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Assessing building damage in coastal communities after a hurricane event is
crucial for reducing both immediate and long-term disaster impacts, as well
as for enhancing resilience planning and disaster preparedness. Despite the
extensive data collection efforts of the post-hurricane reconnaissance teams,
some information on the structural features of damaged buildings is often
missing due to various reasons, like the absence of relevant documents or
severe building damage, thereby limiting our comprehensive understanding of
building resilience to natural disasters. This study introduces a machine learning
approach based on extreme gradient boosting (XGBoost) to reconstruct missing
structural features of the damaged buildings from four types of data (known
structural, geospatial, hazard, and damage level information). XGBoost models
were trained based on the reconnaissance datasets collected from four regions
affected by Hurricanes. For each region, we analyzed the model’s performance
depending on the missing structural features. We also demonstrated the
importance of including geospatial, hazard, and damage level data by showing
improved performance of XGBoost models compared to those trained only
on known structural data. Furthermore, we examined how the accuracy of
the XGBoost approach changes if multiple structural features are missing. This
XGBoost approach has the potential to support post-hurricane building damage
assessments by providing missing building details, enabling comprehensive
post-disaster analysis.

KEYWORDS

natural hazard, reconnaissance, coastal region, structural features, machine-learning

1 Introduction

Coastal communities in the United States face significant vulnerability to hurricane
impacts, particularly during the Atlantic hurricane season, which spans half of
the year. As coastal populations expand and more buildings and infrastructure are
constructed, these communities are increasingly at risk (Freeman and Ashley, 2017;
Klotzbach et al., 2018; Pielke et al., 2008). Moreover, losses from hurricanes have exhibited
increases in recent decades as the frequency of hurricanes making landfall and major
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hurricanes have shown trends of increase due to changing climate
(Balaguru et al., 2023; Kim and Peiser, 2020). Exposing ever-
growing critical infrastructure in coastal communities further
escalates the risk associated with hurricanes and storm surges
(Klotzbach et al., 2018; Weinkle et al., 2018).

To better understand the current vulnerabilities of the coastal
communities and minimize future building and infrastructure
damage, it is important to comprehensively assess the structural
damage of buildings caused by hurricane winds and storm surges
(Wartman et al., 2020). Over the past decade, significant progress
has been made in rapidly collecting time-sensitive building damage
data following major hurricane events (Lenjani et al., 2020). This
effort, led by organizations like the Natural Hazards Engineering
Research Infrastructure (NHERI), including the Structural Extreme
Events Reconnaissance (StEER) Network under the CONVERGE
node, has provided valuable reconnaissance datasets (e.g., Kijewski-
Correa et al., 2018a; Kijewski-Correa et al., 2018b; Roueche et al.,
2018; 2020; 2021). The datasets contain a combination of ‘field’
observations, obtained by the personnel on site shortly after
the hurricane, such as door-to-door assessments and street-
level panoramas, and “virtual” observations obtained by remote
personnel, such as aerial and street-level imagery collected by
unmanned aerial systems, satellites, and lidar scans (e.g., Alidoost
and Arefi, 2018; Berman et al., 2020; Buyukdemircioglu et al.,
2021; Lenjani et al., 2020; Mohajeri et al., 2018; Ro et al., 2024)
(Applied Research Associates, 2017a; Applied Research Associates,
2017b; Applied Research Associates, 2018; Applied Research
Associates, 2020).

However, obtaining detailed information about a building’s
structure from “virtual” data can be challenging due to
factors such as low resolution, weather interference, and
areas obscured by shadows. Similarly, getting this information
from “field” observations becomes tricky when buildings
are severely damaged or totally destroyed. In some cases,
these structural features are unavailable in public records,
thereby further limiting data collection. As a result, when we
examined NSF-funded StEER and Geotechnical Extreme Events
Reconnaissance (GEER) Association reconnaissance data from
3,796 single-family houses affected by four major hurricanes
(Applied Research Associates, 2017a; Applied Research Associates,
2017b; Applied Research Associates, 2018; Applied Research
Associates, 2020), approximately 1,200 of them lacked at least
one piece of building information. The lack of data limits our
ability to understand how building structures interact with hazards,
emphasizing the necessity to reconstruct missing structural
information for a clearer understanding of their response to
such events.

