5)
dε � 1 − εR( ) 1 − F( )εV (6)

where dε is the mutual correction of thermal radiation between
vegetation and rocks in mixed pixels due to terrain. The terrain factor
FFF varies based on different geometric distributions. When the surface
undulations are weak, dε is generally negligible; when the topographic
relief is significant, according to the empirical model (Qin et al., 2001):

dε � 0.007396Pv

dε � 0.007396 1 − Pv( )( ){ 0≤Pv ≤ 0.5
0.5<Pv ≤ 1

(7)

Rv, RB, RR, RS are the temperature ratios for vegetation, buildings,
rocks, and soil, respectively. They are calculated using the empirical
formulas (Qin et al., 2003):

RS � 0.9332 + 0.0585Pv (8)
RS � 0.9902 + 0.1068Pv (9)
RB � 0.9886 + 0.1287Pv (10)
Pv � NDVI − NDVIs

NDVIv − NDVIs
(11)

NDVI � b5 − b4( )/ b4 + b5( ) (12)
where Pv is the vegetation cover ratio; NDVI is the Normalized
Difference Vegetation Index; b4 and b5 are the red band and near-
infrared band, respectively. According to the empirical values by
Qin Zhihao et al., NDVIv is 0.70 for pixels covered by lush
vegetation, and NDVIs is 0.05 for bare land pixels (Qin
et al., 2004).

2.3.2.2 Brightness temperature calculation

T10 � K2/ ln K1

B TS( ) + 1( ) (13)

where K1 and K2 are pre-launch constants for the satellite,
obtainable from the data header file. For TIRS Band 10, K1 �
774.89 W/(m2•sr•μm), K2 = 1,321.08 K

2.3.2.3 Atmospheric transmittance
Atmospheric transmittance refers to the ratio of the radiance

affected by the atmosphere to the radiance before entering the
atmosphere. Variables C and D in Equations 14, 15 are
intermediate variables defined as follows:

C � ετ (14)
D � 1 − ε( ) 1 + 1 − ε( )τ[ ] (15)

FIGURE 2
Technical roadmap.
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where ε is the surface emissivity, and τ is the atmospheric
transmittance of the day (Table 2).

2.3.2.4 Effective mean atmospheric temperature
Empirical formulas were derived based on standard

atmospheres proposed by Modtran. These formulas indicate that
the effective mean atmospheric temperature Ta has a linear
relationship with the near-surface air temperature T0. The near-
surface air temperature T0 refers to the local air temperature when
the remote sensing image was obtained. Both temperatures are
measured in Kelvin (Qin et al., 2003):

Ta � 17.9769 + 0.91715 p T0 (16)
Ta � 16.0110 + 0.92621 p T0 (17)
Ta � 19.2704 + 0.91118 p T0 (18)

Equation 16 is used for tropical regions, Equation 17 for mid-
latitude summers, and Equation 18 for mid-latitude winters. Since
the study area is located at latitudes 26°49′N to 28°54′N, Equation 17
is chosen.

2.4 Cloud detection and cloud masking in
remote sensing images

Constrained by various climatic and natural geographic
conditions, more than half of the Earth’s surface is covered by
clouds, with about 55% of land surfaces being cloud-covered (King
et al., 2013). Clouds are an inevitable source of noise in remote
sensing image data (Cao et al., 2020), and some images are
unavoidably affected by cloud contamination, resulting in fewer
data directly useable for quantitative parameter inversion (Ju and
Roy, 2008). Therefore, cloud detection is an essential step in the
analysis of most remote sensing image data, as it helps improve the
accuracy of subsequent data inversion. The images passing over the
Chishui River Basin are affected by cloud contamination to varying
degrees. To improve inversion accuracy, cloud detection and cloud
masking are necessary. ENVI 5.3.1 has introduced an automatic
cloud detection tool that effectively supports the use of the Landsat
satellite series and NPP VIIRS. Figure 3 shows a comparison of one

scene’s image before and after cloud detection and masking,
demonstrating significant improvements in image clarity and
interpretability.

2.5 Accuracy verification of inversion results

To verify the reliability of the LST inversion results for the
Chishui River Basin using the MWA, it is necessary to validate and
compare the inversion results. Previous studies have primarily used
meteorological station data or ground monitoring data to validate
LST inversion results. However, due to constraints in time and
equipment, synchronous ground-measured LST data could not be
obtained. Therefore, this study uses MODIS LST products as
comparison data for verification. Given that the Landsat
8 imagery acquisition time unit is 1 day, the MOD11A1 data
with a daily time resolution were selected. After excluding data
with severe cloud contamination, the closest available MODIS data
were selected, specifically the daytime LST products from 25 July
2016, 5 June 2021, and 3 August 2021. To facilitate comparison, the
MODIS LST data was clipped using the 2021 Landsat LST results to
ensure consistent spatial coverage.

