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The development of concrete with excellent water and frost resistance providing
high level of sound and thermal insulation has triggered the formulation of
foamed concrete. However, multiple laboratory studies are required to
produce reasonable data to design the relevant codes and mathematics with
which design of mixes is made easier at low cost. In this research paper, the
artificial intelligence (AI)-based symbolic regression technique estimation of the
compressive strength of foamed concrete has been reported. Foamed concrete
has been a subject of serious research in sustainable built-environment due to its
lightweight and structural functionality. In this research work, data gathering
method was applied to gather a globally representative data base comprising
concrete density to water density (concrete density g/cm3) (γ/γw), water-cement
ratio (W/C), and sand-cement ratio (S/C) as input variable and the compressive
strength (Fc) as the study output. The dimensionless factors have been derived to
eliminate data handling complexities and improve model performances. The
230 data entries from foamed concrete mixes were partitioned into 75% and 25%
for training and validation data, respectively. At the end of the model execution, it
was found that the response surface methodology (RSM) produced a symbolic
closed-form equation like the genetic programming (GP), evolutionary
polynomial regression (EPR), and the group method of data-handling-neural
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network (GMDH-NN). Even though the RSM closed with a minimum error, the GP,
EPR and GMDH-NNwere faster in runtime. The overall outcomes show that the GP
outclassed the EPR, RSM and the GMDH-NN, though with minor margin.
Meanwhile the EPR produced the highest outliers from the ±25% test of
accuracy envelope. Overall, the present models outperformed those reported in
the literature due the parameter reduction through dimensionless factors
derivation and provided a decisive model to predict the Fc of foamed concrete.

KEYWORDS

foamed concrete, artificial intelligence (AI), symbolic regression methods, sustainable
concrete structures, lightweight concrete (LWC)

1 Introduction

Foamed concrete, also known as cellular concrete or aerated
concrete is a lightweight building material that consists of cement,
water, and stable foam (Othman et al., 2021). The foam is created by
introducing air or gas into cement slurry, resulting in a cellular
structure within the concrete (Yang et al., 2022). The foam provides
a high volume of stable air voids, which gives foamed concrete its
low density and lightweight properties (Kozłowski and Kadela,
2018). The density of foamed concrete typically ranges from
400 kg/m³ to 1,600 kg/m³, making it significantly lighter than
traditional concrete (Pan et al., 2007; Yang et al., 2022). Foamed
concrete low density makes it useful in applications where weight
reduction is important, such as for insulation, filling voids, and
reducing structural loads (Wu et al., 2013). Foamed concrete has
good thermal insulation properties, making it suitable for insulating
walls, roofs, and floors. Due to its low density and chemical
composition, foamed concrete exhibits excellent fire resistance
and can be used as fire barriers or in fire-rated construction. The
cellular structure of foamed concrete helps to absorb sound and
reduce noise transmission, making it useful for soundproofing
applications (Ayyanar et al., 2023). Foamed concrete can be
easily pumped or poured into various shapes and sizes, making it
suitable for filling cavities, voids, and irregular spaces. The presence
of foam in the concrete mixture improves its workability, making it
easier to handle and place (Ayyanar et al., 2023). Foamed concrete
requires less raw material compared to traditional concrete,
resulting in lower energy consumption and reduced carbon
footprint (Bian et al.). Foamed concrete is commonly used in
construction for a variety of applications, including lightweight
blocks, precast panels, thermal insulation, filling underground
voids, trench reinstatement, and road sub-bases (Shawnim and
Mohammad, 2019). It is also used in geotechnical applications,
such as lightweight backfill and slope stabilization (Kozłowski and
Kadela, 2018). Overall, foamed concrete offers a lightweight,
durable, and energy-efficient alternative to traditional concrete,
with a wide range of applications in the construction industry
(Wu et al., 2013). The mix proportion and production process of
foamed concrete can vary depending on the specific requirements
and application. However, it can be provided with a general
guideline for producing foamed concrete (Pan et al., 2007; Yang
et al., 2022). The mix proportion will depend on the desired density
and strength of the foamed concrete (Ebid and Deifalla, 2022).
Cement content could range from 200 to 600 kg/m³, depending on
the application and desired strength (Shawnim and Mohammad,

2019). Water-to-cement ratio is usually between 0.3 and 0.6,
depending on the consistency required (Ebid and Deifalla, 2022).
Fine aggregate content generally, ranges from 400 to 1,200 kg/m³.
Foaming agent dosage depends on the specific foaming agent used
and the desired foam stability (Bian et al.; Onyelowe et al., 2022a).
The production process of foamed concrete involves mixing the
materials and generating foam. The foamed concrete should be
workable and easily pourable or pumpable. Pour or place the foamed
concrete: Transfer the foamed concrete to the desired location using
a pump, mixer, or by manual pouring. Once placed, allow the
foamed concrete to cure and set according to standard concrete
curing practices (Yang et al., 2022). It’s important to note that the
mix proportion and production process may vary based on the
specific requirements, local materials, equipment availability, and
climate conditions (Shawnim and Mohammad, 2019). It’s
recommended to consult with experts or refer to technical
guidelines for more precise mix designs and production methods
(Ayyanar et al., 2023). Foamed concrete offers several structural
benefits that make it a suitable choice for various construction
applications (Onyelowe et al., 2022a). Foamed concrete has a
significantly lower density compared to traditional concrete
(Onyelowe et al., 2022b). This lightweight nature reduces
structural loads and allows for the construction of lighter
structures (Onyelowe Kennedy C. et al., 2022). It is particularly
beneficial in applications where weight reduction is important, such
as in high-rise buildings or structures with weak foundations (Pan
et al., 2007; Kozłowski and Kadela, 2018; Yang et al., 2022). Foamed
concrete has excellent thermal insulation properties (Kozłowski and
Kadela, 2018). Its cellular structure traps air within the material,
creating an effective barrier against heat transfer (Wu et al., 2013).
This makes it useful in constructing energy-efficient buildings and
structures that require insulation for temperature control, such as
walls, roofs, and floors (Bian et al.). Fire resistance: Foamed concrete
exhibits excellent fire resistance due to its low density and
composition (Onyelowe et al., 2022b). It has a high fire rating
and can act as a fire barrier or provide fire protection in
structural elements. Foamed concrete’s resistance to high
temperatures and ability to insulate against heat make it valuable
in fire-resistant construction (Onyelowe et al., 2022b). Sound
insulation: The cellular structure of foamed concrete helps to
absorb sound and reduce noise transmission (Onyelowe Kennedy
C. et al., 2022). This makes it an effective material for soundproofing
applications, such as constructing walls between rooms or buildings
where noise reduction is desired (Yang et al., 2022). Foamed
concrete’s lightweight nature can improve the seismic
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performance of structures (Ebid and Deifalla, 2022; Yang et al., 2022;
Ayyanar et al., 2023). It reduces the mass of the building, which can
help absorb seismic energy and decrease the forces acting on the
structure during an earthquake. This can enhance the overall
structural integrity and safety of the building (Pan et al., 2007).
The cellular structure of foamed concrete provides it with improved
impact resistance compared to traditional concrete (Bian et al.). It
can absorb and distribute impact forces, making it suitable for
applications where impact resistance is important, such as in
blast-resistant structures or protective barriers (Shawnim and
Mohammad, 2019). Foamed concrete has a lower self-weight,
which minimizes settlement and soil consolidation (Ebid and
Deifalla, 2022). This can be advantageous in applications where
settlement control is critical, such as in lightweight fill materials or in
areas with weak or compressible soils (Wu et al., 2013). It’s
important to note that the specific structural benefits of foamed
concrete will depend on factors such as the mix design, density, and
application (Onyelowe Kennedy C. et al., 2022). Engineering
analysis and design considerations should be undertaken to
ensure that foamed concrete is used appropriately and meets the
structural requirements of the specific project (Wu et al., 2013).
Foamed concrete exhibits certain behaviors under different loading
conditions (Ayyanar et al., 2023). Foamed concrete typically
performs well under axial loading, which refers to the applied
load along the longitudinal axis of a structural element (Wu
et al., 2013). It can withstand compressive forces and distribute
them evenly throughout the material (Kozłowski and Kadela, 2018;
Onyelowe Kennedy C. et al., 2022). The lightweight nature of
foamed concrete helps to reduce the overall load on the
structure, making it suitable for applications where weight
reduction is important (Wu et al., 2013). Foamed concrete may
have limited resistance to lateral loads, such as wind or earthquake