To address this issue, several methods have been proposed
to impute missing structure-related data from combinations of
known structural, geospatial, hazard, and building damage level
information. For instance, Pita et al. (2011) suggested using
Bayesian belief networks and classification/regression trees to
impute a missing structural feature (roof type) based only on
known structural features (e.g., exterior wall type, year built, roof
cover, building value, and number of stories). Massarra et al.
(2020) developed models based on predictive mean matching and
multiple imputation logistic regression to impute two missing
structural features (foundation type and number of stories) using

hazard information (e.g., maximum wind speed and maximum
water depth).TheNHERI SimCenter developed amachine-learning
model called the “Spatial Uncertainty Research Framework” (SURF)
that estimates missing structural features using known structural
and geospatial information of neighboring buildings (Yu et al.,
2019; Wang, 2021). Macabuag et al. (2016) applied the multiple
imputation technique to estimate a missing structural feature
(building material) from structural (e.g., footprint area), hazard
(e.g., inundation depth), and damage level data. While there is
a study that introduced cluster-based and decision tree-based
imputation techniques to estimate road segment status after an
earthquake using structural (e.g., road type), geospatial (e.g., grid
location), hazard (e.g., distance to the epicenter), and nearby
building damage level information (Yagci Sokat et al., 2018),
to the best of our knowledge, no study has incorporated all
four types of data (structural, geospatial, hazard, and damage
level information) into a single framework for imputing missing
structural features of damaged buildings. Including all four types
of information is important considering that the damage levels
result not only from structural features (vulnerability) but also
from geospatial characteristics (exposure) and hazard intensity
(Klepac et al., 2022).

In this study, we introduce a new methodology to impute
missing structural features of damaged buildings using four types
of data: structural, geospatial, hazard, and damage level information
(Section 2). Our approach employs XGBoost, a machine-learning
algorithm from the ensemble learning category (Section 3). The
study is unique for the following reasons:

• This is the first study to use four distinct types of data
(structural, geospatial, hazard, and damage level information)
to reconstruct missing structural features.

• We consider a larger set of structural features (a total of 11) and
regions affected by hazard events (four hurricanes) compared
to existing studies.

• We analyze the impact of geospatial, hazard, and damage
level information by comparing the performance of the
XGBoost model trained with all four data types against
the XGBoost model trained solely on known structural
information (Section 4).

• We investigate cases where more than one structural
feature is missing, which is common in buildings that are
severely damaged (Section 4).

2 Data collection and feature
representation

In the context of hurricane damage to buildings, informative
features include resistance capacities of a given structure, load-
mitigating features of the surrounding environment, and loading
imparted by hurricane hazards. These categories are represented
by four types of datasets: structural data, geospatial data, hazard
data, and damage level data. In this study, we gathered those
four types of reconnaissance datasets from public sources,
covering 3,796 single-family houses affected by hurricanes
(Applied Research Associates, 2017a; Applied Research Associates,
2017b; Applied Research Associates, 2018; Applied Research
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Associates, 2020) (1,815 houses near Galveston, Texas
from Harvey, 1,004 houses in the Florida Peninsula and
Keys from Irma, 574 houses in the Florida Panhandle
from Michael, and 403 houses in Southwest Louisiana
from Laura).

2.1 Structural data

Structural data were obtained from NSF-funded StEER and
GEER reconnaissance datasets (Kijewski-Correa et al., 2018a;
Kijewski-Correa et al., 2018b; Roueche et al., 2018; 2020; 2021).
These datasets contain building-specific, qualitative damage ratings
for buildings throughout the respective hurricane impact areas
in addition to each building’s structural parameters: number of
stories (integer, where 1.5 indicates a second story over part
of the house), roof shape (where the primary shape covers
the majority of the house and secondary, if any, covers the
remainder), wall structure (structural wall framing material
or combination of materials), wall cladding (outermost wall
covering material, where the primary is the predominant
material and secondary, if any, are other claddings present on
the building), large door presence (typically a garage door),
roof system (roof framing material), roof cover (outermost
covering material on the roof), building age, and first-floor
elevation (relative to ground elevation). Table 1 provides a
comprehensive list of 11 structural features, including the data
type associated with each variable, the classes within each discrete
variable, and descriptive statistics for each continuous variable.
Supplementary Figures S12–S22 show the distribution of all
structural features and the construction patterns of the four regions
(Galveston, Texas, Florida Peninsula and Keys, Florida Panhandle,
and Southwest Louisiana). The Southwest Louisiana region affected
by Hurricane Laura exhibits more skewed data distribution
compared to the other regions, indicating a more homogeneous
construction pattern (Supplementary Figures S12D–S22D).
Additionally, secondary roof shape and wall cladding for three
regions (except the Southwest Louisiana region) exhibit a more
homogeneous construction pattern than primary roof shape and
wall cladding (Supplementary Figures S13–S17).