2.6 Urban heat island effect
evaluation method

The SUHI effect significantly increases urban temperatures,
leading to more frequent hot weather in summer. Studying the
SUHI effect requires a clear definition of surface heat island levels.
The methods for evaluating the SUHI effect are mainly divided into
the equal-interval classification method (Zhang et al., 2005) and the
mean-standard deviation classification method (Jiang and Xia,
2007). The equal-interval classification method can reflect the
spatial distribution of surface temperature to some extent, but it
directly classifies the obtained surface temperature or normalized
values rigidly, lacking objectivity in the breakpoints and the number
of levels. The mean-standard deviation classification method defines
heat island levels based on different combinations of the mean and
standard deviation of the surface temperature, which can avoid

FIGURE 3
Cloud processing of remote sensing images. (A) Original image (B) cloud detection results (C) cloud masking results EPSG:32648.
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differences brought by different time phases to some extent (Chen
and Wang, 2009). Therefore, this study adopts the mean-standard
deviation classification method to define the levels of
SUHI (Table 3).

where LST is the inverted land surface temperature, Tm and Sd
are the mean and standard deviation, respectively; for 2016,
Tm � 35.74, Sd � 2.31; for 2021, Tm � 37.41, Sd � 2.54.

3 Results and discussion

3.1 Land surface temperature
inversion results

The LST inversion results for the summers of 2016 and 2021 in
the Chishui River Basin (Figure 4). The average LST in the summer
of 2016 was approximately 35.74°C, with amaximum temperature of
about 60.37°C and a minimum temperature of about 16.72°C. In the
summer of 2021, the average LST was about 37.41°C, with a
maximum temperature of about 62.69°C and a minimum
temperature of about 15.19°C. The images were acquired in
Greenwich Mean Time, which translates to around noon Beijing
Time. The areas with higher LST are mainly distributed on both
sides of the Chishui River Basin, primarily in the built-up areas. Over
the five-year period, the average temperature difference is 1.67°C.
NoData values represent the empty values after cloud processing.

3.2 Accuracy verification of inversion results

To reasonably verify the accuracy of the LST inversion results, the
MOD11A1 data were first appropriately clipped before comparison.
The average temperature of MOD11A1 in 2016 was approximately

31.70°C, with a maximum temperature of 39.43°C, a minimum
temperature of 20.55°C, and a standard deviation of 1.80 (Figure 4).
Compared to Landsat 8 in 2016, the average difference was 4.04°C, and
the standard deviation difference was 0.51. In 2021, the average
temperature of MOD11A1 was approximately 33.12°C, with a
maximum temperature of 41.34°C, a minimum temperature of
24.67°C, and a standard deviation of 1.64. Compared to Landsat
8 in 2021, the average difference was 4.29°C, and the standard
deviation difference was 0.90. These differences are within a
reasonable range, indicating that the error between Landsat 8 TIRS
data andMOD11A1 data is small, and the inversion results are reliable.
The analysis found that the LST inverted from Landsat 8 is generally
higher than that from MOD11A1. However, in water bodies, the
MOD11A1 LST is higher than the Landsat 8 inversion results. This
discrepancy is due to the low resolution of MODIS, where pixels in
narrow river areas cover surrounding regions, often including urban
areas on both sides of the river. The Landsat 8 thermal infrared band,
with a resolution of 100 m, can better distinguish small plots, effectively
inverting LSTs closer to various land types. Overall, the inversion
accuracy of Landsat 8 is ideal, with the main differences attributed
to the different time phases and image resolutions of the two types of
imagery. This indicates that high-resolution data can more precisely
capture the subtle variations in LST and SUHI effects (Sobrino et al.,
2012). In the future, with the availability and use of higher precision
data, the analysis of LST and SUHI will receive more reliable data
support (Orusa et al., 2024).

3.3 Spatial distribution and analysis of urban
heat island

3.3.1 Analysis of the heat island effect in the Chishui
River Basin

After removing cloud contamination, the mean - standard
deviation heat island intensity distribution in Figure 5 clearly
shows that most of the Chishui River Basin is in the normal
temperature zone. The low-temperature zones are mainly located
near the basin boundaries with high vegetation cover, while the
high-temperature and sub-high-temperature zones are primarily
distributed on both sides of the river. The proportion of areas
covered by different heat island levels did not change
significantly between the 2 years (Figure 6). However, in 2016,
the areas with strong heat island intensity were mainly concentrated
in the middle and lower reaches of the river. By 2021, the high-
temperature and sub-high-temperature zones were more dispersed
but still primarily distributed along the various branches of the river.

TABLE 3 Classification of heat island intensity levels based on mean-standard deviation.

Interval Heat island intensity Range

High temperature zone Extremely Strong LST > Tm + Sd

Sub-high temperature zone Strong Tm + 0.5Sd < LST≤ Tm + Sd

Normal zone Moderate Tm − 0.5Sd < LST≤Tm + 0.5Sd

Sub-low temperature zone Weak Tm − Sd < LST ≤Tm − 0.5Sd

Low temperature zone Very Weak LST<Tm − Sd

TABLE 4 Area distribution of heat island levels.

Heat island intensity 2016 (km2) 2021 (km2)

Low temperature zone 2,286.91 1,464.25

Sub-low temperature zone 2,820.93 2,330.07

Normal zone 6,242.67 6,975.64

Sub-high temperature zone 2,154.32 1,403.24

High temperature zone 2,241.67 1,660.33

Total 15,746.50 13,833.53
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FIGURE 4
Heat island intensity distribution in the Chishui River Basin. (A) 2016 MOD1A1 temperature data, (B) 2016 Landsat-8 TIRS temperature data, (C)
2021 MOD1A1 temperature data, (D) 2021 Landsat-8 TIRS temperature data. EPSG:32648.

