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The compressive strength behavior of high-strength geopolymer concrete
(HSGPC) has been studied in this research work with varying alkali concentration
using the novel machine learning techniques. The alkali concentration in the
activation solution plays a significant role in the geopolymerization process
and affects the resulting compressive strength. In this research work, the range
between 4 M and 16 M for alkali molarity (M), 18 kg/m3 and 160 kg/m3 for NaOH
and 41 kg/m3 and 229 kg/m3 for NaSi was collected from literature and used in
the various design mixes of this exercise. This was necessary because higher
alkali concentrations promote a more efficient dissolution and activation of
the aluminosilicate compounds, leading to increased geopolymerization and
the formation of more calcium silicate hydrate (C-S-H) gel. The increased
C-S-H gel content contributes to improved strength development. However,
there is an optimal alkali concentration range for the sustainable production
of geopolymer concrete, and exceeding this range can have a negative impact
on compressive strength and ecofriendly handling of concrete. A total of fifty-
three records were collected from literature and deployed in modeling the
compressive strength (Fc) considering various curing regimes. Three symbolic
machine learning techniques such as genetic programming (GP), evolutionary
polynomial regression (EPR), and the artificial neural network (ANN) are used in

Abbreviations: FA, Fly Ash content (kg/m3); NaOH, Sodium hydroxide content (kg/m3); NaSi, Sodium
silicate content (kg/m3); FAg, Fine Aggregates content (kg/m3); CAg, Coarse Aggregates content
(kg/m3); M, Molarity (mole); T, Temperature (oC); Age, Concrete age (day); Fc, Compressive strength
(MPa); SSE, sum of squared error; MAE, mean average error; MSE, mean squared error; RMSE, root
mean squared error; R2, R-squared; GP, genetic programming; EPR, evolutionary polynomial regression;
ANN, artificial neural network; SI, sensitivity analysis; HSGPC, high-strength geopolymer concrete; MPa,
megapascal; Kg/m3, kilogram per cubic meter; MLR, multilinea.
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this research model. The relative importance values for each input parameter
were also evaluated, which indicated that all factors have significant impacts
on (Fc), but Age (i.e., curing regime) has the most influence compared to FA,
NaOH, and CAg then the other inputs. From the model relations between the
calculated and predicted values, it can be shown that the decisive model, ANN
produced line of parametric equation of y = 0.995x, and produced performance
indices; MAE of 2.13 MPa, RMSE of 2.86 MPa and R-squared of 0.981, which
makes the ANN themost reliable model in agreement with previous applications
of the technique. These are against the poor performance of the EPR and GP,
which produced R-squared less than 0.8 with higher error rates. The Taylor
chart and the variance distribution, which further compares the accuracy and
variances of the developed models support the outcomes. Generally, alkali
molarity has shown its potential in the production of HSGPC due to its role in the
reactivity phases of the concrete formulation; hydration, activation, pozzolanic,
and geopolymerization reactions producing the gel needed for the strength
gain in HSGPC.

KEYWORDS

high-strength geopolymer concrete, compressive strength, machine learning, curing
temperature and time, alkali molarity, geopolymerization

1 Introduction

High-strength geopolymer concrete is a type of concrete that
is produced using geopolymers as a binder material instead of
traditional Portland cement (Verma, 2023; Ahmad et al., 2022;
Ahmad et al., 2022b;Ahmad et al., 2021).Geopolymers are inorganic
polymers that are typically derived from industrial by-products such
as fly ash, slag, or other aluminosilicate materials (Alyaseen et al.,
2023a; Alyaseen et al., 2023b). Geopolymer concrete offers several

advantages over conventional Portland cement-based concrete
(Verma, 2023; Forouzandeh Jounaghani et al., 2023). Geopolymer
concrete can achieve higher compressive and flexural strength
compared to ordinary Portland cement concrete. It can exhibit
compressive strengths in the range of 50–100 MPa or even higher.
Geopolymer concrete has excellent resistance to chemical attack,
abrasion, and fire. It can withstand harsh environments and is less
prone to deterioration and cracking. Geopolymers are typically
produced from industrial by-products, which helps in reducing
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the consumption of traditional cement and the associated carbon
dioxide emissions. Geopolymer concrete has lower embodied
carbon and contributes to sustainable construction practices.
Geopolymer concrete exhibits better thermal insulation properties
than ordinary concrete, making it suitable for applications where
thermal efficiency is important, such as in cold climates or for
energy-efficient buildings. Geopolymer concrete can gain strength
rapidly, allowing for faster construction schedules and reduced
curing times. However, there are some challenges associated
with the use of geopolymer concrete. It requires careful mixture
design and optimization to achieve the desired properties. The
sourcing and availability of suitable raw materials can also be a
limitation in some regions. Additionally, geopolymer concrete may
have a different appearance and color compared to traditional
concrete, which may require aesthetic considerations in certain
applications (Verma, 2023; Forouzandeh Jounaghani et al., 2023).
On overall, high-strength geopolymer concrete is a promising
alternative to conventional concrete, offering enhanced performance
and sustainability benefits. Ongoing research and development in
this field aim to further improve its properties and optimize its use
in various construction applications.

The mix design of high-strength geopolymer concrete plays a
crucial role in determining its compressive strength. Geopolymer
concrete is a type of concrete that utilizes fly ash or other
pozzolanic materials as a binder instead of traditional Portland
cement. The compressive strength of geopolymer concrete
depends on several factors related to mix design (Verma, 2023;
Forouzandeh Jounaghani et al., 2023). The type and composition of
the binder materials used in geopolymer concrete significantly affect
its compressive strength. The selection of fly ash or other pozzolanic
materials, their particle size distribution, chemical composition,
and reactivity play a vital role in the geopolymerization process
(Gogineni et al., 2023). Optimal binder composition should be
determined through experimental testing and optimization to achieve
higher compressive strength. Geopolymer concrete requires an
alkaline activator solution to initiate the geopolymerization reaction.
The concentration and type of alkaline activator, such as sodium
hydroxide (NaOH) or potassium hydroxide (KOH), can influence the
compressive strength (Verma, 2023). The ratio of activator solution
to binder materials should be carefully determined to achieve the
desired strength. The properties of aggregates, including particle
size, shape, grading, and surface texture, can affect the compressive
strength of geopolymer concrete. Well-graded aggregates with a
suitable particle size distribution help in achieving better packing and
interlocking, leading to improved strength. Additionally, the use of
high-quality aggregates with low impurities is essential for achieving
high-strength geopolymer concrete. The water-to-binder ratio (W/B
ratio) affects the workability and strength of geopolymer concrete. A
lower W/B ratio generally results in higher compressive strength due
to a higher concentration of binder materials and a reduced porosity
(Verma, 2023; Forouzandeh Jounaghani et al., 2023; Gogineni et al.,
2023). However, it is essential to balance the W/B ratio to maintain
workability while maximizing strength. Proper curing is critical to
developing the desired compressive strength in geopolymer concrete
(Jain and Marathe, 2023; Onyelowe and Ebid, 2023; Onyelowe et al.,
2023). The curing temperature, duration, and moisture conditions
influence the geopolymerization reaction and the formation of a
strong, dense matrix (Verma, 2023). Adequate curing conditions,