2.2 Geospatial data

Geospatial data representing houses’ extent of exposure were
calculated using geographic information system (GIS) software.
Geospatial features include house coordinates, the distance from
each house to the nearest coastline point, building density as a
count of other buildings within 100 m, 500 m, and 1 km of a given
house, and the count of “shielding” buildings whose footprints
intersect a linear path between a house’s footprint and the nearest
point along the coastline. Building footprints from the Federal
Emergency Management Agency (FEMA) USA Structures dataset
(FEMA, 2022) were used to produce the geospatial features. Table 2
provides a comprehensive list of seven geospatial data, including
the data type associated with each variable and descriptive
statistics.

2.3 Hazard data

Hazard data represent hurricane-induced winds and storm
surges at the house location. Hazard features consist of surge-
induced water depth, design wind speed exceedance, and duration
of 17.5, 25.7, and 32.9 m/s (34, 54, and 64 kt) sustained wind
speeds. Design wind speed exceedance was calculated as the
difference between American Society of Civil Engineers (ASCE)
ASCE (2017) Risk Category II design wind speed at each
house location and the observed peak 3-s gust obtained from
Applied Research Associates (ARA) observed windfield maps
for the respective hurricane (Applied Research Associates, 2017a;
Applied Research Associates, 2017b; Applied Research Associates,
2018; Applied Research Associates, 2020). This calculation was
conducted for the design wind speed of 2005, 2010, and 2016
revisions of ASCE 7, yielding three variables: Design exceeded
7–05, 7–10, and 7–16. The durations that each house experienced
various sustained wind speeds, reported in six-hour increments,
were determined by analyzing hurricane tracks and wind speed
radii given in the National Hurricane Center (NHC) HURDAT2
dataset (Landsea and Franklin, 2013). Surge-induced water depth
relative to ground level at each house location was collected from
FEMA observation-corrected depth models (FEMA, 2017a; FEMA,
2017b; FEMA, 2018). Table 3 provides a comprehensive list of seven
hazard data, including the data type associated with each variable
and descriptive statistics.

2.4 Damage level data

Damage level data were obtained from the StEER and GEER
reconnaissance datasets for each region (Kijewski-Correa et al.,
2018a; Kijewski-Correa et al., 2018b; Roueche et al., 2018; 2020;
2021). The damage data describe qualitative damage states of the
houses following the five damage state criteria of Vickery et al.
(2006): 0-“no damage or very minor damage,” 1-“minor damage,” 2-
“moderate damage,” 3-“severe damage,” and 4-“destroyed.” A house’s
damage state (DS) is determined during reconnaissance based
on the extent of damage to roof and wall cover, windows and
doors, roof and wall sheathing, roof structure, and wall structure
(Roueche et al., 2019). DS-0 indicates no damage to any of these
attributes. DS-1 has limited damage to roof and wall covers or doors
and windows. DS-2 represents a greater extent of damage to the
assets covered in DS-1 and/or damage to roof or wall sheathing.
DS-3 indicates greater extent of damage to the assests covered in
DS-2 or any damage to the roof structure. DS-4 has a greater extent
of damage to the assets covered in DS-3 or any damage to the all
structure. Thresholds to distinguish between the damage states are
detailed in Roueche et al. (2019).

3 Methods

For each region, we developed XGBoost models that can
estimate one missing structural feature from four types of datasets
described in Section 2. Figure 1 outlines the process of training and
testing the XGBoost models.
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TABLE 1 Structural features and their characteristics.