FIGURE 5
Comparison of land surface temperature inversion results for 2016 (A) and 2021 (B) EPSG:32648.
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The high temperatures generated in urban centers are a concrete
manifestation of the SUHI effect. In 2016, the high-temperature
zones in the Chishui River Basin were mainly concentrated at the
junction of Xishui County, Gulin County, and Huairen County,
forming a noticeable temperature difference with the surrounding
areas and creating a cross-shaped heat island region. Over the
5 years, with the progress of urbanization, although the area of
high-temperature zones decreased in 2021, most areas in the
Chishui River Basin showed high and sub-high temperature
zones. The distribution of low and sub-low temperature zones
also decreased, while the area of normal temperature zones
increased. During this period, both the Normalized Difference
Vegetation Index (NDVI) and the Remote Sensing Ecological
Index (RSEI) in the Chishui River Basin showed a significant
upward trend (Zhou et al., 2023). The increase in NDVI reflects
the rise in vegetation cover, while the improvement in RSEI
comprehensively indicates the enhancement of the regional
ecological condition, which may be an important reason for the
mitigation of SUHI.

3.3.2 Conventional heat islands
In urban areas, the phenomenon where urban temperatures are

higher than those in surrounding areas due to high population
density and concentration of factories is known as a conventional
heat island. In Figure 5, the regions with high heat island intensity in
2016 were mainly concentrated at the junction of Renhuai County,
Xishui County, and Gulin County in themiddle and lower reaches of
the Chishui River Basin. This area has relatively flat terrain and relies
on the production of high-quality liquor as a pillar industry.
However, except for major distilleries like Moutai, Xijiu, and
Langjiu, other factories are smaller in scale, and their technology
and environmental protection facilities are not well-developed,
leading to varying degrees of water and air pollution (Li et al.,

2021). The sub-low temperature and low-temperature zones are
mainly on both sides downstream, where high vegetation cover
effectively regulates the SUHI effect. The normal temperature zones
are distributed between the sub-low and sub-high temperature
zones, forming a buffer zone of temperature differences.

With the joint advancement of urbanization and green
development in the Chishui River Basin, by 2021, there were no
large contiguous heat island areas compared to 2016 (Table 4).
However, high-temperature and sub-high temperature zones
showed a clear trend of spreading outward, forming dispersed
filamentous shapes. Upstream areas exhibited significant changes
in heat island regions, with some low-temperature and sub-low
temperature zones gradually transitioning to normal temperature
zones (Figure 6).

3.3.3 Abnormal heat islands
Analysis of the comparison results reveals that some suburban

areas in the study region exhibit high and sub-high temperature
phenomena (Figure 5), despite the absence of concentrated urban
areas nearby. The proportion of heat island areas in the Sub-high
Temperature Zone and High Temperature Zone in karst regions is
higher than in non-karst regions in both 2016 and 2021 (Figure 6).
High vegetation cover can effectively mitigate SUHI intensity. The
middle and upper reaches of the Chishui River Basin are karst areas
(Figure 1), characterized by thin soil layers, surface drought, and
susceptibility to soil erosion. Sparse vegetation in karst areas can lead
to easier soil erosion and the formation of rocky desertification,
resulting in poor natural surface vegetation cover (Liao et al., 2022).

Moreover, the unique thermal properties of karst carbonate
rocks are a significant factor in the formation of abnormal heat
island effects. Studies have found that karst carbonate rocks (such as
limestone and dolomite) have a lower specific heat capacity and
higher thermal conductivity, making them more susceptible to

FIGURE 6
Area proportion of heat island levels in the Chishui River Basin. (A) Percentage of heat island levels in karst and non-karst areas of the Chishui River
Basin. (B) Area of heat island levels in karst and non-karst areas of the Chishui River Basin.
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heating and cooling under the same conditions compared to
concrete and reinforced concrete (Cai et al., 2014; Liao et al.,
2022). This characteristic causes surface temperatures in these
areas to rise rapidly when exposed to solar radiation, creating
localized high-temperature zones. Over the 5 years, with
Furthermore, karst areas are prone to soil erosion and rocky
desertification, leading to low vegetation cover and sparse natural
vegetation, which further enhances the increase in surface
temperature. These factors collectively contribute to the
prominent presence of abnormal heat island effects in karst regions.

3.4 Factors influencing the heat island effect
and mitigation strategies

3.4.1 Influencing factors
The average temperatures of different land use types in 2016 and

2021, from highest to lowest, are as follows: Impervious surfaces >
Grassland > Cropland > Shrub > Forest > Water in 2016, and
Impervious surfaces > Grassland > Cropland > Shrub > Water >
Forest in 2021 (Figure 7). Urban buildings are typically constructed
from reinforced concrete, and road surfaces are mainly covered with
asphalt, bitumen, and cement, which can absorb a large amount of solar
heat. Consequently, they absorb more heat than natural surfaces in
suburban areas, creating differences in surface temperatures. During the
day, they store more heat and cool downmore slowly at night, resulting
in higher surface temperatures compared to other areas (Gunawardena
et al., 2017). This phenomenon not only affects the quality of life for
urban residents but may also increase the use of cooling devices such as
air conditioners, further exacerbating energy consumption and the heat
island effect (Hwang et al., 2020).