forces. Its lightweight nature and lowmodulus of elasticity can result
in lower stiffness and reduced lateral load resistance compared to
denser concrete (Pan et al., 2007). Additional reinforcement or
structural systems like shear walls or bracing might be necessary
to enhance its resistance to lateral loads (Wu et al., 2013). Foamed
concrete’s response to seismic loading depends on various factors,
including the density, reinforcement, and structural configuration
(Shawnim and Mohammad, 2019). It generally has lower strength
and stiffness compared to traditional concrete, but its lightweight
nature can provide some advantages (Bian et al.). Foamed concrete
can absorb and dissipate seismic energy to some extent due to its
ability to deform and absorb vibrations (Ebid and Deifalla, 2022).
However, it’s crucial to conduct proper engineering analysis and
design to ensure that the foamed concrete structures meet the
seismic design requirements (Othman et al., 2021; Yang et al.,
2022; Kozłowski and Kadela, 2018; Pan et al., 2007; Wu et al.,
2013; Ayyanar et al., 2023; Bian et al.). Dynamic Loading: Foamed
concrete exhibits different behavior under dynamic loading, such as
impact or vibration, compared to static loading (Ebid and Deifalla,
2022). Its ability to absorb and distribute impact forces makes it
suitable for applications where impact resistance is important, such
as blast-resistant structures or protective barriers (Pan et al., 2007).
However, the low density and stiffness of foamed concrete may
result in higher deflections and vibrations under dynamic loading,
requiring special considerations in design (Wu et al., 2013;
Onyelowe Kennedy C. et al., 2022; Deifalla et al., 2020). It’s
important to note that the specific behavior of foamed concrete
under different loading conditions can vary depending on factors
such as the mix design, density, reinforcement, and structural
configuration (Bian et al.). Proper engineering analysis, design,
and testing should be carried out to assess the suitability of
foamed concrete in specific structural applications and ensure
that it meets the required performance standards (Pan et al.,
2007). Foamed concrete offers several sustainability advantages
compared to traditional concrete (Bian et al.). Reduced
Embodied Carbon: Foamed concrete typically requires less
cement compared to traditional concrete. Since cement
production is a significant source of carbon dioxide (CO2)
emissions, reducing cement content results in lower embodied
carbon in foamed concrete (Wu et al., 2013). The lower density
of foamed concrete also means that less raw material is required
overall, further reducing the environmental impact (Onyelowe
Kennedy C. et al., 2022). The production process of foamed
concrete requires less energy compared to traditional concrete
(Onyelowe et al., 2022b). Foam generation requires relatively low
energy input, and the lightweight nature of foamed concrete reduces
transportation and handling energy (Onyelowe et al., 2022a). This
results in lower energy consumption during both the manufacturing
and construction phases (Onyelowe Kennedy C. et al., 2022).
Foamed concrete can be produced on-site using locally available
materials, reducing transportation and waste associated with the
supply chain (Wu et al., 2013). Additionally, foamed concrete can be
easily poured or pumped into desired shapes and sizes, minimizing
material waste during construction (Wu et al., 2013). The
lightweight nature of foamed concrete also reduces the need for
heavy machinery during construction, decreasing fuel consumption
and emissions (Kozłowski and Kadela, 2018; Bian et al.). Foamed
concrete’s cellular structure provides excellent thermal insulation

FIGURE 1
Research flowchart.
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properties (Onyelowe Kennedy C. et al., 2022; Humberg et al., 2019;
Marković, 2006; Alyamac et al., 2017; Sambruno et al., 2019; V
Bayramov et al., 2022; Bezerra et al., 2008; Box et al., 2005; Kutner
et al., 2005; Hoffman et al., 1983). It reduces heat transfer through
walls, roofs, and floors, resulting in improved energy efficiency and
reduced reliance on heating and cooling systems (Yang et al., 2022).
This can lead to energy savings and lower greenhouse gas emissions
associated with building operations (Onyelowe et al., 2022a).
Foamed concrete has good durability and can withstand
environmental exposure (Kozłowski and Kadela, 2018; Asteris
et al., 2019; Apostolopoulou et al., 2020; Asteris P. G. et al., 2021;
Armaghani and Asteris, 2021; Salami et al., 2022; Shang et al., 2022).
Its low permeability and resistance to moisture can reduce the risk of
corrosion in reinforced structures, enhancing their longevity
(Onyelowe Kennedy C. et al., 2022). Durable structures require
less maintenance and repair, resulting in reduced material
consumption and waste over the life cycle (Onyelowe et al.,
2022a; Onyelowe et al., 2022b; Onyelowe Kennedy C. et al.,
2022). Recycling and Reuse: Foamed concrete can be crushed
and used as a recycled aggregate in future construction projects
(Bian et al.; Bezerra et al., 2008; Daniel et al., 2024; Bardhan et al.,
2024; Zhang et al., 2024; Kumar et al., 2023; Alshaeer et al., 2023).
This promotes circular economy principles by reducing the demand
for virgin materials and minimizing waste generation (Ayyanar
et al., 2023).