such as elevated temperatures (typically around 60°C–90°C) and
moisture retention, should bemaintained for an appropriate duration
to achieve optimal strength development (Onyelowe et al., 2021a;
Onyelowe et al., 2021b; Shen et al., 2022; Khan and Ali, 2018).
It is important to note that the influences mentioned above are
interdependent and should be considered collectively during the
mix design process (Gogineni et al., 2023; Jain and Marathe, 2023).
Achieving high compressive strength in geopolymer concrete requires
a balance between all the influencing factors to optimize the mix
proportions and achieve the desired performance characteristics
(Verma, 2023; Forouzandeh Jounaghani et al., 2023). Experimental
testing and optimization are typically conducted to develop an
optimizedmix design for high-strength geopolymer concrete (Kumar
and Pratap, 2023).

The alkali molarity, or concentration, has a significant influence
on the pozzolanic reaction in high-strength geopolymer concrete
(Mortar et al., 2020; Ebid et al., 2023; Hoffman et al., 1983;
Kashyap et al., 2024). The pozzolanic reaction refers to the chemical
reaction between the alkaline activator and the pozzolanic materials
(such as fly ash or slag) to form a geopolymer binder (Verma, 2023;
Forouzandeh Jounaghani et al., 2023; Gogineni et al., 2023; Jain and
Marathe, 2023; Onyelowe and Ebid, 2023; Onyelowe et al., 2023;
Onyelowe et al., 2021a; Onyelowe et al., 2021b; Ahmad and Rafiq,
2023). Alkali molarity affects the kinetics of the pozzolanic reaction.
Higher alkali molarity generally accelerates the reaction rate, leading
to faster geopolymer formation (Pratap et al., 2023; Iqbal et al., 2020).
This can result in shorter setting times and early strength development
(Onyelowe et al., 2021b). Conversely, lower alkali molarity may
slow down the reaction kinetics, requiring longer curing periods to
achieve the desired strength. Alkali molarity influences the extent of
activation of the pozzolanicmaterials (Liu et al., 2021). Optimal alkali
molarity ensures sufficient contact and reaction between the alkaline
activator and the pozzolanicmaterials, promoting the dissolution and
transformation of reactive silica and alumina into geopolymer gels
(Verma,2023;Goginenietal., 2023; JainandMarathe,2023).Deviating
fromtheoptimalmolarityrangecanreducethedegreeofactivationand
compromise the strength development.The alkali molarity affects the
structure and morphology of the geopolymer binder formed during
the pozzolanic reaction (Verma, 2023; Forouzandeh Jounaghani et al.,
2023; Onyelowe et al., 2021b). Higher alkali molarity generally
promotes the formation of a denser and more compact geopolymer
matrix, resulting in increased strength and improved durability
properties. Lower alkali molarity may lead to a less dense structure,
which can affect the strength and permeability characteristics of
the concrete. Alkali molarity influences the chemical composition
of the geopolymer binder. Higher alkali molarity can result in a
higher concentration of alkali ions within the geopolymer matrix,
affecting its overall composition and properties (Onyelowe et al.,
2021a).This can impact themechanical strength, chemical resistance,
and long-term durability of the high-strength geopolymer concrete.
Alkali molarity plays a role in the formation of geopolymer gels
and subsequent curing (Jain and Marathe, 2023; Onyelowe et al.,
2021b). The concentration of alkali ions affects the solubility and
availability of reactive species, influencing the gel formation and
curing process. Optimal alkali molarity ensures proper gel formation
and curing conditions, leading to improved strength development.
It is important to note that alkali molarity should be considered in
conjunction with other factors such as the type and composition of
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pozzolanic materials, water-to-binder ratio, curing conditions, and
aggregate properties (Verma, 2023; Forouzandeh Jounaghani et al.,
2023). An experimental approach, combined with proper mix design
and optimization techniques, is typically employed to determine
the optimal alkali molarity for achieving the desired strength and
performance characteristics of high-strength geopolymer concrete
(Verma, 2023; Forouzandeh Jounaghani et al., 2023; Onyelowe et al.,
2021b). The alkali molarity, or concentration, has a significant
influence on the geopolymerization process and subsequently on the
properties of high-strength geopolymer concrete (Ahmed H. U. et al.,
2022). Alkali molarity affects the rate of geopolymerization reaction.
Higher alkali molarity generally leads to a faster reaction rate,
resulting in a shorter setting time and early strength development
(Ahmed et al., 2023b). Conversely, lower alkali molarity may slow
down the reaction, necessitating longer curing periods to achieve the
desired strength. The compressive strength of geopolymer concrete
is influenced by the alkali molarity. Increasing the alkali molarity
within an optimal range can enhance the chemical reaction and
promote the formation of a denser geopolymer matrix, leading to
higher compressive strength (Jain and Marathe, 2023). However,
excessively high alkali molarity can result in excessive shrinkage,
cracking, and reduced strength. Alkalimolarity affects theworkability
of geopolymer concrete. A higher alkali molarity may decrease the
workability by accelerating the setting time and reducing the fluidity
of the mix (Verma, 2023; Onyelowe et al., 2023). This can make
the concrete more difficult to handle and place. Conversely, lower
alkali molarity can increase workability butmay require longer curing
times for strength development. The alkali molarity influences the
porosity and density of geopolymer concrete. Higher alkali molarity
generally promotes the formation of a denser structure with reduced
porosity,resultinginincreasedstrengthanddurability(Onyeloweetal.,
2023). Lower alkali molarity may lead to a more porous matrix,
which can affect the strength and permeability characteristics of
the concrete. The efficiency of alkali activation in geopolymer
concrete is affected by the alkali molarity. Optimal alkali molarity
ensures sufficient contact and reaction between the alkali activator
and the pozzolanic materials, maximizing the geopolymerization
process (Verma, 2023; Gogineni et al., 2023; Onyelowe et al., 2023).
Deviating from the optimal molarity range can reduce the activation
efficiency and compromise the strength development. It is crucial
to note that the influence of alkali molarity on geopolymerization
in high-strength geopolymer concrete is interconnected with other
factors, such as the type and composition of pozzolanic materials,
curing conditions, water-to-binder ratio, and aggregate properties
(Verma, 2023; Forouzandeh Jounaghani et al., 2023; Onyelowe et al.,
2023; Onyelowe et al., 2021b). An experimental approach, combined
with proper mix design and optimization techniques, is typically
employed to determine the optimal alkali molarity for achieving the
desired strength and performance characteristics of high-strength
geopolymer concrete (Ahmed et al., 2023c). The alkali molarity in
high-strength geopolymer concrete can have a significant influence
on its compressive strength. The alkali solution, typically sodium
hydroxide (NaOH) or potassium hydroxide (KOH), is an essential
component in theactivationof thegeopolymerreaction.Herearesome
key points regarding the influence of alkali molarity on compressive
strength:Themolarityorconcentrationof thealkali solutionaffects the
geopolymerization process. Generally, higher alkali molarity leads to
faster reaction kinetics and higher early-age strength development