In contrast, natural surfaces such as water bodies and forests can
effectively alleviate high temperatures due to their higher

evapotranspiration and heat dissipation capabilities. This
indicates that increasing the coverage of urban green spaces and
water bodies is an important measure to mitigate the heat island
effect (Gunawardena et al., 2017). By planning more urban parks,
green belts, and water bodies, the overall temperature of the city can
be significantly reduced, enhancing residents’ comfort and the
ecological sustainability of the city. Additionally, improving
urban construction materials and structures is also a feasible
solution (Wang et al., 2021). For example, using cool materials
or reflective materials instead of traditional asphalt and concrete can
reduce heat absorption, thereby lowering surface temperatures. At
the same time, promoting green building technologies such as green
roofs and green walls can also help mitigate the heat island effect
(Vujovic et al., 2021; Wang et al., 2021).

Additionally, urban topography is another factor contributing to
the heat island effect. The proportion of heat island areas in karst
regions is higher than in non-karst areas (Figure 6). Cities in karst
regions are often surrounded by mountains, making the underlying
surface rougher compared to plains. Due to the undulating terrain,
many buildings in mountainous cities are constructed in valleys near
rivers (Figure 1), which hinders air exchange and reduces
evapotranspiration from vegetation and water bodies. Moreover,
karst regions are prone to soil erosion and rocky desertification,
resulting in low vegetation cover and poor urban permeability.
Reduced evaporation means less heat is carried away, failing to
effectively mitigate the heat island effect. These combined factors
enhance the intensity of SUHI effects (Liao et al., 2022; Diem
et al., 2024).

3.4.2 Mitigation strategies for the heat island effect
From the distribution of heat island intensity in the Chishui

River Basin in 2016 and 2021, it can be seen that the total area
proportion of high-temperature and sub-high-temperature zones

FIGURE 7
Average temperature by land use type in 2016 and 2021.
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has slightly decreased. In 2021, the Chishui River Basin has not
experienced large contiguous UHI areas. As a crucial ecological
barrier in the middle and upper reaches of the Yangtze River,
protecting the pristine natural environment of the Chishui River
Basin requires reasonable urban planning (Yi et al., 2021). Generally,
higher building density in urban areas results in poorer air
circulation with surrounding regions (Gunawardena et al., 2017).
The discharge of waste, wastewater, and residues from production
and daily life leads to a deteriorating ecological environment
(Arnfield, 2003). Moreover, the fragile ecological environment of
karst areas, characterized by soil erosion, alternating drought and
floods, and poor soil fertility, exacerbates the heat island intensity.

This study suggests that to mitigate and prevent the SUHI effect
in the Chishui River Basin, improvements can be made in the
following four areas 1) Increase urban green spaces and
vegetation coverage: Expanding parks, green roofs, and urban
forests can significantly reduce land surface temperature through
shading and evapotranspiration. 2) Use reflective and permeable
materials: Implementing cool pavements and reflective roofing
materials can reduce heat absorption, thereby lowering surface
temperatures. 3) Increase urban water bodies: Creating and
maintaining water bodies such as ponds and fountains can
provide localized cooling effects, helping to lower surrounding
surface temperatures. 4) Protect ecological environment and
biodiversity: Rationally plan hydropower construction,
appropriately manage rocky desertification, increase watershed
water bodies and vegetation coverage, and implement sustainable
development strategies.

3.5 Limitations and prospects

Although this study calculated and compared the LST and SUHI
effects in the Chishui River Basin for the years 2016 and 2021, there are
still some limitations. 1) Temporal Scope: The current research
primarily focuses on the data from 2016 to 2021. Future research
could extend the temporal analysis by including more years and
seasonal data to capture long-term trends and seasonal variations
more comprehensively. 2) Remote Sensing Inversion Algorithms
and Cloud Coverage Handling: In this study, the single-window
algorithm was utilized for remote sensing data inversion to estimate
LST, and there was considerable cloud coverage. Future research should
consider employing multiple remote sensing inversion algorithms and
integrating various remote sensing data for a fusion analysis to enhance
the reliability and robustness of the results.

4 Conclusion

With the rapid economic development in China, the
urbanization speed in the Chishui River Basin region has
gradually accelerated, causing changes in the regional ecological
environment. The changes in the thermal environment are
particularly significant, having a major impact on the Chishui
River Basin. Using Landsat 8 satellite remote sensing images, this
study took the Chishui River Basin as an example to conduct spatial
analysis of the obtained LST inversion results. It compared the LST
changes in the summers of 2016 and 2021 and analyzed the SUHI

effect in the Chishui River Basin, leading to the following main
findings and conclusions.

(1) The results of the LST inversion based on Qin Zhihao’s MWA
effectively reflect the LST in the Chishui River Basin. The
inversion accuracy improved after cloud detection and cloud
masking to remove cloud-contaminated areas. The average
temperature was 35.74°C in 2016, and 37.41°C in 2021,
indicating good inversion accuracy and high resolution.

(2) According to the heat island intensity distribution maps for
2016 and 2021, the area proportions of the Sub-high
Temperature Zone and High Temperature Zone slightly
decreased. The normal temperature zone still occupies
most of the Chishui River Basin, but the High
Temperature Zone and Sub-high Temperature Zone are
spreading outward from concentrated areas.