2 Research significance

The work “estimating the compressive strength of lightweight
foamed concrete using different machine learning-based symbolic
regression techniques,” holds several significant implications and
contributions to both the fields of construction material science and
machine learning. In the area of material science advancements,
lightweight foamed concrete is a material of growing interest due to
its potential applications in construction, insulation, and other
engineering fields. Accurately estimating its compressive strength
was crucial for designing and utilizing it effectively in various
structural concrete applications. By employing machine learning-
based symbolic regression techniques, the project aims to provide
more accurate and efficient methods for predicting the compressive
strength of lightweight foamed concrete. This leads to advancements
in concrete material science by providing better understanding and
control over the properties of this material.

In the area of efficiency in material testing, traditional methods
for determining the compressive strength of concrete involve time-
consuming and labor-intensive experimental procedures. By
leveraging machine learning techniques, particularly symbolic
regression, the project seeks to streamline this process, potentially
reducing the time and resources required for testing. This efficiency
can benefit researchers, engineers, and industries involved in the
development and application of lightweight foamed concrete.

TABLE 1 Statistical analysis of collected database.

γ/γw W/C S/C Fc

— — — MPa

Training set

Max. 2.07 0.70 3.61 51.20

Min 0.43 0.26 0.00 1.50

Avg 1.53 0.41 0.99 24.15

SD 0.43 0.12 0.68 13.98

Var 0.28 0.30 0.69 0.58

Validation set

Max. 2.00 0.83 2.93 48.48

Min 0.62 0.30 0.00 1.80

Avg 1.56 0.43 1.07 23.93

SD 0.39 0.13 0.68 13.78

Var 0.25 0.30 0.64 0.58

TABLE 2 Pearson correlation matrix.

γ/γw W/C S/C Fc

γ/γw 1.00

W/C −0.52 1.00

S/C 0.34 −0.10 1.00

Fc 0.88 −0.58 0.05 1.00
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Considering insights into concrete behavior, the use of machine
learning techniques allows for the analysis of complex relationships
and patterns within the data that may not be apparent through
traditional statistical methods. By applying symbolic regression,
which can uncover mathematical expressions representing these
relationships, the project may reveal novel insights into the factors
influencing the compressive strength of lightweight foamed
concrete. These insights could contribute to a deeper
understanding of concrete behavior and aid in the development
of more robust predictive models. However, on the generalizability
and transferability of the research, machine learning-based symbolic
regression techniques have the potential to be applied beyond the
specific context of lightweight foamed concrete. The methodologies
and insights gained from this project may be transferable to other
materials with similar characteristics or even to different domains

altogether. This generalizability enhances the broader impact of the
research and underscores the importance of exploring innovative
machine learning approaches in various scientific and engineering
disciplines. Also, the project represents a fusion of expertise from
both material science and machine learning domains. By integrating
knowledge and methodologies from these disparate fields, the
research not only advances our understanding of lightweight
foamed concrete but also demonstrates the value of
interdisciplinary collaboration in tackling complex scientific and
engineering challenges. This interdisciplinary approach may serve as
a model for future research endeavors seeking to address
multifaceted problems. Overall, the project holds significance in
advancing material science, improving efficiency in material testing,
providing insights into concrete behavior, fostering generalizable
methodologies, and promoting interdisciplinary collaboration.

FIGURE 2
Distribution histograms for inputs (in blue) and outputs (in green).

FIGURE 3
Relations between inputs and output (Fc).
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3 Literature reviews

While foamed concrete offers sustainability advantages, it’s
important to consider the specific project requirements, local
conditions, and life cycle assessment for a comprehensive
evaluation (Bian et al.). Some aspects, such as the energy
required for foam generation or the environmental impact of
foaming agents, should also be considered and optimized for a
more sustainable application of foamed concrete (Ayyanar et al.,
2023). Symbolic regression techniques have been applied in the
study of the strength behavior of foamed concrete. Some of such are
the response surface methodology (RSM), ANN, GP and EPR

(Shawnim and Mohammad, 2019; Ebid and Deifalla, 2022;
Ayyanar et al., 2023; Bian et al.). Response Surface Analysis
(RSA) allows researchers to examine intricate psychological
phenomena, such as determining whether the alignment between
two psychological categories is linked to elevated values in an
outcome variable (Humberg et al., 2019). The utilization of RSA
in the field of personality and social psychology has been on the rise
(Marković, 2006). However, certain oversimplifications and
misconceptions have raised concerns over the validity of the
findings reported in published literature (Humberg et al., 2019).
In this paper, we elucidate the foundational mathematical principles
necessary for comprehending RSA outcomes, and we furnish a

FIGURE 4
(A) Response surface methodology overview, (B) Genetic programming framework, and (C) Group Method of Data Handling (GMDH) framework.
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comprehensive guide for accurately discerning congruence effects.
Humberg et al. (Humberg et al., 2019) elucidated two prevailing
mistakes by demonstrating that the evaluation of a solitary RSA
parameter is insufficient in determining the presence of a
congruence effect. Furthermore, we establish that in cases where
a congruence effect is observed, RSA is incapable of discerning the
relative superiority or inferiority of an interpreter mismatch in one
direction compared to a mismatch in the (underestimation)
opposite direction (Marković, 2006). It is anticipated that this
involvement will augment the strength and robustness of
experimental research that employ this potent methodology.
Response Surface Methodology (RSM) is an influential
experimental design procedure utilized for the analysis and
modeling of issues where multiple variables have an impact on a
response of interest (Marković, 2006; Alyamac et al., 2017;
Sambruno et al., 2019; V Bayramov et al., 2022; Bezerra et al.,
2008). While the utilization of this approach has been extensively
employed for the purpose of optimizing experimental processes, its
application within the concrete industry has been relatively
restricted. In their study, Khayat et al. (Alyamac et al., 2017)
employed a composite central response surface methodology to
evaluate the impact of various parameters of self-consolidating
concrete (SCC) mixtures on multiple responses, including
V-funnel flow time, filling capacity, and slump flow (Hoffman
et al., 1983; Box et al., 2005; Kutner et al., 2005; Salami et al.,
2022; Shang et al., 2022). In their study, Simon et al. (Sambruno
et al., 2019) employed the Response Surface Methodology to
optimize the composition of high performance concrete mixtures.
The objective was to achieve the highest possible compressive
strength while concurrently minimizing chloride permeability

and cost. Bayramov and colleagues (V Bayramov et al., 2022)
proposed an analytical model utilizing response surface
methodology to enhance fracture parameters in reinforced steel
fiber concretes, aiming to enhance their ductility.

