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Soft computing techniques have become popular for solving complex
engineering problems and developing models for evaluating structural
material properties. There are limitations to the available methods, including
semi-empirical equations, such as overestimating or underestimating outputs,
and, more importantly, they do not provide predictive mathematical equations.
Using gene expression programming (GEP) and artificial neural networks
(ANNs), this study proposes models for estimating recycled aggregate
concrete (RAC) properties. An experimental database compiled from parallel
studies, and a large amount of literature was used to develop the models. For
compressive strength prediction, GEP yielded a coefficient of determination (R2)
value of 0.95, while ANN achieved an R2 value of 0.93, demonstrating high
reliability. The proposed predictive models are both simple and robust,
enhancing the accuracy of RAC property estimation and offering a valuable
tool for sustainable construction.
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1 Introduction

1.1 Background

Our society is currently grappling with the challenge of sustainable development. To
address this, the United Nations introduced the sustainable development goals (SDGs), aimed
at driving significant progress in the efficient use of natural resources and tackling related
global issues.
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For instance, some natural resources (such as limestone, clay,
shale, magnesite [used in chalk production], sand, bauxite, and iron
ore) are not optimally utilized in cement production. As such, it has
become a key challenge for sustainable development because cement
production is the third largest source of man-made carbon dioxide
emissions globally (Awoyera, 2018; Belaïd, 2022; Zhai et al., 2023).

Although the demand for such natural resources is growing, the
supply is limited. Both the expense and the environmental effect of
transportation and consumption rise when these resources are used.
As a society, the aim is to mitigate the negative impact of the
construction industry on the environment. Concrete is known to be
one of the most used materials in the construction industry and a
natural target for the conservation of resources (Ezema, 2019).

Timber, concrete rubble, sand, bricks, metals, cardboard, paper,
and plastics are typical types of construction and demolition (C&D)
wastes. Concrete rubbles highly dominate C&D waste. Once C&D
waste has been processed by removing debris, it can be graded and
utilized as a partial replacement of conventional aggregates.

Contrasting natural aggregate (NA) and recycled concrete
aggregate (RCA), research shows that mortar adheres to NA
more than it does to RCA. This results in higher water
absorption, higher porosity, lower density, and lower wear
resistance in RCA. These characteristics culminate in negative
effects on concrete prepared with RCA, such as a decrease in
modulus of elasticity and compressive strength of RAC compared
to natural aggregate concrete (NAC). As such, the use of RCA to
replace NA in structural concrete is limited to a maximum of 20% by
regulations, such as EHE-08 (López-Uceda et al., 2016; Babalola
et al., 2020).

In design applications, predicting the mechanical properties of
concrete is a critical task. An accurate model for predicting the
mechanical properties can efficiently generate the necessary design
data, saving time and money in developing alternative structural
component designs (Wang, Xia, Wang, et al., 2023; Wang, Xia,
Chen, et al., 2023). However, because of the aforementioned
differences in the attributes of RAC and NAC, models developed
for predicting the mechanical properties of NAC will generally not
be reliable and accurate for predicting the mechanical properties of
RAC (Behnood et al., 2015). Various studies have been carried out to
tackle this problem on different machine learning models such as
M5 model trees, ICA-XGBoost models, gray theory, multiple
nonlinear regressions, GeneXpro models, and artificial neural
network (ANN) (Alipour et al., 2014; Behnood et al., 2015;
Mansouri et al., 2018; Farzampour et al., 2019; Liu et al., 2021;
Shrivastava and Shrivastava, 2023). Although many of these studies
achieved satisfactory accuracy, none of them were designed to
predict compressive strength, split tensile strength, modulus of
elasticity, and flexural strength of RAC, while not only
considering the effect of recycled coarse aggregate but that of
recycled fine aggregate as well.

The main interest of this research is to explore which of the two
soft computing techniques, ANN and GeneXproTools 5.0, would
accurately predict the mechanical properties of concrete in which
(coarse and fine) RCA is used. Unlike conventional concrete, with
common materials and properties, RAC incorporates numerous
constituents that modify its performance. Thus, ANN and GEP
were considered in this study as they are popular for data modeling.
However, they have not been fully utilized for recycled concrete.

This research adopted a robust database of several experimental
studies. The study includes parametric studies and the development
of predictive models for estimating the mechanical properties of
RAC. Moreover, it compared the performance of the two models
and recommended the most suitable model for RAC.

This study is novel as it adopted two cutting-edge soft
computing approaches to forecast the mechanical properties of
RAC. Moreover, the study incorporated both types of recycled
aggregates into a thorough predictive model, in contrast to earlier
studies that concentrated on recycled coarse or fine aggregates
independently. The research aims to solve the shortcomings of
existing models, which frequently fail to precisely predict the
features of RAC due to its unique composition, by leveraging a
solid database from various experimental experiments. This
development is essential to improving the performance and
utilization of recycled materials in concrete, which will increase
its sustainability.

1.2 Previous models for strength prediction
of RAC

Over the years, models have been proposed for solving or
estimating the RAC performance and eventually help manage
cost and ensure safety on the field (Wang et al., 2024). Tables
1–4 list equations derived from existing models gleaned from
various studies in the literature.

However, the model’s development for estimating the properties
of RAC (constructed from RCAs from various suppliers) has at least
two key challenges:

- Whether the model can perform like an expert system, that is,
it should be able to accurately understand the relationships
between the factors that alter the RAC performance. These
factors include the water-to-cement ratio, cement content,
cement type, aggregate-to-cement ratio, and aggregate size
distribution.

- Whether optimal combination of RCA properties should be
considered for the model’s development so that it can predict
several forms of RCA.

Several attempts have been made to estimate the mechanical
properties of RAC precisely based on the prior works, as reviewed
above, to contribute to sustainable development. Despite numerous
advancements in applying machine learning to concrete, it is still
very relevant to further explore the machine learning training
models and their challenges to accurately estimate strength
characteristics and modulus of elasticity simultaneously while
also considering the recycled aggregate effects. Hence, based on
the available review, this work is unique in achieving sustainability
and cost-effectiveness in using RAC.