(3) The study found that there are both conventional heat islands
and “abnormal” heat islands in the Chishui River Basin. The
composition of the underlying surface influences the distribution
of heat islands. Karst topography and geomorphology are prone
to forming “abnormal” heat islands.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: http://lishi.tianqi.com/, http://www.
gscloud.cn, https://atmcorr.gsfc.nasa.gov/, https://zenodo.org/
records/8176941, https://services.bgr.de/grundwasser/whymap_
wokam, https://ladsweb.modaps.eosdis.nasa.gov/search/order/.

Author contributions

YW: Conceptualization, Funding acquisition, Writing–original
draft, Writing–review and editing. HW: Software, Visualization,
Writing–original draft. SL: Conceptualization, Writing–review
and editing. LW: Data curation, Software, Visualization,
Writing–review and editing. CG: Formal Analysis, Supervision,
Writing–review and editing. ZZ: Data curation, Software,
Writing–review and editing. RF: Methodology, Project
administration, Writing–review and editing. XY: Data curation,
Investigation, Writing–review and editing. GZ: Formal Analysis,
Funding acquisition, Investigation, Writing–review and editing. JY:
Investigation, Writing–review and editing. PY: Investigation,
Writing–review and editing. GL: Methodology, Project
administration, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by Guizhou Provincial Science and Technology Projects
[QKHJC-ZK (2022) YB334]; Guizhou Provincial Science and
Technology Projects [QKHZC (2023) YB228]; Guizhou
Provincial Key Project of Humanities and Social Science [QJH

Frontiers in Built Environment frontiersin.org11

Wu et al. 10.3389/fbuil.2024.1457347

http://lishi.tianqi.com/
http://www.gscloud.cn
http://www.gscloud.cn
https://atmcorr.gsfc.nasa.gov/
https://zenodo.org/records/8176941
https://zenodo.org/records/8176941
https://services.bgr.de/grundwasser/whymap_wokam
https://services.bgr.de/grundwasser/whymap_wokam
https://ladsweb.modaps.eosdis.nasa.gov/search/order/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1457347


(2023) 23RWJD182]; Guizhou Provincial Science and Technology
Projects [QKHZC (2023) YB227]; Guizhou Provincial Digital Rural
Innovation Team in Higher Education [QJJ (2023) 076] and
Guizhou Provincial Engineering Research Center in Higher
Education [QJJ (2023) 039].

Acknowledgments

We thank the reviewers for their valuable comments. We
gratefully acknowledge the design of SL and the econtributions of
the co-authors. We appreciate Zhenghua Shi, Lei Gu, Shuang
Huang, and Shasha Li’s suggestions for paper revision. We thank
Fujun Yue and Arshad Ali’s contribution to the English revision of
the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdullah, S., and Barua, D. (2022). Modeling land surface temperature with a mono-
window algorithm to estimate urban heat island intensity in an expanding urban area.
Environ. Process. 9, 14. doi:10.1007/s40710-021-00554-8

Arnfield, A. J. (2003). Two decades of urban climate research: a review of turbulence,
exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23, 1–26.
doi:10.1002/joc.859

Cai, H., He, Z., Yang, D., and Deng, H. (2014). Distribution and formation of the
abnormal heat island in Guiyang, southwestern China. JARS 8, 083637. doi:10.1117/1.
JRS.8.083637

Cao, R., Chen, Y., Chen, J., Zhu, X., and Shen, M. (2020). Thick cloud removal in
Landsat images based on autoregression of Landsat time-series data. Remote Sens.
Environ. 249, 112001. doi:10.1016/j.rse.2020.112001

Chen,A., Yang, X., Guo, J., Zhang,M., Xing, X., Yang,D., et al. (2022).Dynamic of land use,
landscape, and their impact on ecological quality in the northern sand-prevention belt of
China. J. Environ. Manag. 317, 115351. doi:10.1016/j.jenvman.2022.115351

Chen, S., and Wang, T. (2009). Comparison analyses of equal interval method and
mean-standard deviation method used to delimitate urban heat island. J. Geo-
information Sci. 11, 145–150. doi:10.3724/sp.j.1047.2009.00145

Deilami, K., Kamruzzaman, Md., and Liu, Y. (2018). Urban heat island effect: a
systematic review of spatio-temporal factors, data, methods, and mitigation measures.
Int. J. Appl. Earth Obs. Geoinf. 67, 30–42. doi:10.1016/j.jag.2017.12.009

Diem, P. K., Nguyen, C. T., Diem, N. K., Diep, N. T. H., Thao, P. T. B., Hong, T. G., et al.
(2024). Remote sensing for urban heat island research: progress, current issues, and
perspectives. Remote Sens. Appl. Soc. Environ. 33, 101081. doi:10.1016/j.rsase.2023.101081

Feng, R., Wang, F., Wang, K., Wang, H., and Li, L. (2021). Urban ecological land and
natural-anthropogenic environment interactively drive surface urban heat island: an
urban agglomeration-level study in China. Environ. Int. 157, 106857. doi:10.1016/j.
envint.2021.106857

Galdies, C., and Lau, H. S. (2020). Climate Change, Hazards and Adaptation Options.
Climate Change Management. Cham: Springer, 369–388.