However, in similar research papers, density and compressive
strength relationship have been studied (Othman et al., 2021),
strength, durability, and microstructure relationship in foamed
concretes have also been investigated (Yang et al., 2022), the
mechanical characteristics of lightweight foamed concrete was
equally studied (Kozłowski and Kadela, 2018), the material
components impact such as cement, sand, mineral admixtures,
etc. on the behavior of foamed concrete has also been
investigated (Pan et al., 2007), and the impact of polystyrene on
the strength performance of foamed concrete was studied and report
as well (Wu et al., 2013). Moreso, the strength properties of a normal
foamed concrete produced from the primary concrete components
was studied (Ayyanar et al., 2023), as well as the pore size
distribution impact on the foamed concrete compressive strength
has been modeled and the porosity analysis using SEM images in
relation to the compressive strength was also studied (Shawnim and
Mohammad, 2019). Various other research works have studied
different forms of concrete materials including the application of
biocementation in foamed concrete and also the application of
different machine learning techniques to design sustainable
techniques in concrete and foamed concrete production (Asteris
et al., 2019; Apostolopoulou et al., 2020; Asteris P. G. et al., 2021;
Armaghani and Asteris, 2021; Nguyen et al., 2021; Emad et al., 2022;
Alshaeer et al., 2023; Kumar et al., 2023; Alkayem et al., 2024;
Bardhan et al., 2024; Daniel et al., 2024; Zhang et al., 2024).
Conversely, many more investigations on the modeling of

FIGURE 5
(A) GMDH-NN. (B) EPR. (C) GP. Flowcharts for different (AI)-based symbolic regression techniques.
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different concrete behaviors have been reported in the literature,
which had applied different machine learning techniques such as the
artificial neural network (ANN) and these methods tried to train the
techniques with the improved and the adaptive particle swarm
optimization (IPSO and APSO) (Cavaleri et al., 2022; Armaghani
et al., 2021; Kardani et al., 2022). Also, the Linear and Non-Linear
Multivariate Adaptive Regression Splines (MARS-L and MARS-C),
Gaussian Process Regression (GPR), and Minimax Probability
Machine Regression (MPMR) were applied in the concrete
properties model protocol as reported in the literature (Asteris
Panagiotis G. et al., 2021). Results showed that the application of
the metaheuristic algorithms in the training of the basic machine
learning techniques increase speed and performance. However,
these studies did not consider the impact of the dimensionless

quantities such as concrete density to water density ratio, water-
cement ratio, and sand-cement ratio on the foamed concrete
strength behavior. Hence, the focus of this research project is to
predict the compressive strength (Fc) of foamed concrete
considering only three (3) input parameters derived from a
dimensionless operation, which gave rise to density ratio, water-
cement ratio and sand-cement ratio. This operation reduced the data
handling complexities in this project. The research flowchart of this
project is illustrated in Figure 1.

4 Methods

4.1 Collection of database and
statistical analysis

A globally 230 records were collected from experimentally tested
samples of foam concrete with mixes deposited in the literature
(Salami et al., 2022). Each record contains the following data:
concrete density to water density (concrete density g/cm3) (γ/
γw), water-cement ratio (W/C), sand-cement ratio (S/C), and
compressive strength (MPa) (Fc). The collected records were
divided into 75% training set (170 records) and 25% validation
set (60 records). The appendix includes the complete dataset, while
Tables 1, 2 summarize their statistical characteristics and the
Pearson correlation matrix, respectively. Overfitting was
overcome due to the data size, cross-validation, and data
shuffling (Asteris Panagiotis G. et al., 2021). Finally, Figure 2
shows the histograms for both inputs and outputs and Figure 3
shows the relations between the inputs and the outputs. It can be
shown that γ/γw produced the most reliable consistency with the Fc
of the foamed concrete making that ratio the most important in the
production of foamed concrete for a sustainable concrete structure
construction. The skewed distribution in Figure 2 except for the S/C
ration histogram, shows the inconsistency in the entries of the
concrete component ratios, which requires a machine learning
handling with superior workstation. In Figure 3, the parametric
relations between the output and the studied ratios have been

TABLE 3 Response surface model tab.

File version 13.0.5.0

Study type Response surface Subtype Randomized

Design type Blank spreadsheet Runs 229.00

Design model Quadratic Blocks No Blocks

Build time (ms) 1.0000

TABLE 4 RSM factors and numeric coding statistics.

Factor Name Units Type Sub-type Minimum Maximum Coded low Coded high Mean Std. Dev

A g/gw — Numeric Continuous 0.4300 2.07 −1 ↔ 0.43 +1 ↔ 2.07 1.54 0.4204

B W/C — Numeric Continuous 0.2600 0.8300 −1 ↔ 0.26 +1 ↔ 0.83 0.4155 0.1249

C S/C — Numeric Continuous 0.0000 3.61 −1 ↔ 0.00 +1 ↔ 3.61 1.01 0.6855

FIGURE 6
Fc versus g/gw relationship scatter plot.
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presented depicting the point distributions, respectively. It can be
shown that the unit weight ratio shows a more realistic parametric
relationship with the compressive strength of the studied foamed
concrete with a correlation of above 90%. This shows the importance
of the ratio in the sustainable prediction of the strength of a
lightweight foamed concrete, as agreeable with the previous study
(Salami et al., 2022).