2 Methodology

This section contains the extensive dataset used to prepare the
models employed in this article. The research analyzes the effects of
factors on the RAC performance, comprising the volume of
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aggregates (fine and coarse portions), water-to-cement ratio, water
content, aggregate-to-cement ratio, cement content, and RCA.

Fine aggregates are typically made of sand or crushed stone with
particle sizes less than 5 mm. In contrast, coarse aggregates are made
up of larger particles, usually gravel or crushed stone, with sizes
ranging from 5 mm to 20 mm or more. The volume of aggregates
significantly impacts the concrete properties, including strength,
durability, and workability.

The water-to-cement ratio is an important factor in the concrete
mix design. It is the mass ratio of water to cementitious materials
(cement and pozzolans) in a concrete mix. This ratio considerably
influences the workability, strength, and durability of concrete. A
lower water-to-cement ratio generally increases the strength and
durability, but it can also affect the workability of the mix. In this
study, the used water-to-cement ratio ranged from 0.34 to 0.7.

Controlling the water content in concrete is critical to achieving
the desired workability and strength of concrete.

The aggregate-to-cement ratio is another important
consideration in the concrete mix design. It is the volume of

aggregates divided by the volume of cementitious materials in the
mix. This ratio influences the strength, durability, and cost-
effectiveness of the concrete mix. A higher aggregate-to-cement
ratio usually results in lower strength, but it can improve the
workability and decrease costs. The aggregate-to-cement ratio
adopted in this study ranged from 3.5 to 5.0.

Cement content refers to the amount of cementitious materials
(typically Portland cement) used in a concrete mix. Cement is the
adhesive that holds aggregates together in concrete. The cement
content influences the concrete strength, durability, and shrinkage
properties. A higher cement content generally results in greater
strength but also increases the costs and environmental impact.
Finally, RCA is produced by crushing waste concrete to replace NAs
in concrete mixtures. Using RCA in concrete mixes can help reduce
the demand for natural resources, landfill waste, and the
environmental impact of concrete production. However, the
properties of RCA can vary depending on factors such as the
original concrete composition, crushing process, and
contamination, all of which can have an impact on the
performance of the final concrete mix. More details about the
dataset are presented in Table 5.

Thus, it is possible to make a comparison on the model accuracy.
In this study, output parameters are the mechanical properties of
concrete, such as the compressive strength, split tensile strength,
modulus of elasticity, and flexural strength. The models employed in
this article are based on ANN and GEP. This section enumerates the
steps to analyze the collected data and develop the models.

TABLE 1 Models for compressive strength of RAC.

Model Source

fc = ( 115
7.2a/c)[1 − (0.30RCM + 0.164RFM + 0.195RCC + 0.058RFC + 0.344RCB − 0.136RFB)]

a/c = Aggregate-to-cement ratio
RCM = Recycled coarse mortar
RFM = Recycled fine mortar
RCC = Recycled coarse concrete
RFC = Recycled fine concrete
RCB = Recycled coarse brick
RFB = Recycled fine brick
The model is suitable for concrete having 0%–100% RCA as a partial replacement of NAs and a w/cm ratio of 0.46–0.74

Cabral et al. (2010)

f ’c,cube =
19.1 × 0.998RCA% × (weff /c+0.33)

weff /c1.5

f ’c,cylinder =
23.5 × 0.998RCA% × (weff /c+0.09)

weff /c1.7

Gholampour et al. (2017)

f ’c,cube = 28.97− 4.71r 1.69

(weff /c)0.63

f ’c,cylinder = 28.76− 5.70r1.69

(weff /c)0.63

Xu et al. (2019)

TABLE 2 Models for split tensile strength of RAC.

Model Source

fctm = 0.323fck
2/3 - −0.00539%AG, for mixes with recycled fine aggregates

fctm = 0.3fck
2/3, for mixes with 0%–50% recycled fine aggregates

fctm = Tensile strength
fck = Compressive strength

Plaza et al. (2021)

fst = 0.012 (0.9–0.002 RCA%) (2.1–0.3weff/c)
9.1

fst = Split tensile strength
RCA% = RCA replacement ratio weff/c = Effective water–to-cement ratio

Gholampour et al. (2017)

fst = 2.12− 0.31r0.22
(weff /c)0.63 Xu et al. (2019)

TABLE 3 Models for flexural strength of RAC.

Model Source

fct,m,fl = (0.547–0.342 h/1,000)fck
2/3 Plaza et al. (2021)

fr = 0.022 (1.2–0.002 RCA%) (2.3–0.3weff/c)
6.9 Gholampour et al. (2017)

fr = 3.24− 0.66r0.9
(weff /c)0.63 Xu et al. (2019)
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The performance of the predicted model and test data were
assessed according to the studies by Citakoglu (2021); Uncuoglu
et al. (2022); and Bayram and Çıtakoğlu (2022), using mean absolute
percentage error (MAPE), root mean square error (RMSE),
coefficient of determination (R2), relative root mean square error
(RRMSE), Nash–Sutcliffe efficiency (NSE), and Kling–Gupta
efficiency (KGE).

2.1 Model dataset

This study obtained a rich dataset from the published
literature containing information about the compressive
strength, split tensile strength, modulus of elasticity, and
flexural strength of RAC to train and test two machine learning
models. The data comprised 56 inputs gathered from the open
literature (Gholampour et al., 2017; Zhou and Chen, 2017; Sridhar
et al., 2023; Duan et al., 2018). The input parameters were w/cm
ratio, cement content, NA content (fine and coarse), water, and
RCA (fine and coarse constituents). As in typical models, the
dataset was divided into training, validation, and testing datasets.
The training dataset was utilized to build and train the model, and
the testing dataset was used to assess its performance. To avoid
overfitting, the validating dataset was employed to determine
model generality and to stop training when the error increases
(ben Chaabene et al., 2020; Bartlett et al., 2023). The dataset
was split into training (70%), validation (15%), and testing
(15%) sets. We used k-fold cross-validation to ensure model
robustness, with k set to 10. This method improves the
reliability of the results by ensuring that each data point is used
for validation at least once.