(Verma, 2023; Forouzandeh Jounaghani et al., 2023). However,
excessively high alkaline concentrations can cause a rapid increase
in heat generation andmay result in a decrease in long-term strength.
Increasing the alkali molarity can enhance the compressive strength
of high-strength geopolymer concrete. This is mainly attributed
to the increased dissolution and activation of the aluminosilicate
materials, resulting in more geopolymer gel formation and a denser
microstructure (Verma, 2023; Forouzandeh Jounaghani et al., 2023;
Onyeloweet al., 2021b).Thegeopolymergel contributes to thebinding
and strength development of the concrete matrix. (iii) Optimum
alkali molarity: There is typically an optimum alkali molarity range
for achieving the highest compressive strength. This range depends
on factors such as the specific geopolymer formulation, type and
fineness of the raw materials, curing conditions, and desired strength
requirements (Verma,2023;Forouzandeh Jounaghani et al., 2023). It is
important to conduct laboratory trials andoptimize the alkalimolarity
to obtain the desired strength properties. Higher alkali molarity can
reduce the workability of the geopolymer concrete mix (Ahmed et al.,
2023a). This is due to increased viscosity and faster setting time.
It may be necessary to adjust the mix design, including the water-
to-binder ratio and the use of superplasticizers, to maintain the
desired workability while achieving the target compressive strength
(Verma, 2023; Jain and Marathe, 2023). It's worth noting that
the influence of alkali molarity on compressive strength may vary
depending on other factors such as the specific geopolymer mix
design, curing conditions, and the presence of additional additives or
fillers. Therefore, it is recommended to conduct thorough laboratory
testing andoptimization todetermine themost suitable alkalimolarity
for achieving high-strength geopolymer concrete with the desired
compressive strength properties.

Curing timeand temperatureplay crucial roles in thedevelopment
of compressive strength in high-strength geopolymer concrete.
Geopolymer concrete gains strength rapidly during the initial curing
period. The first few days of curing are particularly important for
achieving early-age strength development. Curing time significantly
affects the long-term compressive strength of geopolymer concrete.
Extended curing durations allow for further geopolymerization
reactions, resulting in continued strength development and improved
overall performance. There is an optimum curing time for
achieving the highest compressive strength. It depends on factors
such as geopolymer mix design, alkali concentration, ambient
conditions, and desired strength requirements (Verma, 2023;
Forouzandeh Jounaghani et al., 2023). Longer curing times are
generally beneficial for attaining higher strengths, but there may
be diminishing returns beyond a certain duration. Elevated curing
temperatures can accelerate the geopolymerization reaction and
promote faster strength gain. Higher temperatures increase the
chemical kinetics and diffusion rates, leading to earlier strength
development. Geopolymerization is an exothermic reaction, but the
rateof reaction is also influencedby temperature.Higher temperatures
reduce the activation energy required for the reaction, resulting in
faster and more complete geopolymerization. Thermal curing, using
elevated temperatures (typically between 40°C and 90°C), can be
employed to achieve high early-age strengths and shorten the curing
time.However, careful control is necessary to avoiddetrimental effects
suchas excessive shrinkageor thermal cracking.Geopolymer concrete
can also be cured at ambient temperatures, but the curing time will
be longer compared to thermal curing (Gogineni et al., 2023; Jain
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and Marathe, 2023). Ambient curing is more suitable for large-scale
applications where thermal curing may not be practical or cost-
effective. It's important to note that the influence of curing time
and temperature on compressive strength is interrelated and depends
on the specific geopolymer mix design, alkali concentration, binder
composition, and other factors (Onyelowe et al., 2021b). Optimal
curing conditions should be determined through laboratory testing
and optimization, considering the desired strength requirements and
project-specific constraints. Proper curing practices, whether thermal
orambient, areessential forachieving thedesiredcompressivestrength
and overall performance of high-strength geopolymer concrete.

High-strength geopolymer concrete offers several sustainability
benefits compared to conventional concrete (Onyelowe et al., 2021b).
Geopolymer concrete can significantly lower the carbon footprint of
construction projects. Traditional Portland cement production is a
major source of carbon dioxide emissions. Geopolymers, on the other
hand, are typically produced using industrial by-products such as fly
ash or slag, which are waste materials from other industries (Verma,
2023; Forouzandeh Jounaghani et al., 2023). By utilizing these by-
products, geopolymer concrete reduces the demand for traditional
cement, therebyreducingcarbondioxideemissions.Theproductionof
geopolymer concrete requires lower curing temperatures compared to
conventional concrete.This lower curing temperature reduces energy
consumption during the curing process, leading to improved energy
efficiency. Geopolymer concrete provides a solution for the utilization
of industrial by-products that would otherwise be disposed of as
waste. By incorporating these materials into the geopolymer binder,
geopolymer concrete contributes to the circular economy by reducing
waste generation and promoting resource efficiency. Geopolymer
concrete has excellent durability properties, including resistance to
chemical attack, abrasion, and fire. Its long service life reduces the
need for frequent repairs or replacement, resulting in reducedmaterial
consumption and waste generation over the lifecycle of the structure.
Geopolymer concrete exhibits better thermal insulation properties
compared to conventional concrete.This characteristic can contribute
to energy savings during the operation of buildings by reducing
the need for heating and cooling. Geopolymer concrete can be
produced using locally available industrial by-products, reducing the
need for long-distance transportation of raw materials (Verma, 2023;
Forouzandeh Jounaghani et al., 2023; Jain and Marathe, 2023). This
aspect contributes to a lower environmental impact associated with
transportation and supports regional or local sourcing of materials.
Remarkedly, Alyaseen et al. (2023a) had investigated the compressive
strengthof geopolymerconcretehoweverwith theadditionof recycled
aggregates and remarkable results were achieved, which changed the
perspective of the production of geopolymer concrete in the built
environment. Alyaseen et al. (2023b) also went further to conduct
a comprehensive review on the performance of self-compacting
concrete mixed with recycled aggregate concrete exposing areas of
future investigation. It's important to note that while geopolymer
concrete offers sustainability advantages, there are still challenges
to be addressed. These include optimizing mix designs, ensuring
consistent quality, and addressing the availability of suitable raw
materials on a larger scale. Ongoing research and development efforts
are focused on improving these aspects to enhance the sustainability
of high-strength geopolymer concrete.