4.2 Research program

Response surface methodology (RSM) is a comprehensive set of
statistical and mathematical approaches that include fitting a
polynomial equation to trial data (Box et al., 2005; Kutner et al.,
2005; Bezerra et al., 2008). The primary purpose of RSM is to
accurately explain the performance of a given data set, with the
ultimate goal of producing statistical predictions (Box et al., 2005).
This approach is particularly applicable in situations when the
outcome or outcomes of attention are influenced by multiple
variables (Kutner et al., 2005). The aim is to concurrently
improve the levels of these variables to achieve optimal system
performance (Bezerra et al., 2008). Prior to implementing the RSM
approach, it is imperative to carefully select an appropriate
investigational design that will effectively delineate the specific
tests to be conducted inside the designated investigational region
under investigation (Bezerra et al., 2008). Several experimental
matrices have been developed for this specific purpose. First-

order models, such as factorial designs, are suitable experimental
designs to employ in cases where the dataset lacks curvature. In
order to model a response function for experimental data that
cannot be well represented by linear functions, it is
recommended to employ investigational designs that account for
quadratic response surfaces (Box et al., 2005). Examples of such
designs contain three-level factorial, central composite, Doehlert
designs, and Box-Behnken (Box et al., 2005; Kutner et al., 2005;
Bezerra et al., 2008). Statistically, RSM solves Equation 1:

maxf x( ) ≡ E Y x( )( ) (1)
let Y be a random variable with an unknown mean function that
depends on the d-dimensional factor vector x. Additionally, the
variance of Y, which is caused by experimental error, is an unknown
constant value. The development of response surface approach can
be attributed to Box and his colleagues throughout the 1950s (Box
et al., 2005; Kutner et al., 2005; Bezerra et al., 2008). The phrase in
question has its origins in the graphical representation that arises
from evaluating the fitness of a scientific model (Box et al., 2005). Its
usage has been prevalent in the literature on chemometrics (Bezerra
et al., 2008). The RSM methodology encompasses a collection of
statistical and mathematical methodologies that rely on the fitting of
experimental models to investigational data acquired through
experimental design (Box et al., 2005). In pursuit of this goal, the
utilization of linear or square polynomial functions is considered.
Figure 4A illustrates the integration of these components in the
context of RSM (Bezerra et al., 2008). The aforementioned
confluence of techniques necessitates that researchers exercise
caution and attentiveness throughout all three stages of Response
Surface Methodology (RSM) (Box et al., 2005; Kutner et al., 2005).
Without exercising due caution this practice is likely to encounter
failure and may not yield the anticipated or intended outcomes.

Furthermore, three different symbolic regression techniques
were used to predict the compressive strengths (Fc) of foam
concrete using the collected database (Onyelowe et al., 2022a;
Onyelowe et al., 2022b; Onyelowe Kennedy C. et al., 2022; Ebid
and Deifalla, 2022). These techniques are “Genetic programming”
(GP), three models of “Group method of data handling Neural
Network” (GMDH-NN)and “Evolutionary Polynomial
Regression” (EPR).

Genetic programming (GP) is a type of evolutionary algorithm
and a machine learning technique inspired by biological evolution as
shown the framework in Figure 4B. It belongs to the broader
category of evolutionary algorithms, which are computational
models inspired by the processes of natural selection and
genetics. Inspiration from Evolution: Genetic programming draws
inspiration from the process of natural evolution. It is based on the
idea that a population of candidate computer programs, represented
as structures such as syntax trees, can evolve over time to solve a

FIGURE 7
Histogram chart of the Fc entries.

TABLE 5 Fc fit summary response for RSM linear and quadratic expressions.

Source Sequential p-value Lack of Fit p-value Adjusted R2 Predicted R2

Linear <0.0001 <0.0001 0.8638 0.8620

2FI <0.0001 <0.0001 0.9171 0.9146

Quadratic <0.0001 <0.0001 0.9529 0.9494 Suggested
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specific problem or perform a particular task. Representation of
Solutions: In genetic programming, candidate solutions are typically
represented as hierarchical structures, often in the form of syntax
trees. These trees encode the structure and behavior of computer
programs. Initialization: A population of random candidate
solutions (trees) is generated to kickstart the evolutionary
process. Evaluation: The fitness of each candidate solution is
assessed based on its performance in solving the given problem.
A fitness function quantifies how well a solution meets the specified
criteria. Selection: Solutions are selected from the population based
on their fitness, with a higher probability of selection for those with

better fitness. This mimics the natural selection process. Crossover
(Recombination): Pairs of selected solutions are combined to create
new offspring through a process similar to genetic recombination.
This involves swapping subtrees between parent solutions.
Mutation: Random changes are introduced into the offspring
solutions to mimic genetic mutations. These changes can include
subtree replacement or modification of specific elements.
Replacement: The new offspring solutions replace some of the
existing solutions in the population, creating the next-generation.
Termination: The evolution continues for a predefined number of
generations or until a stopping criterion is met, such as finding a

TABLE 6 Fc sequential model sum of squares [Type I] response.

Source Sum of squares df Mean square F-value p-value

Mean vs. Total 1.329E + 05 1 1.329E + 05

Linear vs. Mean 38451.40 3 12817.13 483.19 <0.0001

2FI vs. Linear 2383.76 3 794.59 49.21 <0.0001

Quadratic vs. 2FI 1574.98 3 524.99 57.21 <0.0001 Suggested

Residual 2009.61 219 9.18

Total 1.774E + 05 229 774.52

TABLE 7 Model summary statistics.

Source Std. Dev R2 Adjusted R2 Predicted R2 Press

Linear 5.15 0.8656 0.8638 0.8620 6131.04

2FI 4.02 0.9193 0.9171 0.9146 3793.32

Quadratic 3.03 0.9548 0.9529 0.9494 2248.73 Suggested

TABLE 8 Fc Response ANOVA for Quadratic model.

Source Sum of squares df Mean square F-value p-value

Model 42410.15 9 4712.24 513.52 <0.0001 significant

A-γ/γw 50.89 1 50.89 5.55 0.0194

B-W/C 131.34 1 131.34 14.31 0.0002

C-S/C 22.32 1 22.32 2.43 0.1203

AB 77.70 1 77.70 8.47 0.0040

AC 100.51 1 100.51 10.95 0.0011

BC 2.13 1 2.13 0.2326 0.6301

A2 1406.07 1 1406.07 153.23 <0.0001

B2 259.52 1 259.52 28.28 <0.0001

C2 0.0078 1 0.0078 0.0009 0.9767

Residual 2009.61 219 9.18

Lack of fit 1877.72 150 12.52 6.55 <0.0001 significant

Pure error 131.89 69 1.91

Cor total 44419.76 228
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solution that satisfies the desired criteria. Result: The final evolved
solution, often represented by the best individual in the last
generation, is considered the output of the genetic programming
process. Genetic programming is used in various fields, including
optimization problems, symbolic regression, automatic
programming, and evolving control strategies. It is particularly
well-suited for problems where the structure of the solution is
not known in advance and can be effectively evolved. Overall,
genetic programming provides a flexible and powerful approach
for automatically discovering solutions to complex problems
through the principles of evolution and natural selection.