Ge, X., Wu, Q., Wang, Z., Gao, S., and Wang, T. (2021). Sulfur isotope and
stoichiometry–based source identification of major ions and risk assessment in
Chishui River Basin, southwest China. Southwest China. Water 13, 1231. doi:10.
3390/w13091231

Grazia, M., Liuzzi, G., Masiello, G., Serio, C., Telesca, V., and Venafra, S. (2016).
Surface parameters from SEVIRI observations through a Kalman filter approach:
application and evaluation of the scheme in Southern Italy. Tethys 13, 3–10. doi:10.
3369/tethys.2016.13.01

Gunawardena, K. R., Wells, M. J., and Kershaw, T. (2017). Utilising green and
bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585,
1040–1055. doi:10.1016/j.scitotenv.2017.01.158

Hu, D., Qiao, K., Wang, X., Zhao, L., and Ji, G. (2017). Comparison of three single-
window algorithms for retrieving land-surface temperature with Landsat 8 TIRS data.
Geomatics Inf. Sci. Wuhan Univ. 42, 869–876. doi:10.13203/j.whugis20150164

Huang, Z. (2003). On the development and conservation for the resources and
ecology of Chishui river basin. Resour. Environ. Yangtze Basin. 4, 332–339. doi:10.1023/
A:1022289509702

Hwang, R.-L., Lin, T.-P., and Lin, F.-Y. (2020). Evaluation and mapping of building
overheating risk and air conditioning use due to the urban heat island effect. J. Build.
Eng. 32, 101726. doi:10.1016/j.jobe.2020.101726

Jiang, X., and Xia, B. (2007). Spatial characteristics and dynamic simulations of urban
heat environment of cities in Pearl River Delta. Acta Ecol. Sin. 27, 1461–1470.

Jiménez-Muñoz, J. C., Sobrino, J. A., Skoković, D., Mattar, C., and Cristóbal, J. (2014).
Land surface temperature retrieval methods from landsat-8 thermal infrared sensor
data. IEEE Geoscience Remote Sens. Lett. 11, 1840–1843. doi:10.1109/LGRS.2014.
2312032

Ju, J., and Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the
conterminous United States and globally. Remote Sens. Environ. 112, 1196–1211. doi:10.
1016/j.rse.2007.08.011

King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A. (2013).
Spatial and temporal distribution of clouds observed by MODIS onboard the terra and
aqua satellites. IEEE Trans. Geoscience Remote Sens. 51, 3826–3852. doi:10.1109/TGRS.
2012.2227333

Kwarteng, A., and Small, C. (2010). Remote Sensing of Urban and Suburban Areas.
New York: Springer, 267–287.

Li, J., Ouyang, Z., Liu, P., Zhao, X., Wu, R., Zhang, C., et al. (2021). Distribution and
characteristics of microplastics in the basin of chishui River in Renhuai, China. Sci. Total
Environ. 773, 145591. doi:10.1016/j.scitotenv.2021.145591

Liao, S., Cai, H., Tian, P., Zhang, B., and Li, Y. (2022). Combined impacts of the
abnormal and urban heat island effect in Guiyang, a typical Karst Mountain City in
China. Urban Clim. 41, 101014. doi:10.1016/j.uclim.2021.101014

Liu, F., Wang, J., Zhang, F., Liu, H., and Wang, J. W. (2021). Spatial organisation of
fish assemblages in the Chishui River, the last free-flowing tributary of the upper
Yangtze River, China. Ecol. Freshw. Fish 30, 48–60. doi:10.1111/eff.12562

Luo, R., Yang, S., Wang, Z., Zhang, T., and Gao, P. (2021). Impact and trade off
analysis of land use change on spatial pattern of ecosystem services in Chishui
River Basin. Environ. Sci. Pollut. Res. 29, 20234–20248. doi:10.1007/s11356-021-
17188-w

Mannstein, H. (1987). Remote Sensing Applications in Meteorology and Climatology.
NATO ASI Series. Dordrecht: Springer, 391–410.

Masiello, G., Serio, C., Venafra, S., Liuzzi, G., Göttsche, F., F. Trigo, I., et al. (2015).
Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI
infrared channels: a validation and intercomparison study. Atmos. Meas. Tech. 8,
2981–2997. doi:10.5194/amt-8-2981-2015

Mostovoy, G. V., King, R. L., Reddy, K. R., Kakani, V. G., and Filippova, M. G. (2006).
Statistical estimation of daily maximum and minimum air temperatures from MODIS
LST data over the state of Mississippi. GIScience Remote Sens. 43, 78–110. doi:10.2747/
1548-1603.43.1.78

Orusa, T., and Borgogno Mondino, E. (2021). Exploring short-term climate change
effects on rangelands and broad-leaved forests by free satellite data in Aosta Valley
(northwest Italy). Climate 9, 47. doi:10.3390/cli9030047

Orusa, T., and Mondino, E. B. (2019). “Landsat 8 thermal data to support urban
management and planning in the climate change era: a case study in Torino area, NW
Italy.” in Remote sensing technologies and applications in urban environments IV,
Strasbourg, France, 133–149. doi:10.1117/12.2533110

Orusa, T., Viani, A., and Borgogno-Mondino, E. (2024). IRIDE, the euro-Italian earth
observation program: overview, current progress, global expectations, and
recommendations. Environ. Sci. Proc. 29, 74. doi:10.3390/ECRS2023-16839

Orusa, T., Viani, A., Moyo, B., Cammareri, D., and Borgogno-Mondino, E. (2023).
Risk assessment of rising temperatures using Landsat 4–9 LST time series and Meta®