Predicting the compressive strength of high-strength geopolymer
concrete can be achieved using various techniques, including

Artificial Neural Networks (ANN), Genetic Programming (GP),
and Evolutionary Polynomial Regression (EPR). ANNs are
computational models inspired by the human brain’s neural structure
(Ahmed H. U. et al., 2022). They are effective in capturing nonlinear
relationships and can be trained to predict the compressive strength
of geopolymer concrete (Onyelowe et al., 2023; Shen et al., 2022;
Khan and Ali, 2018; Kumar and Pratap, 2023; Mortar et al., 2020).
To develop an ANN model, you would need a dataset containing
input variables (such as mix proportions, curing conditions, and
chemical compositions) and corresponding compressive strength
values. The dataset is divided into training and testing sets. The
ANN model is trained using the training set, and its performance is
evaluated using the testing set.The architecture of theANN, including
the number of hidden layers and neurons, is determined through
experimentationandoptimization.GPisanevolutionarycomputation
technique that evolves computer programs to solve a specific problem
(Onyelowe and Ebid, 2023; Onyelowe et al., 2023; Onyelowe et al.,
2021a). In this case, you would formulate the problem as a symbolic
regression task, where GP searches for an equation that represents
the relationship between the input variables and the compressive
strength. A population of candidate equations is randomly generated,
and through successive generations, the fittest equations are selected,
recombined, and mutated to produce new generations. The fitness of
each equation is determined by how well it predicts the compressive
strength. GP continues until it finds a satisfactory equation that
accurately predicts the compressive strength of geopolymer concrete.
EPR is another evolutionary computation technique that combines
genetic programming with polynomial regression. It evolves both the
structure and coefficients of polynomial equations to fit the data.
EPR begins by generating a population of polynomial equations
with random coefficients. Through generations, the fittest equations
are selected, and their structure and coefficients are modified using
genetic operators, such as crossover and mutation. The fitness of
each equation is determined by how well it predicts the compressive
strength. EPR continues until it finds a polynomial equation that
adequately represents the relationship between the input variables and
compressive strength (Onyelowe and Ebid, 2023). It is important to
note that the success of each technique depends on the quality and
representativeness of the dataset, as well as proper model training
and validation. Each method has its advantages and limitations, and
their performance may vary depending on the specific problem and
dataset. Therefore, it is recommended to compare and evaluate the
results obtained from each technique to determine the most accurate
and reliable approach for predicting the compressive strength of high-
strength geopolymer concrete.This research paper has focused on the
important role alkalis place in the formulation of activators utilized
in geopolymers applied in the production of geopolymer concrete.
Care is taken in the utilization of different dosages of molarity of
alkali due to environmental considerations and pozzolanic reaction
triggering potential (Onyelowe and Ebid, 2023; Onyelowe et al.,
2021b). Various other research protocols have been undertaken to
formulate the geopolymer concrete with most sharing ideas on the
impregnationof concretewithnanosilica andwitha fewdiscussing the
machine learning application of ANN and M5P (Ahmed H. U. et al.,
2022; Ahmed et al., 2023b). The roadmap to sustainability requires
that construction materials meet the requirement of the COP27
towards carbon neutrality and environmentally friendly guidelines
(Onyelowe et al., 2023; Mortar et al., 2020). Having reviewed the
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above available resources, it is important to emphasize that the present
work focused on the impact of the alkali molarity as an important
component in the production of geopolymer concretes (GPCs) on
its compressive strength.

2 Statistical analysis of the HSGPC mix
entries

A total of fifty-three (53) records were collected from
experimentally tested samples of high-strength geopolymer concrete
with different NaOH and NaSi dosages and this is contained in a
previous literature (Mortar et al., 2020).

Each record contains the following data:

• FA Fly Ash content (kg/m3)
• NaOH sodium hydroxide content (kg/m3)
• NaSi Sodium silicate content (kg/m3)
• FAg Fine Aggregates content (kg/m3)
• CAg Coarse Aggregates content (kg/m3)
• MMolarity (mole)
• T Temperature (oC)
• Age Concrete age (day)
• Fc Compressive strength (MPa)

The collected records were divided into training set (40 records)
and validation set (13 records) following the requirements of
Ebid et al. (2023). The process of developing and validating
symbolic machine methods and Multiple Linear Regression (MLR)
models usually involves several stages. Initially, data preprocessing
is conducted to prepare the data properly, which includes tasks
such as handling missing values, outliers, and inconsistencies
through data cleaning, selecting relevant features to enhance model
performance, and scaling numerical features via normalization or
standardization. Next, the data is divided into training and testing
sets according to established guidelines (Ebid et al., 2023), and
the model is built. Model validation is then carried out using the
necessary statistical indices. Regularization technique was applied
to overcome overfitting due to database size (Ebid et al., 2023).
Tables 1, 2 summarizes their statistical characteristics and the
Pearson correlation matrix. Finally, Figure 1 shows the histograms
for both inputs and outputs and Figure 2 shows the relations
between the inputs and the outputs. Table 1 shows the minimum
(Min), maximum (Max), average (Avg), standard deviation (SD)
and variance (Var) values of the input (FA, NaOH, NaSi, FAg, CAg,
M, T, and Age) variables and the output (Fc) for both the training
and validation entries. Table 2 shows the consistency and correlation
between the input and output variables. It can be observed that none
of the parameters showed a consistency of up to 50%. However,
FA and T produced a correlation of a little above 40%, which is
still very poor. The necessitated the intelligent modeling of the
compressive strength of the HSGPC to optimize the values of the
variables at which the optimal strength id produced for concrete
production, design and construction purposes. Figure 2 further
shows the relations between all the independent variables and the
dependent Fc. The correlations with the Fc are as follows; FA =
16%, NaOH = 3.3%, NaSi = 14.8%, FAg = 2.1, CAg = 13%, M =
3%, T = 10%, and Age = 65%. It can be shown that curing regime

produced the highest correlation of 65% with the Fc, while NaOH,
FAg, and M produced the lowest set of correlations; 3.3%, 2.1%,
and 3%, respectively with the Fc. The primary focus of the work,
which is on the influence of the alkali molarity (M), reinforces the
need to further model the parameters using the machine learning
techniques.