Similarly, the Group Method of Data Handling (GMDH) is a type
of neural network that falls under the category of machine learning
models, with a typical architectural framework illustrated in Figure 4C.
It is used formodeling and predicting complex relationships within data
sets. Developed by the Soviet mathematician Alexey G. Ivakhnenko,
GMDH is specifically designed for automatic feature selection and
model optimization. Model Architecture: GMDH is a self-organizing,
polynomial neural network. It automatically selects relevant input
features and constructs a polynomial model based on the data. Self-
Organization: GMDH organizes itself by iteratively selecting and
combining input features. During the training process, the model
identifies the most relevant features and their interactions. Layered
Structure: GMDH typically hasmultiple layers, each representing a level
of polynomial expansion. Each layer adds a new polynomial term to the
model, and the network evolves to capture complex relationships in the
data. Training Process: The training process involves finding the most
relevant features and their combinations to create a polynomial model.
GMDHuses a series of algorithms to select and optimize features, and it
evaluates the quality of the model at each stage. Multiple Models:

GMDH often generates multiple candidate models during the training
process. These models compete, and the best-performing model is
selected based on certain criteria, such as accuracy or generalization
ability. Automatic Feature Selection: One of the strengths of GMDH is
its ability to perform automatic feature selection. The model decides
which input features are most relevant for accurate predictions.
Polynomial Model: GMDH constructs a polynomial model based on
the selected features. The polynomial terms represent the mathematical
relationships between the input variables and the output. Prediction and
Generalization: Once trained, the GMDH model can be used for
making predictions on new, unseen data. The model aims to
generalize well to capture the underlying patterns in the data.
GMDH has been applied in various fields, including engineering,
economics, and data analysis. Its ability to automatically select
relevant features and create polynomial models makes it useful for
taskswhere the relationship between variables is not known beforehand.
It’s important to note that GMDH is just one approach among various
neural network architectures, each with its own strengths and
applications. And lastly, Evolutionary Polynomial Regression (EPR)
is a computational intelligence technique used for modeling and
predicting complex relationships within data. It combines the
principles of evolutionary algorithms and polynomial regression to
automatically evolve polynomial equations that best fit the given data
set. The goal is to discover mathematical expressions that describe the
underlying patterns in the data.

Evolutionary Algorithms: EPR employs evolutionary algorithms,
such as genetic algorithms or genetic programming, to search through a
space of potential polynomial equations. These algorithms mimic the
process of natural selection, including selection, crossover
(recombination), and mutation, to evolve a population of candidate

TABLE 9 Fit statistics.

Std. dev 3.03 R2 0.9548

Mean 24.09 Adjusted R2 0.9529

C.V. % 12.57 Predicted R2 0.9494

Adeq Precision 92.7003

TABLE 10 Coefficients in terms of actual factors.

Factor Coefficient estimate df Standard error 95% CI low 95% CI high VIF

Intercept 26.57 1 7.03 12.71 40.42

A-γ/γw −14.45 1 6.14 −26.54 −2.36 165.34

B-W/C −95.19 1 25.16 −144.78 −45.60 245.52

C-S/C 5.06 1 3.24 −1.33 11.45 122.93

AB −24.29 1 8.35 −40.74 −7.84 48.38

AC −4.45 1 1.34 −7.10 −1.80 56.25

BC −1.74 1 3.61 −8.85 5.37 36.79

A2 22.23 1 1.80 18.69 25.77 95.16

B2 108.78 1 20.45 68.47 149.09 164.82

C2 0.0098 1 0.3369 −0.6541 0.6737 9.01
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solutions. Polynomial Regression: Polynomial regression involves fitting
a polynomial equation to the data, allowing for the modeling of non-
linear relationships. The polynomial equation takes the form; y = a0 +
a1x + a2x

2 + . . .. . . + anx
n, where y is the output variable, x is input

variable and a0, a1, a2, and an are the coefficients.
Encoding Equations: Candidate polynomial equations are

encoded in a way that allows the evolutionary algorithm to
manipulate and evolve them. Various representations can be
used, such as binary trees or strings, depending on the specific
evolutionary algorithm employed. Fitness Evaluation: The fitness of
each candidate solution (polynomial equation) is evaluated based on
its ability to accurately predict the output variable for the given input
data. A fitness function quantifies how well the equation fits the data,
and it serves as a guide for the evolutionary algorithm in selecting
better solutions. Evolutionary Process: The evolutionary algorithm
iteratively evolves the population of polynomial equations over
multiple generations. Selection mechanisms, crossover, and
mutation operations are applied to create new generations of
candidate solutions. Automatic Model Generation: EPR is capable
of automatically generating mathematical models without prior
knowledge of the underlying relationships in the data. It adapts
the structure of polynomial equations based on the data patterns.

Generalization: The evolved polynomial equations aim to generalize
well to new, unseen data, capturing the essential features of the
relationships within the dataset. Applications: EPR has been applied
in various fields, including engineering, finance, biology, and data
analysis, where complex relationships need to be uncovered from
empirical data. EPR is particularly useful when dealing with
problems where the relationship between input and output
variables is not known or is highly non-linear. It offers a data-
driven approach to model building and has the advantage of being
capable of handling complex and non-linear relationships.

Flowcharts for the used techniques are presented in Figure 5. All
the three developed models were used to predict (Fc) in (MPa)
using(γ/γw,W/C, S/C). The following section discusses the results of
each model. The accuracies of developed models were evaluated by
comparing the sum of squared errors (SSE), mean absolute error
(MAE), root mean squared error (RMSE) and R-squared (R2)
between predicted and calculated compressive strength
parameters values. These indices agree with the applied new
methods in previous research projects (Apostolopoulou et al.,
2020; Asteris P. G. et al., 2021). Also, this project employed the
combined impact of data augmentation and hyperparameter tuning
to overcome overfitting (Asteris et al., 2019; Armaghani and Asteris,
2021; Bardhan et al., 2024; Daniel et al., 2024).

4.3 Sensitivity analysis

A preliminary sensitivity analysis was carried out on the
collected database to estimate the impact of each input on the
(Fc) values. “Single variable per time” technique is used to determine
the “Sensitivity Index” (SI) for each input using Hoffman and
Gardener (Hoffman et al., 1983) formula as shown in Equation 2:

SI Xn( ) � Y Xmax( ) − Y Xmin( )
Y Xmax( ) (2)

Accordingly, the (SI) values are (0.97, 0.91, 0.53) for (γ/γw,W/C,
S/C) respectively. A sensitivity index of 1.0 indicates complete
sensitivity, a sensitivity index less than 0.01 indicates that the
model is insensitive to changes in the parameter.