2.2 Data pre-processing

Data pre-processing is a crucial step to ensure the quality and
reliability of the input data before they are fed into the predictive
models. The steps taken during the pre-processing phase, as shown
in Figure 1, are as follows:

TABLE 4 Models for modulus of elasticity of RAC.

Model Source

Ec = ( 21
a/c0.5)[1 − (0.344RCM + 0.150RFM + 0.214RCC + 0.098RFC + 0.438RCB + 0.102RFB)] a/c = Aggregate-to-cement ratio

RCM = Recycled coarse mortar
RFM = Recycled fine mortar
RCC = Recycled coarse concrete
RFC = Recycled fine concrete
RCB = Recycled coarse brick
RFB = Recycled fine brick
This model is limited to concrete containing 0%–100% partial replacement of NA by RA and a w/cm ratio of 0.46–0.74

Cabral et al. (2010)

ERAC = a (fcu)
b ( w

c )c( CA
C )d(r)e( FA

TA )f(SGSSD)g(Wa)h, where a, b, c, d, e, f, g, and h = coefficients of the model
fcu = Compressive strength
w/c = Water–to-cement ratio
CA/C = Coarse aggregate-to-cement ratio
r = Replacement ratio of NA by RA (recycled aggregate) in RAC by volume
FA/TA = Fine aggregate–total aggregate ratio
SGSSD = Saturated surface dry specific gravity
Wa = Water absorption

Behnood et al. (2015b)

ERAC = a’(f cu)b′( CA
C )d′(r)e′( FA

TA )f ′ , where a’, b’, c’, d’, e’, and f’ = coefficients of model
fcu = Compressive strength of concrete
w/c = water–to-cement ratio
CA/C = Coarse aggregate-to-cement ratio
r = Replacement ratio of NA by RA in RAC by volume
FA/TA = Fine aggregate–total aggregate ratio
SGSSD = Saturated surface dry specific gravity
Wa = Water absorption

Behnood et al. (2015b)

ERAC = 0.016 (6.1–0.015 RCA%) (5.3–1.7weff/c)
3.9 Gholampour et al. (2017)

ERAC = 26836.23− 5477.29 r 1.14

(weff /c)0.25 Xu et al. (2019)

TABLE 5 Input and output data specifications for ANN model.

Input data Minimum Maximum

w/c 0.34 0.7

a/c 3.5 5

Water (kg/m3) 120 265

Cement (kg/m3) 300 488

Natural fine aggregate (kg/m3) 344 1,115

Natural coarse aggregate (kg/m3) 119 1,366

Recycled coarse aggregate (kg/m3) 119 1,193

Recycled fine aggregate (kg/m3) 69 728

Output data

Compressive strength (MPa) 14.8 80.5

Split tensile strength (MPa) 2.2 5.7

Flexural strength (MPa) 3.4 6.9

Modulus of elasticity (MPa) 20,490 46,400
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1. Data collection: The dataset was compiled from experimental
studies and literature sources. The dataset includes input
parameters such as the type and proportion of recycled
aggregates, mix proportions, and curing conditions.

2. Handling missing values: Missing values were addressed using
multiple methods. For numerical data, missing values were
imputed utilizing the mean of the available data. However, the
most frequent category was employed for the categorical data.

3. Normalization: All numerical input parameters were
normalized to a standard range (typically 0–1) using
min–max normalization. This step ensures that all input
features contribute equally to the model training process
and prevents any single feature from dominating the
predictions due to scale differences.

4. Encoding categorical variables: Categorical variables were
encoded utilizing one-hot encoding. This method creates
binary columns for each category, ensuring the model can
interpret these variables correctly without assuming any
ordinal relationship.

5. Feature selection: Feature selection was performed to identify
the most relevant input parameters for the models. Correlation
analysis and feature importance scores from preliminary
models were used to select the final set of input features.

6. Data splitting: The dataset was split into training (70%),
validation (15%), and testing (15%) sets. This division
ensures that the models are trained on diverse data,
validated during the training process, and tested on unseen
data to evaluate their performance.

2.3 ANN

ANN is well known and has been widely employed as a modeling
tool for years and has greater capabilities inmodelingmore complicated
interactions (Duan et al., 2018). ANN has recently indicated to be an
effective method for predicting the mechanical properties of concrete.
This model is based on the biological nervous system and has been
optimized for use in deep learning techniques. The most basic ANN is
made up of artificial neurons that are linked together. The neurons are
typically clustered into three layers: the input layer, the hidden layer,
and the output layer. Signals are transmitted through the connections
between neurons (called synapses). The neurons receive and process
signals before transmitting them to the neurons to which they are
linked. In training, ANNs learn from observational data and then
predict unknown outcomes (Vasanthalin et al., 2021; Xue, Shao and
Burlion, 2021). A general ANN architecture is illustrated in Figure 2.
This study conducted an ANN analysis using MATLAB software,
which preinstalled the ANN tool.

The initial dataset was separated into three groups (datasets for
training, testing, and validating the model). When the test results are
satisfactory, then the training is considered complete. This is all done
within the software interface.

The five basic parts of the neural network-based modeling
process are as follows:

1. data collection, analysis, and problem representation;
2. determination of network architecture;
3. determination of learning process;
4. network training; and
5. testing of network and generalization evaluation.