3 Research program and sensitivity
analysis

Three different artificial intelligent (AI) techniques were used
to predict the compressive strengths (Fc) of geo-polymer concrete
with NaOH andNaSi using the collected database.These techniques
are “genetic programming” (GP), three models of “artificial neural
network” (ANN) and “evolutionary polynomial regression” (EPR).
Flowcharts for the used techniques are presented in Figure 3. All
the three developed models were used to predict (Fc) in (MPa)
using mix contents (FA, NaOH, NaSi, FAg and CAg), Molarity (M)
and Temperature (T) with the Age of concrete (Age) in days. The
following section discusses the results of eachmodel.The accuracies
of developed models were evaluated by comparing the sum of
squared error (SSE), mean average error (MAE), mean squared
error (MSE), root mean squared error (RMSE), and R-squared (R2)
between the predicted and calculated shear strength parameters
values. A preliminary sensitivity analysis was carried out on the
collected database to estimate the impact of each input on the (Fc)
values. “Single variable per time” technique is used to determine the
“Sensitivity Index” (SI) for each input using Hoffman et al. (1983)
formula as follows:

SI(Xn) =
Y(Xmax) −Y(Xmin)

Y(Xmax)
(1)

Accordingly, the (SI) values are (0.04, 0.42, 0.22, 0.02, 0.02,
0.53, 0.18 and 0.92) for (FA, NaOH, NaSi, FAg, CAg, M, T and
Age), respectively. A sensitivity index of 1.0 indicates complete
sensitivity, a sensitivity index less than 0.01 indicates that the model
is insensitive to changes in the parameter.

3.1 GP

Genetic programming (GP) the framework of which is shown
in Figure 4, is a type of evolutionary algorithm inspired by the
process of natural selection. It is used for evolving computer
programs to solve problems or perform tasks through the iterative
application of genetic operators such as mutation, crossover, and
selection. GP starts with a population of randomly generated
programs, which are represented as trees, and evolves them
over generations to improve their performance according to
a fitness measure (Ebid et al., 2023). Intelligent computation
refers to the broader field of computational techniques and
methodologies that draw inspiration from biological, cognitive,
or other natural processes to develop intelligent systems. This
encompasses a wide range of computational paradigms, including
evolutionary algorithms (such as genetic programming), neural
networks, fuzzy systems, swarm intelligence, and more. Intelligent
computation techniques aim to solve complex problems by
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TABLE 1 Statistical analysis of HSGPC mix entries.

FA NaOH NaSi FAg CAg M T Age Fc

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (mole) (oC) (day) (Mpa)

Training set

Min 300.00 28.57 40.80 490.00 810.00 4.00 23.00 0.50 4.70

Max 640.00 159.75 228.60 990.00 1,470.00 16.00 70.00 180.00 81.30

Avg 450.72 73.91 146.76 680.40 1,067.06 11.63 37.16 33.09 46.90

SD 82.23 26.78 43.50 124.67 157.85 2.84 16.27 33.08 19.29

Var 0.18 0.36 0.30 0.18 0.15 0.24 0.44 1.00 0.41

Validation set

Min 339.00 18.17 63.90 490.00 825.00 10.00 24.00 3.00 3.20

Max 640.00 159.75 228.60 825.00 1,470.00 16.00 60.00 90.00 85.00

Avg 456.67 73.92 148.94 634.88 1,099.46 13.92 37.58 32.08 43.92

SD 79.30 36.08 39.04 94.34 175.08 2.23 15.04 26.55 25.17

Var 0.17 0.49 0.26 0.15 0.16 0.16 0.40 0.83 0.57

TABLE 2 Pearson correlation matrix of the HSGPC mix entries.

FA NaOH NaSi FAg CAg M T Age Fc

FA 1.00

NaOH 0.25 1.00

NaSi 0.74 −0.22 1.00

FAg −0.40 −0.25 −0.38 1.00

CAg −0.48 −0.20 −0.31 −0.44 1.00

M 0.11 −0.27 0.35 −0.30 0.16 1.00

T −0.10 −0.05 −0.15 −0.20 0.23 0.37 1.00

Age −0.04 −0.08 −0.08 0.23 −0.17 −0.16 −0.08 1.00

Fc 0.41 −0.11 0.36 0.07 −0.35 −0.08 −0.32 0.44 1.00

mimicking or emulating intelligent behavior observed in nature or
human cognition. In summary, genetic programming is a specific
technique within the broader domain of intelligent computation,
focusing on evolving computer programs using principles derived
from biological evolution. Intelligent computation encompasses
various computational paradigms that aim to solve problems by
emulating intelligent behavior observed in natural systems or
human cognition. In genetic programming (GP) computation,
the terms “parents,” “offspring,” and “cross-points” refer to key
concepts in the evolutionary process.

In GP, parents refer to the individuals or programs selected
from the population to undergo reproduction.These individuals are
chosen based on their fitness, typically using a selection mechanism
such as tournament selection, roulette wheel selection, or rank-
based selection. Parents serve as the basis for generating new
offspring through genetic operators like crossover and mutation.
Offspring are the new individuals or programs created through
the reproduction process from the selected parents. Offspring
inherit geneticmaterial from their parents through genetic operators
such as crossover and mutation. Offspring are essentially the
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FIGURE 1
Distribution histograms for inputs (in blue) and outputs (in green).

next-generation of programs in the GP population and undergo
evaluation to determine their fitness for survival and potential for
further evolution. Cross-points, also known as crossover points, are
specific locations or nodes within the program trees where crossover
occurs during reproduction (Ebid et al., 2023). In GP, crossover is a
genetic operator that involves swapping subtrees between two parent
programs to create new offspring. Cross-points determine where the
exchange of genetic material takes place, and they play a crucial
role in generating diverse offspring with different combinations of
traits from their parents. In summary, in genetic programming
computation, parents are selected from the population based
on fitness, offspring are generated from parents through genetic
operators like crossover and mutation, and cross-points define the
locations where crossover occurs during reproduction to create
new offspring. These concepts are fundamental to the evolutionary
process in GP, enabling the generation of new individuals with
improved characteristics over successive generations. The overall
process of GP can be summarized using the following equation:

Pt+1 = Reproduce(Select(Pt)) (2)

where Pt is the population at generation t, Select is the selection
mechanism of the computation interface, Reproduce encompasses
the genetic operators (crossover and mutation) and replacement
strategy. This equation captures the iterative nature of GP,

where each generation of the population is produced from
the previous generation through selection, reproduction, and
replacement, ultimately leading to the evolution of solutions to
the optimization problem.

3.2 ANN

Artificial neural networks (ANNs), the framework of which
is shown in Figure 5, are computational models inspired by
the structure and function of biological neural networks in
the human brain (Ahmed H. U. et al., 2022). ANNs consist of
interconnected nodes, called neurons or units, organized in layers.
These networks can learn complex patterns and relationships from
data and are widely used for tasks such as classification, regression,
pattern recognition, and optimization. Here’s an overview of the
key components and concepts of artificial neural networks: Neurons
(Nodes): Neurons are the basic processing units in artificial neural
networks. Each neuron receives input signals, processes them using
an activation function, and produces an output signal. Neurons are
typically organized in layers: an input layer, one or more hidden
layers, and an output layer.