5 Results and discussion

5.1 Response surface methodology (RSM)
foamed concrete model

The maximum model order was set to quadratic for process
factors. The selected model on the Model tab may be the design
model or lower in order. The fit summary calculation was ended
prematurely based on options set on the Transform tab. Select the
highest order polynomial where the additional terms are significant
and the model is not aliased. Focus on the model maximizing the
Adjusted R2 and the Predicted R2. These are clearly presented in
Tables 3, 4; Figures 6, 7, and Tables 5–7. The response surface
interface has been randomized and run within 1.0 min under a
quadratic design model as presented in Table 3. Table 3 only shows
the settings and parameter indices with which the RSMwas executed
stating also the version of the software, while Table 4 presents the

FIGURE 8
GP Model accuracy against complexity level.

FIGURE 9
EPR model accuracy versus number of terms.
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software coding statistics, which analyzed the three parameters.
Table 5 further shows the RSM model results for the linear and
quadratic modes displaying the R2, adjusted R2 and predicted R2. A
continuous numeric model has also been applied on the parameters
between a low and high coding interface.

It has been presented in Tables 8–10 that the RSM factor coding
is actual, sum of squares is Type III – Partial and the model F-value
of 513.52 implies that the model is significant. There is only a 0.01%
chance that an F-value this large could occur due to noise. P-values
less than 0.0500 indicate model terms are significant. In this case A,
B, AB, AC, A2, B2 are significant model terms. Values greater than
0.1000 indicate the model terms are not significant. If there are many
insignificant model terms (not counting those required to support
hierarchy), model reduction may improve your model. The lack of
fit F-value of 6.55 implies the lack of fit is significant. There is only a
0.01% chance that a Lack of Fit F-value this large could occur due to
noise. Significant lack of fit is bad -- we want the model to fit. The
predicted R2 of 0.9494 is in reasonable agreement with the Adjusted
R2 of 0.9529; i.e., the difference is less than 0.2. Adeq precision
measures the signal to noise ratio. A ratio greater than 4 is desirable.
Your ratio of 92.700 indicates an adequate signal. This model can be
used to navigate the design space. The coefficient estimate represents
the expected change in response per unit change in factor value
when all remaining factors are held constant. The intercept in an
orthogonal design is the overall average response of all the runs. The
coefficients are adjustments around that average based on the factor
settings. When the factors are orthogonal the VIFs are 1; VIFs
greater than 1 indicate multi-colinearity, the higher the VIF the
more severe the correlation of factors. As a rough rule, VIFs less than
10 are tolerable. The final equation in terms of actual factors is
presented in Equation 3. The equation in terms of actual factors can
be used to make predictions about the response for given levels of
each factor. Here, the levels should be specified in the original units
for each factor. This equation should not be used to determine the
relative impact of each factor because the coefficients are scaled to
accommodate the units of each factor and the intercept is not at the
center of the design space. Figs in supplementary material present
the RSM models’ color points by value of Fc for normal percentage
probability plot, color points by predicted value of Fc for extremely
studentized residuals plot, color points by value of Fc for extremely

studentized residuals versus run plot, Box-Cox plot of Fc for power
transforms residuals, color points by actual and predicted value of Fc
plot, color points by residual value of Fc versus g/gw plot, color
points by value of Fc for leverage versus run plot and color points by
value of Fc for degree of fitness (DFFITS) versus run plot (Humberg
et al., 2019). These show the color shade behavior of the loading on
the foamed concrete Fc, which agrees with previous RSM research,
works (Humberg et al., 2019; Marković, 2006; Alyamac et al., 2017;
Sambruno et al., 2019; V Bayramov et al., 2022; Bezerra et al., 2008).
The RSM model constraints and coefficients are presented in tables
in supplementary material and the desirability validation of the
optimized foamed concrete Fc, the actual factor coding for the
foamed concrete Fc and the 3D surface configuration of the foamed
concrete Fc with respect to w/c and γ/γw are presented in Figs in
supplementary material. It can be shown that the Fc of 53.6108 MPa
has been optimized at the γ/γw of 2.04099, W/C of 0.270519, S/C of
1.08914, and a standard error of 0.739442 MPa.

Fc � + 22.23269γ/γw2 + 108.77855W/C2 + 0.009830S/C2

− 24.28764γ/γw *W/C − 4.44771γ/γw * S/C

− 1.73927W/C * S/C − 14.45057γ/γw − 95.19159W/C

+ 5.05998S/C + 26.56823 (3)

5.2 GP foamed concrete model

Four GP models were developed with complexity levels ranged
between two and five. The population size, survivor size and number
of generations were 1,000, 300 and 2,000 respectively. Figure 8 shows
the improvement in accuracy with increasing the complexity.
Equation 4 presented the output formula for (Fc) from the
second trial. The average error (%) of total dataset is 12%, while
the R2 value is 0.965.

Fc � γ
γw

( ) C
W
e

γ
γw( ) + γ

γw
( ) − S

C
( ) (4)

5.3 EPR foamed concrete model

Four developed EPR models were limited to sixth level
polynomial, for three (30 inputs; there are 84 possible terms (28 +
21 + 15 + 10 + 6 + 3 + 1 = 5,005) as follows:
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(5)

GA technique was applied on these 84 terms to select the most
effective terms to predict the values of (Fc). The process began

FIGURE 10
GMDH-NN Model accuracy Vs number of layer.
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with only 1 term and increased gradually up to 4 terms, Figure 9
presents the enhancement of fitness with increasing the number
of terms and indicates that 5 is the optimum number of terms.
The output of the second model is illustrated in Equation 6. The
average error (%) and R2 values were 15% and 0.954, respectively.
The closed-form equation shows the importance of the density
ratio ( γ

γw
) over other factor considerations in the optimization of

the Fc of the studied foamed concrete.

Fc � γ
γw

( )
2
4.34C
W

( ) − S.C
2W2 − 1.88 (6)

5.4 GMDH-NN foamed concrete model

Four GMDH-NN models based on the number of layers were
developed to predict the Fc values using “GMDH Shell-3” software.
The process began with only one layer and increased to four layers.
The quadratic activation function was considered for the entire
model. The error (%) values of the four models are illustrated in
Figure 10. The average error (%) of total dataset is 12% and the R2

value is 0.962. Also, Equations 7, 8 show the symbolic closed-form
equations proposed by the GMDH-NN model technique, which
further shows the importance and influence of the density ratio in

FIGURE 11
Relation between predicted and calculated (Fc) values using the developed models. (A) GP model, (B) EPR model, (C) GMDH-NN model.
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the design, production and use of foamed concrete in sustainable
concrete structures construction. This exerted importance of the
density of the concrete agrees with the RSM model (Humberg et al.,
2019; Marković, 2006; Alyamac et al., 2017; Sambruno et al., 2019; V
Bayramov et al., 2022; Bezerra et al., 2008).