The ANN model was developed utilizing MATLAB software.
The model was developed utilizing error backpropagation and a
training and recall algorithm (Awoyera et al., 2020), and this yielded
a sigmoid/sum function (sigmoid). It is known to ultimately
influence the output(s). Many studies (Meenakshi et al., 2023;
Abellan-Garcia et al., 2023; Yu et al., 2023; de-Prado-Gil et al.,
2024) reported that this method can solve problems with multiple
variables employing a feed-forward–back propagation model based
on the Levenberg–Marquardt (LM) multilayer method available
in MATLAB.

This model uses 7 input parameters in the input layer, as well as
2 hidden layers with 10 neurons in the first layer and 7 neurons in
the second layer, and finally, the output layer will predict the
compressive strength, split tensile strength, modulus of elasticity,
and flexural strength of RAC. The data utilized for training are 70%
of the 356 datasets, 15% for validation, and 15% for testing.

In this study, variables were created, such as Xtrain, where the
“input” variables would be inserted w/cm ratio, cement content, NA
content (fine and coarse), water, andRCA (fine and coarse constituents).

FIGURE 1
Steps for pre-processing phase.
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2.4 GeneXProTools 5.0 models

Ferreira established GEP from the popular genetic programming
(GP), which is built on the following basic components: terminal set,
function set, fitness function, terminal condition, and control
parameters. The multigenic nature of GEP enables the creation of
complicated and nonlinear programs with multiple subprograms
(Citakoglu et al., 2020; Uncuoglu et al., 2022).

The development of chromosomes is a crucial component of GEP.
Based on the Karva language, chromosome arrangement is easily
interpreted using expression trees (ETs). From the model, ETs and
subtrees are formedwith the chromosomes. The transformation of the
Karva expression (K-expression) to an ET begins at the root of ET, the
initial position in the K-expression, and continues through the string.
ET is inversely translated to the K-expression utilizing the node record
from the root layer to the deepest layer to construct the string.

Generally, the database used was randomly divided into three
subsets, namely, learning, testing, and validation, which helped
improve the accuracy of the developed models. The data for
learning, testing, and validation were employed for genetic
development, determining the GEP model accuracy, and final
model selection, respectively, with reference to the unused model
data in the structure (Gholampour et al., 2017). GEP information and
parameter settings are presented in Table 6. A combination of domain
expertise, trial-and-error, and experimental tuning was utilized to
determine the values for these parameters. As such, the goal was to
determine the optimal settings for the situation or available resources.

3 Results and discussion

This section discusses the performance of the machine learning
models. The results from the two models (MATLAB and GEP) are
then compared based on their R2 value and a recommendation on
the most suitable one for obtaining the most accurate prediction of
the compressive strength, flexural strength, split tensile strength, and
modulus of elasticity.

R2 is the preferred way of evaluating a given model as it yields a
better picture of the quality of the regression model than MSE. This
is because the accuracy of the MSE value can be affected if the values
of the response variable are not scaled. Generally, an R2 value greater
than 70% is desired.

3.1 ANN modeling results

A trial-and-error method developed a suitable model to predict the
compressive strength, split tensile strength, flexural strength, and
modulus of elasticity of RAC using ANN. The input data include
the water–to-cement ratio, aggregate-to-cement ratio, water content
(kg/m3), cement content (kg/m3), fine aggregate content (kg/m3), coarse
aggregate content (kg/m3), and RCA (kg/m3), while the output data
include the compressive strength, split tensile strength, flexural
strength, and modulus of elasticity of RAC on day 28. The training
results of the ANN model with the lowest error (MSE) value and best
coefficient of correlation are displayed in Figure 3. The model has
7 input neurons, 10 hidden layer neurons, and 4 output neurons.

3.1.1 Fitting line plot
The term “regression” refers to a curve or line that passes

through all the necessary data points on an X–Y plot so that the
gap between the vertical line and all the data points is minimal. A
regression equation is an algebraic representation of the regression
line demonstrating the relationship between the dependent and
independent variables. The distance between these x and y points
and the lines indicates whether the sample has a strong link, and it is

FIGURE 2
General structure of ANN (Sridhar et al., 2023).

TABLE 6 Specification used for GEP modeling.

Parameter Parameter description Parameter setting

k1 Chromosomes 32

k2 Fitness function error type RMSE

k3 Number of genes 1

k4 Head size 7

k5 Linking function Addition

k6 Function set +, –, ×,/, Exp, Sqrt

k7 Mutation rate 0.0013

k8 One-point recombination 0.0029

k9 Two-point recombination 0.0027

k10 Inversion rate 0.00545

k11 Transposition rate 0.00546
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then referred to as a correction. Figure 4 shows the ANN
regression plots.

3.2 GEP model results

In this study, four models were developed on GEP to investigate
the compressive strength, flexural strength, split tensile strength, and
modulus of elasticity of RAC. The developed models were deduced
by writing out the parameters from ETs from left to right and also
from bottom left to right.

A typical model ET obtained for the compressive strength is
illustrated in Figure 5.

The model accuracy was based on the comparison of predicted
and actual datasets of the compressive strength, split tensile strength,
flexural strength, and modulus of elasticity of RAC, and the results
are given in Figures 6–9, respectively. These figures indicate that
there is a reasonable correlation between the model-predicted values
and the actual values obtained from experiments recorded in the
existing literature. This is also apparent from the achieved R and R2

values, as outlined in Table 7.
In formulating expressions from ETs generated by GEP for the

compressive strength, split tensile strength, flexural strength, and
modulus of elasticity, the following notations were adopted:

fc = compressive strength, MPa
fst = split tensile strength, MPa
fT = flexural strength, MPa
Ec = modulus of elasticity, MPa

a/c = aggregate-to-cement ratio
w/cm = water–to-cementitious material ratio
W = water, kg/m3

C = cement, kg/m3

CNA = coarse natural aggregate, kg/m3

FNA = fine natural aggregate, kg/m3

CRA = coarse recycled aggregate, kg/m3

FRA = fine recycled aggregate, kg/m3

The models developed from ETs for the compressive strength,
split tensile strength, flexural strength, and modulus of elasticity are
presented below.