Frontiers in Built Environment frontiersin.org12

Wu et al. 10.3389/fbuil.2024.1457347

https://doi.org/10.1007/s40710-021-00554-8
https://doi.org/10.1002/joc.859
https://doi.org/10.1117/1.JRS.8.083637
https://doi.org/10.1117/1.JRS.8.083637
https://doi.org/10.1016/j.rse.2020.112001
https://doi.org/10.1016/j.jenvman.2022.115351
https://doi.org/10.3724/sp.j.1047.2009.00145
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.1016/j.rsase.2023.101081
https://doi.org/10.1016/j.envint.2021.106857
https://doi.org/10.1016/j.envint.2021.106857
https://doi.org/10.3390/w13091231
https://doi.org/10.3390/w13091231
https://doi.org/10.3369/tethys.2016.13.01
https://doi.org/10.3369/tethys.2016.13.01
https://doi.org/10.1016/j.scitotenv.2017.01.158
https://doi.org/10.13203/j.whugis20150164
https://doi.org/10.1023/A:1022289509702
https://doi.org/10.1023/A:1022289509702
https://doi.org/10.1016/j.jobe.2020.101726
https://doi.org/10.1109/LGRS.2014.2312032
https://doi.org/10.1109/LGRS.2014.2312032
https://doi.org/10.1016/j.rse.2007.08.011
https://doi.org/10.1016/j.rse.2007.08.011
https://doi.org/10.1109/TGRS.2012.2227333
https://doi.org/10.1109/TGRS.2012.2227333
https://doi.org/10.1016/j.scitotenv.2021.145591
https://doi.org/10.1016/j.uclim.2021.101014
https://doi.org/10.1111/eff.12562
https://doi.org/10.1007/s11356-021-17188-w
https://doi.org/10.1007/s11356-021-17188-w
https://doi.org/10.5194/amt-8-2981-2015
https://doi.org/10.2747/1548-1603.43.1.78
https://doi.org/10.2747/1548-1603.43.1.78
https://doi.org/10.3390/cli9030047
https://doi.org/10.1117/12.2533110
https://doi.org/10.3390/ECRS2023-16839
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1457347


population dataset: an application in Aosta Valley, NW Italy. Remote Sens. 15, 2348.
doi:10.3390/rs15092348

Qin, Z., Li, W., Xu, B., and Zhang, W. (2004). Estimation method of land surface
emissivity for retrieving land surface temperature from Landsat TM6 data. Adv. Mar.
Sci. 9.

Qin, Z., Li, W., Zhang, M., Karnieli, A., and Berliner, P. (2003). Estimating the
essential atmospheric parameters of mono-window algorithm for land surface
temperature retrieval from Landsat TM6. REMOTE Sens. Forl. and Resour. 2,
37–43. doi:10.3969/j.issn.1001-070X.2003.02.010

Qin, Z., Zhang, M., Karnieli, A., and Pedro, B. (2001). Mono-window algorithm for
retrieving land surface temperature from Landsat TM6 data. Acta Geogr. Sin. 56,
456–466. doi:10.11821/xb200104009

Rizwan, A. M., Dennis, L. Y. C., and Liu, C. (2008). A review on the generation,
determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128. doi:10.
1016/S1001-0742(08)60019-4

Sekertekin, A. (2019). Validation of physical radiative transfer equation-based land
surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ
measurements. J. Atmos. Sol.-Terr. Phys. 196, 105161. doi:10.1016/j.jastp.2019.105161

Shi, H., Xian, G., Auch, R., Gallo, K., and Zhou, Q. (2021). Urban heat island and its
regional impacts using remotely sensed thermal data—a review of recent developments
and methodology. Land 10, 867. doi:10.3390/land10080867

Sobrino, J. A., Oltra-Carrió, R., Sòria, G., Bianchi, R., and Paganini, M. (2012). Impact
of spatial resolution and satellite overpass time on evaluation of the surface urban heat
island effects. Remote Sens. Environ. Remote Sens. Urban Environ. 117, 50–56. doi:10.
1016/j.rse.2011.04.042

Su, Y., and Yu, B., 2018. Spatial-temporal characteristics of urban heat island effect in
hanzhong city in recent 20 Years based on mono-window algorithm. J. Northwest For.
Univ. 33, 183–192. doi:10.3969/j.issn.1001-7461.2018.04.30

Viani, A., Orusa, T., Borgogno-Mondino, E., and Orusa, R. (2024). A one health
google earth engine web-GIS application to evaluate and monitor water quality
worldwide. Euro-Mediterr J. Environ. Integr. doi:10.1007/s41207-024-00528-w

Vujovic, S., Haddad, B., Karaky, H., Sebaibi, N., and Boutouil, M. (2021). Urban
heat island: causes, consequences, and mitigation measures with emphasis on
reflective and permeable pavements. CivilEng 2, 459–484. doi:10.3390/
civileng2020026

Wan, Z., and Dozier, J. (1996). A generalized split-window algorithm for retrieving
land-surface temperature from space. IEEE Trans. Geoscience Remote Sens. 34, 892–905.
doi:10.1109/36.508406