Weights andBias: Connections betweenneurons are represented
by weights, which determine the strength of influence one neuron
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FIGURE 2
Relations between inputs and output (UCS).

has on another. Additionally, each neuron has a bias term, which
allows the network to learn and model complex relationships
in the data. Activation Function: The activation function of a
neuron determines its output based on the weighted sum of its
inputs. Common activation functions include sigmoid, hyperbolic
tangent (tanh), rectified linear unit (ReLU), and softmax. Activation
functions introduce non-linearity into the network, enabling it to
model complex relationships in the data. Feedforward Propagation:
In the feedforward phase, input data is passed through the
network layer by layer, with each layer applying a weighted
sum and activation function to produce outputs. This process
generates predictions or classifications based on the input data.
Backpropagation: Backpropagation is an optimization algorithm
used to train neural networks by adjusting the weights and
biases based on the difference between predicted and actual
outputs. This process involves computing the gradient of the loss
function with respect to the network parameters and updating
the weights and biases using gradient descent or its variants.
Loss Function: The loss function measures the difference between

the predicted outputs of the network and the true labels in
supervised learning tasks. Common loss functions include mean
squared error (MSE) for regression tasks and cross-entropy loss
for classification tasks. Training Data and Validation: Neural
networks are trained using labeled training data, where both input
features and target outputs are provided. The training process
involves iteratively adjusting the network parameters to minimize
the loss function on the training data. Validation data is used
to monitor the performance of the network during training
and prevent overfitting. Architecture and Hyperparameters: The
architecture of a neural network refers to its structure, including
the number of layers, the number of neurons in each layer,
and the connectivity between neurons. Hyperparameters, such as
learning rate, batch size, and regularization strength, are settings
that control the training process and influence the performance
of the network. Artificial neural networks have demonstrated
remarkable success in various fields, including image recognition,
natural language processing, speech recognition, and medical
diagnosis, among others. They continue to be a fundamental
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FIGURE 3
Flowcharts for different (AI) predictive models. (A) for ANN, (B) for EPR, (C) for GP.

FIGURE 4
Genetic framework of the GP.
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FIGURE 5
Architectural framework of the ANNs.

FIGURE 6
GP Model accuracy versus complexity level.

FIGURE 7
EPR Model accuracy versus number of terms.

tool in machine learning and artificial intelligence research and
applications.

The performance of artificial neural network (ANN)
computations is influenced by several key factors, including
activation functions, hyperparameters, loss functions, weights,

FIGURE 8
ANN Model accuracy versus number of neurons in the hidden layer.

and biases. Activation functions introduce non-linearity into the
network, allowing it to model complex relationships in the data.
The choice of activation function can significantly impact the
network’s ability to learn and generalize from the data. Common
activation functions include sigmoid, hyperbolic tangent (tanh),
rectified linear unit (ReLU), and softmax. The selection of the
appropriate activation function depends on the specific task and the
characteristics of the data. Hyperparameters are settings that control
the training process of the neural network.They include parameters
such as learning rate, batch size, number of epochs, dropout rate,
and regularization strength. The choice of hyperparameters can
have a significant impact on the convergence speed, generalization
performance, and stability of the network. Tuning hyperparameters
through techniques such as grid search, random search, or Bayesian
optimization is essential for achieving optimal performance. Loss
functions measure the difference between the predicted outputs
of the network and the true labels in supervised learning tasks.
The choice of loss function depends on the nature of the task
(e.g., regression or classification) and the distribution of the data.
Common loss functions include mean squared error (MSE) for
regression tasks and cross-entropy loss for classification tasks.
Using an appropriate loss function is crucial for training the
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FIGURE 9
The layout of the optimum ANN models.

TABLE 3 Weights matrix for the developed ANN.

H (1:1) H (1:2) H (1:3)

(Bias) −7.82 −5.64 15.76

FA −13.08 −0.05 58.65

NaOH 13.91 −2.27 −10.49

NaSi 0.83 −0.72 −45.35

FAg 5.94 0.15 44.98

CAg −23.11 0.31 17.30

M −5.05 −0.25 −1.39

T −2.51 −0.20 −22.73

Age −5.30 −5.25 2.72

H (1:1) H (1:2) H (1:3) (Bias)

Fc −0.52 −1.32 0.59 −1.11
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FIGURE 10
Relative importance of input parameters.

network effectively and optimizing its performance. Weights
and biases are parameters in the neural network that determine
the strength of connections between neurons and the neuron’s
activation threshold, respectively. The initial values of weights
and biases, as well as their updates during training (e.g., through
backpropagation), affect the network’s ability to learn and generalize
from the data. Proper initialization of weights and biases, along
with appropriate regularization techniques, can prevent issues such
as vanishing or exploding gradients and improve the network’s
convergence and performance. In summary, activation functions,
hyperparameters, loss functions, weights, and biases all play critical
roles in determining the performance of artificial neural network
computations. Understanding how these factors interact and
tuning them appropriately is essential for building effective and
reliable neural network models for various tasks and applications.
The general mathematical equation governing an artificial neural
network (ANN) can be expressed in Equation 3:

y = f(w.x+ b) (3)

where: y is the output of the neural network. f is the activation
function applied element-wise to the result of the linear
transformation. w is theweightmatrix, representing the connections
between neurons in adjacent layers. x is the input vector or
matrix. b is the bias vector or matrix. The activation function of
the ANNs as shown in the architectural framework is illustrated
in Equation 4;

∅ =
n

∑
i=1

wixi + b (4)

3.3 EPR

Evolutionary polynomial regression (EPR) is a technique
used for fitting polynomial functions to data using evolutionary
algorithms. Unlike traditional polynomial regression, which
typically involves selecting the polynomial degree manually, EPR