3.2.1 Compressive strength

f c �

�������������������������������������������
a
c

����������
FNA + FRA

√ − 7.010223( ) + FRA − C
FNA − CNA

+W( )√
w/cm

+ √e ln 1.955262−W( )−0.300476
FNA−FRA−0.300476( )− w

cm( )
w/cm

+
w/cm − ��

C
√ + FRA − 9.819062( ) + CRA

W
( )( ) − −9.819062 98.21725705w

cm

⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠
w/cm

+ ln

a
c

( )2

CNA

2.676209 − FRA( ) + CRA
+ CRA

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 4.037597

+ ln

���������������������������������������������
FNA − W.FNA

1.741089 − CNA
+ FRA − a

c
( )( )FNA( ) − CNA

√
− 8.434692

+ e

In w
cm( ) − FNA

8.414429+ 6.46405−CNA( )( )−CNA
w
cm
W − 6.46405.

(1)

FIGURE 3
Used optimal neural network structure.

Frontiers in Built Environment frontiersin.org07

Awoyera et al. 10.3389/fbuil.2024.1447800

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1447800


3.2.2 Split tensile strength

Ff st�

a
c
− w
cm

2 − 9.670044( )
2CNA.2w/cm( ) + 5.270263 − CRA + CNA( ) − 5.270263

+ 5.270263

��
W

√ + C
CRA

w
cm

+ 2.630615( ) 9.034912 + w
cm

( ) −
w
cm

C

FNA + C
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 6.205566
6.205566CRA
C + 7.8974

+ 6.205566. (2)

3.2.3 Flexural strength

f T� ln(W + w/cm
−2.4379988CRA − 22.31367542( ) −9.152496CNA(

−FNA.FRA + −9.152496 + FRA( )CNA)

+ FRA

CNA FNA + 9.872071( )
a
c
W

�����
w/cm

√ − CNA⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠CNA⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ − CNA

+e W−CNA
3FRA−FNA+ 39.66555536+C( ) − w/cm). (3)

3.2.4 Modulus of elasticity

Ec � FRA − CNA2

a
c
+ 9.974183 + W

7.064086
+ w

cm
.CRA( ) + CNA

+ CRA.C

FNA − CRA + 9.955811 − CRA
CRA −W

− FNA − 4.425323 + CNA

+ ac
w
cm

− a
c
+W + C( )7.766503018( )( ) + e9.236847( )

− CNA + FRA. (4)

FIGURE 4
Regression plots for: (A) training, (B) validation, (C) testing, and (D) overall.
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4 Performance evaluation of developed
predictive models

The statistical methods used to evaluate the predictive capacity
of the models (GEP and ANN) in this article are the R-value

(correlation coefficient) and R2 value (coefficient of
determination). The experimental data and predicted data
obtained from the models are compared. Figures 10A–D
demonstrate the result compared to the literature for the assessed
data. The correlation coefficient is between −1 and 1, indicating the
strength and direction of a relationship between the experimental
and predicted data. A correlation coefficient of −1 displays a perfect
negative relationship between variables. This means that the
variables change together in opposite directions. However, a
correlation value of 0 means that no relationship was found
between the variables. A correlation coefficient of +1 displays
that the variables are perfectly related to each other in the same
direction. The R and R2 values obtained from the two models, given
in Table 8, show that the ANN predictive model values (with the
R value of 0.98919) have the strongest correlation with the actual
experimental values compared to the GEP predictive model values

FIGURE 5
ETs for compressive strength (a)–(f).

FIGURE 6
Linear fit of compressive strength.

FIGURE 7
Linear fit of split tensile strength.
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(with the average R value of 0.79262). The same is observed for
the GEP coefficient of determination (R2 value). The R2 value of a
model exhibits the proportion of variance of the values and ranges
from 0 to 1. An R2 value of 0 signifies that the dependent variable
cannot be predicted successfully from the independent variable. The
closer this value is to 1, the stronger the correlation, and the more
accurate the model. As such, both the ANNmodel (with an R2 value
of 0.9785) and GEP (with an R2 value of 0.9827) can be said to
predict the RAC performance accurately. However, an R2 value of
1 is not always desirable. It could point out that information leaked
during the testing stage, or the problem was fairly easy for the model
to learn.

Based on the error values obtained for modeling of the RAC
performance using ANN and GEP and according to the studies by
Görkemli et al. (2022) and Özbayrak et al. (2023), the following
assertion is made: a lower RMSE demonstrates improved model

performance. In this case, GEP has a significantly lower RMSE than
ANN, revealing that GEP is a better fit for the data.

R2 measures howmuch of the variance in the dependent variable
is predictable from the independent variables. Both models have
high R2 values, indicating that they account for a significant portion
of the variance in the data. However, GEP has a slightly higher R2

value, indicating that it may provide a better fit to the data.
MAPE calculates the mean absolute percentage difference

between the predicted and actual values. Both models have low
MAPE values, illustrating high prediction accuracy. ANN has a
lower MAPE value, implying slightly better performance in the
absolute percentage error.

RRMSE is the ratio of RMSE to the mean of the observed values.
Lower RRMSE values show improved model performance. ANN has
a lower RRMSE, displaying slightly better performance than the
mean of the observed values.

NSE compares the model predicted values to the observed mean.
Both models have high NSE values, which present good predictive
performance. GEP has a higher NSE value, indicating a better fit
between the predicted and observed values.

KGE is a metric that considers the correlation, bias, and
variability of the modeled and observed data. Both models have
high KGE values, which exhibit good model performance. However,
GEP has a slightly higher KGE value, demonstrating a slightly better
agreement between the modeled and observed data.

The prediction performance of the generated model is compared
to existing models extracted from the literature (Gholampour et al.,
2017; Xu et al., 2019).

Finally, the figures indicate that the predictions from the
proposed GEP models are closer to the actual results than the
predictions from the models proposed by Gholampour et al.
(2017) and Xu et al. (2019).