Fc � 9.15W
C

( )2

+ 1.44 − 1.17W
C

( )X1 − 86W
C

( ) + 20.1 (7)

X1 � 22.2
γ
γw

( )
2

− 26.9
γ
γw

( ) − 1.1
S
C

( )2

+ 10.4 (8)

Figure 11 shows the relationship between predicted and
calculated foamed concrete Fc values using the developed models.
It can be shown that the ±25% line of fit envelope has been applied to
show the models accuracy and the outliers’ consistency with the
foamed concrete Fc. The GP model produced a parametric line of fit

equation of 0.992x, R2 of 0.965, MAE of 2.0 MPa, and RMSE of
2.5 MPa. Similarly, the EPR produced a parametric line of fit
equation of 0.989x, R2 of 0.954, MAE of 2.3 MPa, and RMSE of
2.9 MPa. Finally, the GMDH-NN produced a parametric line
equation of 0.991x, R2 of 0.962, MAE of 2.1 MPa, and RMSE of
2.7 MPa. The RSM produced an R2 of 0.949 with a standard error of
computation of 0.739,442 MPa. These outcomes show that the GP
outclassed the EPR, RSM and the GMDH-NN, though with minor
margin (Shang et al., 2022). Meanwhile the EPR produced the
highest outliers from the ±25% test of accuracy envelope.
Table 11 presents the summary of the performance accuracies of
the three AI-based symbolic model techniques. The comparisons of
the accuracies of the developed models using Taylor charts and the
variance distribution for the developed models have been presented
in Figures 12, 13.

TABLE 11 Summary of the performance accuracies of the developed models.

Technique Model SSE MAE MSE RMSE Error R2

% MPa MPa MPa % —

RSM Equation 3 131.89 — 1.91 — 3.118 0.949

GP Equation 4 1,479 2.0 6.4 2.5 12 0.965

EPR Equation 6 1957 2.3 8.5 2.9 15 0.954

GMDH-NN Equation 7 1,650 2.1 7.2 2.7 12 0.962

FIGURE 12
Comparison of the accuracies of the developed models using Taylor charts.
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6 Conclusion

This research aims to predict the compressive strength (Fc) of
foamed concrete using γ/γw, W/C, and S/C ratios of the concrete
component as independent variables. Three AI-based symbolic
regression techniques were used, which were the response surface
methodology (RSM), genetic programming (GP), evolutionary
polynomial regression (EPR) and the group method of data
handling-neural network (GMDH-NN). Also, the response surface
methodology (RSM) technique was also applied as a symbolic
interface producing field applicable expressions in graphs in this
prediction work. The results of comparing the accuracies of the
developed models could be concluded in the following points:

• The present research paper has reported the application of
dimensionless parameters derived from the concrete
components against what was used earlier in the previous
work. This was to reduce data handling complexities and
improve the performance.

• The sensitivity of the parameters showed that the density ratio
is the most impactful parameter that influenced the behaviour
of the foamed concrete strength and this corroborates with
previous results deposited in the literature.

• GP, EPR and GMDH-NN models showed the same accuracy
(85%–88%), while the RSM model showed higher accuracy
(94.16%) based on applicable standard error of computation.

• Despite of the developed models using the four techniques
showed better accuracies up to 89%, but the developed

formulas are too complicated to be practical. That is why
the selected simpler and less-accurate formulas are considered.

• Both correlation and sensitivity analysis showed that the
density (γ/γw) has the main influence on the compressive
strength, then the water-cement ratio (W/C) and finally the
sand-cement ratio (S/C).

• The developed models are valid within the considered range of
parameter values, and when it is beyond this range, the
prediction accuracy should be re-verified.

• Generally, even though the RSM has its practical advantage,
the GP produced the most decisive model and can be used side
by side with the RSM for a more practical application.

• Overall, the data size is expected to be increased by a more
extensive search to collect more recent entries on the production
of foamed concrete for sustainable concrete structures. Also,
more machine learning techniques should be deployed to
study this database especially the metaheuristic methods.

7 Limitations and future work

The research work “estimating the compressive strength of
lightweight foamed concrete using different machine learning-based
symbolic regression techniques” is an interesting endeavor aimed at
predicting the compressive strength of lightweight foamed concrete
through various machine learning-based symbolic regression
approaches. A knowledge of some potential limitations and avenues
for future work will be vital to potential researchers.

FIGURE 13
Variance distribution for the developed models.
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7.1 Limitations

The effectiveness of machine learning models heavily relies on the
quality and quantity of the data available. Limited or biased data could
lead to models that are not sufficiently robust or generalizable. The
success of symbolic regression models depends on the selection of
appropriate features. If important features related to the compressive
strength of lightweight foamed concrete are not included or poorly
chosen, it can lead to inaccurate predictions. While symbolic
regression techniques can provide mathematical expressions to
represent relationships between input features and output, the
interpretability of these models might be limited. Understanding why
certain features contribute more to the prediction than others could be
challenging. Models developed in this project may perform well on the
specific dataset used for training but might struggle to generalize to
unseen data or different contexts. Ensuring the generalizability of the
models is crucial for practical applications. Some symbolic regression
techniques might be computationally expensive, especially with large
datasets or complex models. This could limit their practicality in real-
world applications or require significant computational resources.

7.2 Future work

Increasing the size and diversity of the dataset through techniques
like data augmentation could improve the robustness and
generalizability of the models. Exploring additional features or
transforming existing ones could enhance the performance of the
models. Domain knowledge could be leveraged to engineer features
that better capture the underlying relationships in the data. Conducting
rigorous evaluation of the models on independent datasets and
comparing their performance with other machine learning techniques
can provide insights into their effectiveness and limitations. Developing
techniques to improve the interpretability of symbolic regressionmodels
can facilitate better understanding and trust in the predictions, making
themmore useful in practical applications. Deploying themodels in real-
world scenarios and validating their performance in different contexts
can demonstrate their utility and identify areas for further improvement.
Exploring ensemble methods that combinemultiple symbolic regression
models or different types of machine learning techniques could
potentially improve predictive performance and robustness.
Investigating and developing more efficient optimization algorithms
tailored to symbolic regression could reduce computational complexity
and enable the scalability of the models to larger datasets.
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