automatically determines the polynomial degree and coefficients
through an evolutionary optimization process. Initialization: EPR
starts by initializing a population of candidate polynomial models.
Each model represents a potential solution to the regression
problem and is encoded as a mathematical expression involving
polynomial terms and coefficients. Evaluation: The fitness of
each candidate model is evaluated using a fitness function,
which measures how well the model fits the training data. This
typically involves calculating the root mean squared error (RMSE)
or another metric that quantifies the difference between the
model’s predictions and the actual target values. Evolutionary
Process: EPR employs evolutionary algorithms, such as genetic
algorithms or genetic programming, to evolve the population
of candidate models over multiple generations. During each
generation, the following steps are performed: Selection: A
subset of candidate models is selected for reproduction based
on their fitness. Variation: New candidate models (offspring)
are generated through genetic operators such as crossover and
mutation. Crossover involves combining parts of two parent
models to create new offspring, while mutation introduces small
random changes to the models. Replacement: The offspring
replace some of the existing candidate models in the population,
typically based on their fitness. Termination: The evolutionary
process continues for a fixed number of generations or until
a termination condition is met, such as reaching a satisfactory
fitness level or running out of computational resources. Best
Model Selection: After the evolutionary process is complete, the
best-performing model in the final population is selected as the
solution to the regression problem. This model represents the
polynomial function that best fits the training data according
to the chosen fitness metric. EPR offers several advantages
over traditional polynomial regression, including the ability to
automatically determine the polynomial degree and coefficients
without the need for manual intervention. Additionally, EPR can
handle non-linear relationships between variables more effectively
and is less prone to overfitting, especially in cases where the
optimal polynomial degree is unknown. However, EPR may require
more computational resources and longer computation times
compared to traditional regression methods due to the nature of
the evolutionary optimization process. The general mathematical
equation of Evolutionary Polynomial Regression (EPR) can be
represented in Equation 5:

y =
n

∑
i=1

wix
Pi
i (5)

where: y is the output variable. Xi are the input variables.
wi are the coefficients or weights associated with each input
variable. pi are the polynomial degrees corresponding to each
input variable. n is the number of input variables. In EPR, the
goal is to find the optimal values of the coefficients wi and
polynomial degrees, pi that minimize the difference between the
predicted output y and the actual output for a given set of
input variables xi. This optimization process is typically performed
using evolutionary algorithms, where candidate solutions (models)
are evaluated based on their fitness, which is often measured
using a metric such as the root mean square error (RMSE)
or another objective function. EPR is capable of automatically
determining the polynomial degrees pi and coefficients wi that
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FIGURE 11
Comparing the accuracies of the developed models using Taylor charts.

best fit the training data, without the need for manual selection
of the polynomial degree. This makes it a versatile and powerful
technique for regression tasks, particularly in cases where the
relationship between the input and output variables is non-linear
and complex.

3.4 Performance assessment

When analyzing the performance of models using
various metrics such as sum of squared errors (SSE), mean
absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), and R-squared, each metric provides
different insights into the accuracy and goodness of fit of the model
(Kashyap et al., 2024). SSE measures the total squared difference
between the predicted values and the actual values. It gives an overall
measure of themodel’s error, where lower SSE indicates bettermodel
performance. See Equation 6

SSE =
n

∑
i=1
(yi − ̂yi)

2 (6)

MSE measures the average of the squared differences between
the predicted values and the actual values. It penalizes larger errors

more heavily than smaller errors. See Equation 7

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2 (7)

RMSE is the square root of the MSE and provides a measure of
the average magnitude of the errors in the predicted values. It is in
the same unit as the target variable. See Equation 8

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2 (8)

R-squared measures the proportion of the variance in the
dependent variable (target) that is explained by the independent
variables (features) in the model. It ranges from 0 to 1, where higher
values indicate better model fit. See Equation 9

R2 = 1−

n

∑
i=1
(yi − ̂yi)

2

n

∑
i=1
(yi − yi)

2
(9)

In summary, when analyzing models’ performance using SSE,
MAE, MSE, RMSE, and R-squared, it's important to consider the
specific characteristics of each metric and how they relate to the
problem at hand (Kashyap et al., 2024). Lower values of SSE, MAE,
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FIGURE 12
Variance distribution for the developed models.

MSE, and RMSE indicate better model performance, while higher
values of R-squared indicate a better fit of the model to the data.
It's often useful to consider multiple metrics together to gain a
comprehensive understanding of the model’s performance.

4 Results and discussion

4.1 General overview

The compressive strength behavior of high-strength geopolymer
concrete studied in this research work with varying alkali
concentration can be influenced by several factors. Geopolymer
concrete is a cementitious material that is produced by activating
aluminosilicate materials, such as fly ash or slag, with an alkaline
solution as the activator. The alkali concentration in the activating
solution plays a significant role in the geopolymerization process
and can affect the resulting compressive strength. In the present
research work, the range between 18 kg/m3 and 160 kg/m3 for
NaOH and 41 kg/m3 and 229 kg/m3 for NaSi was used in the
various design mixes of this exercise (Mortar et al., 2020). In

general, the compressive strength of geopolymer concrete tends
to increase with increasing alkali concentration within a certain
range as presented in the table in Appendix. This is because higher
alkali concentrations promote a more efficient dissolution and
activation of the aluminosilicate materials, leading to increased
geopolymerization and the formation of more calcium silicate
hydrate (C-S-H) gel (Onyelowe et al., 2021b; Mortar et al., 2020;
Ahmad andRafiq, 2023; Pratap et al., 2023).The increasedC-S-H gel
content contributes to improved strength development. However,
there is an optimal alkali concentration range for geopolymer
concrete, and exceeding this range can have a negative impact on
compressive strength. At very high alkali concentrations, excessive
dissolution and reaction may occur, leading to the formation
of a less dense and weaker geopolymer gel. This can result in a
decrease in compressive strength and other mechanical properties.
It is important to note that the optimal alkali concentration
range can vary depending on the type and properties of the
aluminosilicate materials used, the specific activators employed, and
the curing conditions (Onyelowe et al., 2021b; Mortar et al., 2020).
Therefore, experimental investigations and machine learning-based
optimization studies have been typically conducted and reported
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FIGURE 13
Relation between predicted and calculated (Fc) values using the developed models. (A)for GP, (B)for EPR, (C)for ANN.

to determine the suitable alkali concentration for achieving high-
strength geopolymer concrete. It's also worth mentioning that in
addition to alkali concentration, other factors such as the Si/Al
ratio of the aluminosilicate material, curing temperature, curing
regime, and the inclusion of supplementary cementitious materials

or additives can also influence the compressive strength behavior of
geopolymer concrete (Onyelowe et al., 2021b; Mortar et al., 2020).
Therefore, a comprehensive understanding of the interplay between
these factors is important in designing and producing high-strength
geopolymer concrete with desired properties.
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TABLE 4 Accuracies of developed models.

Technique Model SSE MAE MSE RMSE Error R2

- MPa MPa MPa % -

GP Equation 1 4,453 7.07 84.0 9.17 20 0.771

EPR Equation 2 5,487 8.12 103.5 10.2 22 0.703

ANN Figure 3 and Table 3 434 2.12 8.2 2.86 6 0.981

4.2 GP prediction of HSGPC Fc

Five GP models were developed with complexity levels ranged
between two and six.Thepopulation size, survivor size andnumber of
generations were 1,000, 300 and 2000, respectively. Figure 6 shows the
improvement in accuracywith increasing the complexity. Equation 10
presented the output formula for (Fc) from the last trial. The average
error % of total dataset is (20%), while the (R2) value is (0.771). This
model produced a closed-form equation with which this model can
manually be applied in the evaluation of the optimal compressive
strength of theHSGPC,with themolarity (M), curing regime in terms
of age and temperature and the FAg forming the primary factors of the
parametric equation. This has substantiated the importance of these
factors to the behavior of the modeled parameter (Fc). However, the
model could only perform with 77.1% accuracy.