Furthermore, the Kruskal–Wallis test was used to determine
whether the estimated andmeasured data distributions were similar.
A statistical significance test was carried out on the results of the two
techniques. Table 9 shows that the Ho hypothesis for estimating
experimental and predicted datasets utilizing the ANN and GEP
methods was rejected. Thus, it was an indication that there was no
considerable difference between the means of the output values of
the actual and predicted datasets, revealing that the estimated
experimental and natural datasets were reliable.

5 Conclusion

This study examined the relationship between the w/cm ratio,
water (kg/m3), cement (kg/m3), natural fine aggregate (kg/m3),

FIGURE 8
Linear fit of flexural strength.

FIGURE 9
Linear fit of modulus of elasticity.

TABLE 7 Coefficients of determination for final GEP model.

Output R2

Compressive strength 0.98271

Split tensile strength 0.98879

Flexural strength 0.98891

Modulus of elasticity 0.99224
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natural coarse aggregate (kg/m3), coarse RCA (kg/m3), and fine RCA
(kg/m3) to accurately predict the strength parameters (compressive
strength, split tensile strength, flexural strength, and modulus of

elasticity) of RAC. The study demonstrated that the ANN model
predicts the strength parameters of RAC more efficiently than the
GEP model.

The following conclusions were drawn from the study:

• Both ANN and GEP models are effective at modeling the
performance of RAC. However, based on the provided error
values, GEP appeared to have a slight performance advantage
over ANN across multiple evaluation metrics.

• The input considerations used in creating the GEP model
were sufficient only to train the model to predict the
compressive strength of RAC, but not the split tensile
strength, flexural strength, and modulus of elasticity of
RAC. However, these input parameters were sufficient to
produce a highly accurate model of all the considered
strength parameters by ANN.

• In the model developed using GEP and ANN, the
compressive strength, split tensile strength, flexural
strength, and modulus of elasticity were compared based
on their R2 value. The results demonstrated that the GEP and
ANN models developed for RAC are reliable and can predict
the concrete properties at over 50% confidence level. Overall,
the ANN model is more accurate in predicting the
compressive strength, flexural strength, split tensile
strength, and modulus of elasticity. However, GEP has an
advantage providing a mathematical expression for solving
the investigated strength parameters.

• By predicting the RAC properties accurately, these models can
help reduce the environmental impact and construction costs,
promoting the use of recycled materials in construction.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

FIGURE 10
Comparison of experimentally observed and predicted values:
(A) compressive strength, (B) split tensile strength, (C) flexural
strength, and (D) modulus of elasticity.

TABLE 8 Comparing statistical data from both models.

ANN GEP

RMSE 12.06 0.932

R2 0.9785 0.9827

MAPE (%) 6.569 6.808

RRMSE (%) 4.8 5.606

NSE 0.973 0.985

KGE 0.979 0.98

TABLE 9 Kruskal–Wallis test p-values at 95% significance.

Model Experimental data

p-value Ho

ANN 0.9538 Reject

GEP 0.9661 Reject

Frontiers in Built Environment frontiersin.org11

Awoyera et al. 10.3389/fbuil.2024.1447800

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1447800


Author contributions

PA: conceptualization, investigation, methodology, project
administration, validation, writing–original draft, and
writing–review and editing. AB: conceptualization, formal
analysis, investigation, methodology, project administration,
resources, validation, writing–original draft, and writing–review
and editing. CO: investigation and writing–original draft. LB:
validation and writing–review and editing. EM: investigation and
writing–original draft. JM: conceptualization and writing–review
and editing. JH: investigation, methodology, and writing–review
and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
work was supported by the Korea Agency for Infrastructure

Technology Advancement grant funded by the Ministry of Land,
Infrastructure, and Transport (Grant 21CFRP-C163381-01).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abellan-Garcia, J., Fernández-Gómez, J., Iqbal Khan, M., Abbas, Y. M., and Pacheco-
Bustos, C. (2023). ANN approach to evaluate the effects of supplementary cementitious
materials on the compressive strength of recycled aggregate concrete. Constr. Build.
Mater. 402, 132992. doi:10.1016/j.conbuildmat.2023.132992

Alipour, A., Yarahmadi, J., and Mahdavi, M. (2014). Comparative study of M5 model
tree and artificial neural network in estimating reference evapotranspiration using
MODIS products alvarez, I. J. Climatol. 2014, 839205. doi:10.1155/2014/839205

Awoyera, P. O. (2018). Predictive models for determination of compressive and split-
tensile strengths of steel slag aggregate concrete. Mater. Res. Innovations 22 (5),
287–293. doi:10.1080/14328917.2017.1317394

Awoyera, P. O., Kirgiz, M. S., Viloria, A., and Ovallos-Gazabon, D. (2020).
Estimating strength properties of geopolymer self-compacting concrete using
machine learning techniques. J. Mater. Res. Technol. 9 (4), 9016–9028. doi:10.
1016/j.jmrt.2020.06.008

Babalola, O. E., Awoyera, P., Tran, M., Olalusi, O., Viloria, A., and Ovallos-Gazabon, D.
(2020). Mechanical and durability properties of recycled aggregate concrete with ternary
binder system and optimized mix proportion. J. Mater. Res. Technol. 9 (3), 6521–6532.
doi:10.1016/j.jmrt.2020.04.038

Bartlett, C. W., Bossenbroek, J., Ueyama, Y., McCallinhart, P., Peters, O. A.,
Santillan, D. A., et al. (2023). Invasive or more direct measurements can provide
an objective early-stopping ceiling for training deep neural networks on non-invasive
or less-direct biomedical data. SN Comput. Sci. 4 (2), 161. doi:10.1007/s42979-022-
01553-8

Bayram, S., and Çıtakoğlu, H. (2022). Modeling monthly reference
evapotranspiration process in Turkey: application of machine learning methods.
Environ. Monit. Assess. 195 (1), 67. doi:10.1007/s10661-022-10662-z