Wang, C., Wang, Z.-H., Kaloush, K. E., and Shacat, J. (2021). Cool pavements for
urban heat island mitigation: a synthetic review. Renew. Sustain. Energy Rev. 146,
111171. doi:10.1016/j.rser.2021.111171

Wang, K., Wang, X., Huang, F., and Luo, L. (2018). Comparison of land surface
temperature retrieval algorithms in karst city. Remote Sens. Technol. Appl. 33, 803–810.
doi:10.11873/j.issn.1004-0323.2018.5.0803

Wang, S., Xu, W., and Guo, T. (2024). Advances in thermal infrared remote sensing
technology for geothermal resource detection. Remote Sens. 16, 1690. doi:10.3390/
rs16101690

Wang, X., Qin, L., Nong, J., Ling, Z., and Zhu, Q. (2010). Land surface temperature
retrieval with mono-window algorithm in karst city. J. Guangxi Normal Univ. Nat. Sci.
Ed. 28, 10–14. doi:10.16088/j.issn.1001-6600.2010.03.008

Weng, Q. (2009). Thermal infrared remote sensing for urban climate and
environmental studies: methods, applications, and trends. ISPRS J. Photogramm.
Remote Sens. 64, 335–344. doi:10.1016/j.isprsjprs.2009.03.007

Xu, H., 2015. Retrieval of the reflectance and land surface temperature of the newly-
launched Landsat 8 satellite. Chin. J. Geophys. 58, 741–747. doi:10.6038/cjg20150304

Xu, S., Li, S., Zhong, J., and Li, C. (2020). Spatial scale effects of the variable
relationships between landscape pattern and water quality: example from an
agricultural karst river basin, Southwestern China. Agric. Ecosyst. Environ. 300,
106999. doi:10.1016/j.agee.2020.106999

Yang, J., and Huang, X. (2021). The 30m annual land cover dataset and its dynamics in
China from 1990 to 2019. Earth Syst. Sci. Data 13, 3907–3925. doi:10.5194/essd-13-3907-2021

Yi, Y., Zhang, C., Zhang, G., Xing, L., Zhong, Q., Liu, J., et al. (2021). Effects of
urbanization on landscape patterns in the middle reaches of the Yangtze River region.
Land 10, 1025. doi:10.3390/land10101025

Zhang, Z., He, G., Xiao, R., and Wang, W. (2005). A study of the urban heat island
changes of Beijing city based on remote sensing. Remote Sens. Inf. 46–48, 70.

Zhou, S., Li, W., Zhang, W., and Wang, Z. (2023). The assessment of the
spatiotemporal characteristics of the eco-environmental quality in the Chishui River
Basin from 2000 to 2020. Sustainability 15, 3695. doi:10.3390/su15043695

Frontiers in Built Environment frontiersin.org13

Wu et al. 10.3389/fbuil.2024.1457347

https://doi.org/10.3390/rs15092348
https://doi.org/10.3969/j.issn.1001-070X.2003.02.010
https://doi.org/10.11821/xb200104009
https://doi.org/10.1016/S1001-0742(08)60019-4
https://doi.org/10.1016/S1001-0742(08)60019-4
https://doi.org/10.1016/j.jastp.2019.105161
https://doi.org/10.3390/land10080867
https://doi.org/10.1016/j.rse.2011.04.042
https://doi.org/10.1016/j.rse.2011.04.042
https://doi.org/10.3969/j.issn.1001-7461.2018.04.30
https://doi.org/10.1007/s41207-024-00528-w
https://doi.org/10.3390/civileng2020026
https://doi.org/10.3390/civileng2020026
https://doi.org/10.1109/36.508406
https://doi.org/10.1016/j.rser.2021.111171
https://doi.org/10.11873/j.issn.1004-0323.2018.5.0803
https://doi.org/10.3390/rs16101690
https://doi.org/10.3390/rs16101690
https://doi.org/10.16088/j.issn.1001-6600.2010.03.008
https://doi.org/10.1016/j.isprsjprs.2009.03.007
https://doi.org/10.6038/cjg20150304
https://doi.org/10.1016/j.agee.2020.106999
https://doi.org/10.5194/essd-13-3907-2021
https://doi.org/10.3390/land10101025
https://doi.org/10.3390/su15043695
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1457347

	Integrating urban development and ecological sustainability: a study on land surface temperature and urban heat island effe ...
	1 Introduction
	2 Materials and methods
	2.1 Study area in a semiarid region
	2.2 Data sources and processing
	2.3 Research methods
	2.3.2 Calculation of relevant parameters
	2.3.2.1 Surface emissivity
	2.3.2.2 Brightness temperature calculation
	2.3.2.3 Atmospheric transmittance
	2.3.2.4 Effective mean atmospheric temperature

	2.4 Cloud detection and cloud masking in remote sensing images
	2.5 Accuracy verification of inversion results
	2.6 Urban heat island effect evaluation method

	3 Results and discussion
	3.1 Land surface temperature inversion results
	3.2 Accuracy verification of inversion results
	3.3 Spatial distribution and analysis of urban heat island
	3.3.1 Analysis of the heat island effect in the Chishui River Basin
	3.3.2 Conventional heat islands
	3.3.3 Abnormal heat islands

	3.4 Factors influencing the heat island effect and mitigation strategies
	3.4.1 Influencing factors
	3.4.2 Mitigation strategies for the heat island effect

	3.5 Limitations and prospects

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