Fc = ( M
FAg
)
−Ln(Age)

Age
+ (20Ln(Age))X + 12.5Ln(Age) + 1

T−Age
+X

(10)

where X = Age−200Ln(Age)
200Age

(T−Age)

4.3 EPR prediction of Fc

Thedeveloped EPRmodel was limited to sixth level polynomial,
for 8 inputs, there are 1716 possible terms (792 + 330+120 + 36+8 +
1 = 1716) as shown in Equation 11:

n=8
∑
n=1

m=8
∑
m=1

l=8
∑
l=1

k=8
∑
k=1

j=8
∑
j=1

i=8
∑
i=1

Xn.Xm.Xl.Xk.Xj.Xi

+
m=8
∑
m=1

l=8
∑
l=1

k=8
∑
k=1

j=8
∑
j=1

i=8
∑
i=1

Xm.Xl.Xk.Xj.Xi

+
l=8
∑
l=1

k=8
∑
k=1

j=8
∑
j=1

i=8
∑
i=1

Xl.Xk.Xj.Xi

+
k=8
∑
k=1

j=8
∑
j=1

i=8
∑
i=1

Xk.Xj.Xi
+

j=8
∑
j=1

i=8
∑
i=1

Xj.Xi +
i=8
∑
i=1

Xi +C

(11)

GA technique was applied on these 1716 terms to select themost
effective terms to predict the values of (UCS). The process began
with only 5 terms and increased gradually up to 25 terms, Figure 7
presents the enhancement of fitness with increasing the number of
terms and indicates that 5 is the optimum number of terms. The

output is illustrated in Equation 12. The average error % and (R2)
values were (22% and 0.703) respectively. Once more, the EPR with
its GA powered interface produced a closed-form equation, which
performed in the modeling of the Fc with an accuracy of 70.3%. In
this parametric equation, the FA added its relevance unlike in the
GP parametric equation.

Fc = 1.39× 107

T4.Age2
−
CAg2.T.Age2

46.75FA3 +
Age3

5615
−
Age2

28
+ 3.2Age− 0.70

(12)

4.4 ANN prediction of HSGPC Fc

Three (ANN) models were developed to predict (Fc) values.
All the models used normalization method (−1.0 to 1.0), activation
function (Hyper Tan) and “Back propagation” (BP) training
algorithm. Only the number of neurons in the hidden layer was
increased from 1 to 3 to find out the optimum layout of the network.
The SSE and R2 values of the six ANN’s and the optimum network
layout are illustrated in Figures 8, 9 while the weight matrix of the
model is showed in Table 3. The average error % of total dataset is
(6%) and the (R2) value is (0.981). The three models in this ANN
model execution are the 8-1-1, 8-2-1, and the 8-3-1 architectures.
These three varying neurons of the hidden structure reduced the
error produced by the model in that order as the hidden layers
increased and this is agreeable to previous work (Liu et al., 2021).

The relative importance values for each input parameter are
illustrated in Figure 10, which indicated that all factors have
significant impacts on (Fc), but Age (i.e., curing regime) has the
most influence compared to FA, NaOH, and CAg then the other
inputs. The relations between calculated and predicted values are
shown in Figure 9. The outliers are greatest with the EPR line of
fit with a parametric equation of y = 0.960x, MAE of 8.12 MPa,
RMSE of 10.2 MPa, while the GP with less outliers in its line of
fit structure beyond the ±25% envelop produced a parametric fit
expression of y = 0.973x, MAE of 7.07 MPa, and RMSE of 9.17 MPa
and the best model, ANN produced line of parametric equation
of y = 0.995x, MAE of 2.13 MPa and RMSE of 2.86 MPa. The
GP, EPR, and the ANN produced R-squared of 0.703, 0.771, and
0.981, respectively, which makes the ANN the decisive model in
agreement with previous applications of the technique (Onyelowe
and Ebid, 2023; Onyelowe et al., 2023; Onyelowe et al., 2021a;
Shen et al., 2022; Pratap et al., 2023). Also, in the previous
application of this same database, the present research prediction
techniques have outperformed it showing superior techniques in
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the prediction of geopolymer concrete strength considering the
varying alkali molarities in the activator mix (Mortar et al., 2020;
Iqbal et al., 2020; Liu et al., 2021). The Taylor chart presented
in Figure 11 and the variance distribution in Figure 12, which
further compares the accuracy and variances of the developed
models support the outcomes recorded in Figure 13. The summary
of the model operations’ performance accuracies is presented
in Table 4.

5 Conclusion

This research presents three models using (AI) techniques
(GP, ANN and EPR) to predict the compressive strengths (Fc)
of high-strength geopolymer concrete (HSGPC) with NaOH and
NaSi using mix contents (FA, NaOH, NaSi, FAg and CAg),
Molarity (M) and Temperature (T) with the Age of concrete
(Age) (i.e., curing regime) in days. The influence of the alkali
molarity (M) was closely observed. The results of comparing the
accuracies of the developed models could be concluded in the
following points:

• (ANN) model showed the best accuracy of 94%, while
both (GP) and (EPR) models had almost the same
accuracy of 80%.

• (EPR) depended on only four inputs (Age, T, FA and CAg).
Also, (GP) model depended on only four inputs (Age, T,
FAg and M). This indicates the high importance of both
(Age and T) and also give a reason for the low accuracy of
these models.

• (ANN) results indicated that all inputs had significant
impacts on the (Fc) values. (Age) is the most influential
input, then (FA, NaOH, CAg) and finally (FAg,
NaSi, T and M).

• The developed models are valid within the considered range of
parameter values, beyond this range; the prediction accuracy
should be verified.

• Generally, alkali molarity has shown its potential in the
production of HSGPC due to its role in the reactivity phases
of the concrete formulation; hydration, activation, pozzolanic,
and geopolymerization reactions producing the gel needed for
the strength gain in HSGPC.

6 Recommendation

The research database can be expanded in future research
papers to included various other formation components of the
geopolymer cement like those with the addition of nanosilica,
microsilica, rice husk ash, and other industrial and agro waste
materials. The size of the database collected from (Mortar et al.,
2020) was a little limitation, which was overcome by
regularization technique, but expanding the data entries to
incorporate other materials components and their impacts
on the behavior of the studied concrete, there may not be

any need for the rigors of machine learning regularization.
Also, the metaheuristic machine learning techniques can
be deployed to compare their speed and robustness in the
computation of the compressive strength of geopolymer
concretes.
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