Behnood, A., Olek, J., and Glinicki, M. A. (2015). Predicting modulus elasticity of
recycled aggregate concrete using M5′ model tree algorithm. Constr. Build. Mater. 94,
137–147. doi:10.1016/j.conbuildmat.2015.06.055

Belaïd, F. (2022). How does concrete and cement industry transformation contribute
to mitigating climate change challenges? Resour. Conservation and Recycl. Adv. 15,
200084. doi:10.1016/j.rcradv.2022.200084

ben Chaabene, W., Flah, M., and Nehdi, M. L. (2020). Machine learning prediction of
mechanical properties of concrete: critical review. Constr. Build. Mater. 260, 119889.
doi:10.1016/j.conbuildmat.2020.119889

Cabral, A. E. B., Schalch, V., Molin, D. C. C. D., and Ribeiro, J. L. D. (2010a).
Mechanical properties modeling of recycled aggregate concrete. Constr. Build. Mater. 24
(4), 421–430. doi:10.1016/j.conbuildmat.2009.10.011

Catherina Vasanthalin, P., and Chella Kavitha, N. (2021). “Prediction of
compressive strength of recycled aggregate concrete using artificial neural
network and cuckoo search method,” in Materials today: proceedings (Elsevier
Ltd), 8480–8488.

Citakoglu, H. (2021). Comparison of multiple learning artificial intelligence models
for estimation of long-term monthly temperatures in Turkey. Arabian J. Geosciences 14
(20), 2131. doi:10.1007/s12517-021-08484-3

Citakoglu, H., Babayigit, B., and Haktanir, N. A. (2020). Solar radiation prediction
using multi-gene genetic programming approach. Theor. Appl. Climatol. 142 (3),
885–897. doi:10.1007/s00704-020-03356-4

de-Prado-Gil, J., Martínez-García, R., Jagadesh, P., Juan-Valdés, A., Gónzalez-Alonso,
M. I., and Palencia, C. (2024). To determine the compressive strength of self-
compacting recycled aggregate concrete using artificial neural network (ANN). Ain
Shams Eng. J. 15 (2), 102548. doi:10.1016/j.asej.2023.102548

Duan, Z., Hou, S., Poon, C. S., Xiao, J., and Liu, Y. (2018). Using neural networks to
determine the significance of aggregate characteristics affecting the mechanical
properties of recycled aggregate concrete. Appl. Sci. Switz. 8 (11), 2171. doi:10.3390/
app8112171

Ezema, I. C. (2019). “Chapter 9 - materials,” in Sustainable construction technologies.
Editors V. W. Y. Tam and K. N. Le (Butterworth-Heinemann), 237–262.

Farzampour, A., Mansouri, I., Mortazavi, S. J., and Hu, J. W. (2019) “Force-
displacement relationship of a butterfly-shaped beams based on gene expression
programming,” in 10th international symposium on steel structures (Korea: Jeju), 10–13.

Gholampour, A., Gandomi, A. H., and Ozbakkaloglu, T. (2017). New formulations for
mechanical properties of recycled aggregate concrete using gene expression
programming. Constr. Build. Mater. 130, 122–145. doi:10.1016/j.conbuildmat.2016.
10.114

Görkemli, B., Citakoglu, H., Haktanir, T., and Karaboga, D. (2022). A new method
based on artificial bee colony programming for the regional standardized
intensity–duration‒frequency relationship. Arabian J. Geosciences 15 (3), 272.
doi:10.1007/s12517-021-09377-1

Liu, Y., Zhang, S., Zhang, J., Tang, L., and Bai, Y. (2021). Assessment and comparison
of six machine learning models in estimating evapotranspiration over croplands using
remote sensing and meteorological factors. Remote Sens. 13 (19), 3838. doi:10.3390/
rs13193838

López-Uceda, A., Ayuso, J., López, M., Jimenez, J., Agrela, F., and Sierra, M. (2016).
Properties of non-structural concrete made with mixed recycled aggregates and low
cement content. Materials 9 (2), 74. doi:10.3390/ma9020074

Mansouri, I., Azmathulla, H.M., and Hu, J. W. (2018). Gene expression programming
application for prediction of ultimate axial strain of FRP-confined concrete. Electron.
J. Fac. Civ. Eng. Osijek-e-GFOS 16, 64–76. doi:10.13167/2018.16.6

Meenakshi, B. S., Indradevi, P., Dhilp kumar, A., Harish Natarajan, T., Sathyasheelan,
S., and Kathirvel, V. (2023). ANN model using MATLAB in CFS -concrete. Mater.
Today Proc. doi:10.1016/j.matpr.2023.05.103

Özbayrak, A., Ali, M. K., and Çıtakoğlu, H. (2023). Buckling load estimation using
multiple linear regression analysis and multigene genetic programming method in
cantilever beams with transverse stiffeners. Arabian J. Sci. Eng. 48 (4), 5347–5370.
doi:10.1007/s13369-022-07445-6

Plaza, P., Sáez del Bosque, I., Frías, M., Sánchez de Rojas, M., and Medina, C. (2021).
Use of recycled coarse and fine aggregates in structural eco-concretes. Physical and
mechanical properties and CO2 emissions. Constr. Build. Mater. 285, 122926. doi:10.
1016/j.conbuildmat.2021.122926

Frontiers in Built Environment frontiersin.org12

Awoyera et al. 10.3389/fbuil.2024.1447800

https://doi.org/10.1016/j.conbuildmat.2023.132992
https://doi.org/10.1155/2014/839205
https://doi.org/10.1080/14328917.2017.1317394
https://doi.org/10.1016/j.jmrt.2020.06.008
https://doi.org/10.1016/j.jmrt.2020.06.008
https://doi.org/10.1016/j.jmrt.2020.04.038
https://doi.org/10.1007/s42979-022-01553-8
https://doi.org/10.1007/s42979-022-01553-8
https://doi.org/10.1007/s10661-022-10662-z
https://doi.org/10.1016/j.conbuildmat.2015.06.055
https://doi.org/10.1016/j.rcradv.2022.200084
https://doi.org/10.1016/j.conbuildmat.2020.119889
https://doi.org/10.1016/j.conbuildmat.2009.10.011
https://doi.org/10.1007/s12517-021-08484-3
https://doi.org/10.1007/s00704-020-03356-4
https://doi.org/10.1016/j.asej.2023.102548
https://doi.org/10.3390/app8112171
https://doi.org/10.3390/app8112171
https://doi.org/10.1016/j.conbuildmat.2016.10.114
https://doi.org/10.1016/j.conbuildmat.2016.10.114
https://doi.org/10.1007/s12517-021-09377-1
https://doi.org/10.3390/rs13193838
https://doi.org/10.3390/rs13193838
https://doi.org/10.3390/ma9020074
https://doi.org/10.13167/2018.16.6
https://doi.org/10.1016/j.matpr.2023.05.103
https://doi.org/10.1007/s13369-022-07445-6
https://doi.org/10.1016/j.conbuildmat.2021.122926
https://doi.org/10.1016/j.conbuildmat.2021.122926
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1447800


Shrivastava, S., and Shrivastava, T. (2023). Prediction of concrete’s compressive
strength using machine learning algorithms. Mater. Today Proc. doi:10.1016/j.matpr.
2023.08.252

Sridhar, J., Balaji, S., Jegatheeswaran, D., and Awoyera, P. (2023). Prediction of the
mechanical properties of ibre-reinforced quarry dust concrete using response surface
and artificial neural network techniques. Advances in Civil Engineering, 13. doi:10.1155/
2023/8267639

Uncuoglu, E., Citakoglu, H., Latifoglu, L., Bayram, S., Laman, M., Ilkentapar, M.,
et al. (2022). Comparison of neural network, Gaussian regression, support vector
machine, long short-term memory, multi-gene genetic programming, and M5 Trees
methods for solving civil engineering problems. Appl. Soft Comput. 129, 109623.
doi:10.1016/j.asoc.2022.109623

Wang, S., Xia, P., Chen, K., Gong, F., Wang, H., Wang, Q., et al. (2023b). Prediction
and optimization model of sustainable concrete properties using machine learning, deep
learning and swarm intelligence: a review. J. Build. Eng. 80, 108065. doi:10.1016/j.jobe.
2023.108065

Wang, S., Xia, P., Gong, F., Zeng, Q., Chen, K., and Zhao, Y. (2024). Multi objective
optimization of recycled aggregate concrete based on explainable machine learning.
J. Clean. Prod. 445, 141045. doi:10.1016/j.jclepro.2024.141045

Wang, S., Xia, P., Wang, Z., Meng, T., and Gong, F. (2023a). Intelligent mix design of
recycled brick aggregate concrete based on swarm intelligence. J. Build. Eng. 71, 106508.
doi:10.1016/j.jobe.2023.106508

Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G., and Xue, J. (2019). Parametric sensitivity
analysis and modelling of mechanical properties of normal- and high-strength
recycled aggregate concrete using grey theory, multiple nonlinear regression and
artificial neural networks. Constr. Build. Mater. 211, 479–491. doi:10.1016/j.
conbuildmat.2019.03.234

Xue, J., Shao, J. F., and Burlion, N. (2021). Estimation of constituent properties of
concrete materials with an artificial neural network based method. Cem. Concr. Res. 150,
106614. doi:10.1016/j.cemconres.2021.106614

Yu, P., Qiu, H., He, S., Qin, Y., and Zhou, Y. (2023). Pore structure and prediction
of mechanical properties by ANN of concrete mixed MK and SF under hydrochloric
acid corrosion. Constr. Build. Mater. 409, 133665. doi:10.1016/j.conbuildmat.2023.
133665

Zhai, M., Wu, Y., Gu, Y., Su, S., Zang, H., Ding, W., et al. (2023). Development of an
interactive multi-region enviro-economic equilibrium (IMR3E) model for managing
inner- and inter-region carbon-emission mitigation. Resour. Conservation Recycl. 199,
107214. doi:10.1016/j.resconrec.2023.107214

Frontiers in Built Environment frontiersin.org13

Awoyera et al. 10.3389/fbuil.2024.1447800

https://doi.org/10.1016/j.matpr.2023.08.252
https://doi.org/10.1016/j.matpr.2023.08.252
https://doi.org/10.1155/2023/8267639
https://doi.org/10.1155/2023/8267639
https://doi.org/10.1016/j.asoc.2022.109623
https://doi.org/10.1016/j.jobe.2023.108065
https://doi.org/10.1016/j.jobe.2023.108065
https://doi.org/10.1016/j.jclepro.2024.141045
https://doi.org/10.1016/j.jobe.2023.106508
https://doi.org/10.1016/j.conbuildmat.2019.03.234
https://doi.org/10.1016/j.conbuildmat.2019.03.234
https://doi.org/10.1016/j.cemconres.2021.106614
https://doi.org/10.1016/j.conbuildmat.2023.133665
https://doi.org/10.1016/j.conbuildmat.2023.133665
https://doi.org/10.1016/j.resconrec.2023.107214
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1447800

	Modeling properties of recycled aggregate concrete using gene expression programming and artificial neural network techniques
	1 Introduction
	1.1 Background
	1.2 Previous models for strength prediction of RAC

	2 Methodology
	2.1 Model dataset
	2.2 Data pre-processing
	2.3 ANN
	2.4 GeneXProTools 5.0 models

	3 Results and discussion
	3.1 ANN modeling results
	3.1.1 Fitting line plot

	3.2 GEP model results
	3.2.1 Compressive strength
	3.2.2 Split tensile strength
	3.2.3 Flexural strength
	3.2.4 Modulus of elasticity


	4 Performance evaluation of developed predictive models
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