Structural features Unit Variable type Classes and descriptive statistics

Number of stories — Discrete 1, 1.5, 2, 3

Primary roof shape — Discrete Complex, Flat, Gable, Gambrel, Hip, Other

Secondary roof shape — Discrete Complex, Flat, Hip, None

Wall structure — Discrete Brick/Masonry, Concrete, Concrete/Wood
Masonry/Concrete, Masonry/Wood, Wood

Primary wall cladding — Discrete Brick/Masonry, Cement Board, EIFS, Metal
Stucco, Vinyl, Wood

Secondary wall cladding — Discrete Cement Board, Stucco, Vinyl, Wood, None

Large door present — Discrete Yes, No

Roof system — Discrete Brick/Masonry, Concrete, Concrete/Wood
Masonry/Concrete, Wood, Wood/Masonry

Roof cover — Discrete Metal, Shingles, Tile, Shingles/Metal, Other

Building age Year Continuous Min:0, Max:118

First-floor elevation Feet Continuous Min: −2, Max: 16

TABLE 2 Geospatial data and their characteristics.

Variables Unit Variable type Min Max

Latitude degree Continuous 17.97 30.46

Longitude degree Continuous −97.50 −65.74

Distance to the coast m Continuous 5 66,802

Shielding — Continuous 0 300

Density 100 m — Continuous 0 47

Density 500 m — Continuous 7 1,137

Density 1 km — Continuous 27 3,159

3.1 Machine-learning algorithm

We chose extreme gradient boosting (XGBoost) because (1)
the reconnaissance dataset contains both discrete and continuous
variables, (2) the variables do not adhere to a normal distribution,
and (3) the reconnaissance datasets are imbalanced—In structural
features, there is an imbalance in the number of data points among
classes, with one class containing a larger portion of the data
while the other classes have relatively fewer data points. XGBoost
is one of the machine-learning algorithms using the ensemble
learning category, recognized for its capacity to enhance weak
learners’ performance through advanced optimization techniques
and algorithmic improvements. It is particularly designed for
scalability and efficiency in tree optimization, making it highly

effective for both regression and classification tasks (Chen and
Guestrin, 2016; Yuan et al., 2023). Originating as a distinct approach
to applied gradient boosting, XGBoost integrates the predictions of
multiple weak learners using additive training strategies, resulting
in a robust machine-learning model. This methodology not only
significantly reduces the risk of overfitting but also bolsters
computational efficiency, despite its potentially high demand on
resources for large datasets or complex models (Alshboul et al.,
2022). Additionally, this method is highly effective at dealing with
imbalanced data and data that do not follow a normal distribution.
This is because tree-based models, developed based on decision
trees, such as random forest, gradient boosting, and XGBoost,
partition data based on features at each node, thereby allowing
them to flexibly handle data regardless of its distribution (Chen,
2018). XGBoost’s robustness and efficiency have made it a popular
choice for tackling complex data structures and imputing missing
features in numerous predictive modeling applications (e.g., Deng
and Lumley, 2023; Shi et al., 2022).

3.2 Data preprocessing

We cleaned the 3,796 single-family house data based on
two criteria. First, observations containing incomplete feature
information were eliminated since XGBoost models require
complete data for training. Secondly, to implement 5-fold cross-
validation, each target discrete structural feature (the output in
Figure 1) must have a minimum of five observations for each
class. Therefore, if this requirement is not met, we exclude those
observations from the training set. This cleaning process was
performed independently for each target variable, resulting in a
different number of removed observations for each region and
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TABLE 3 Hazard information and their characteristics.

Variables Unit Variable type Min Max

Surge depth ft Continuous 0.00 24.84

Design exceeded 7–05 mph Continuous −71.22 37.35

Design exceeded 7–10 mph Continuous −98.22 34.35

Design exceeded 7–16 mph Continuous −98.22 34.35

17.5 m/s duration number of 6-h interval Continuous 1 12

25.7 m/s duration number of 6-h interval Continuous 1 7

32.9 m/s duration number of 6-h interval Continuous 0 4

FIGURE 1
A flowchart of structural features XGBoost model. The blue box represents the dataset, the white box represents the data science pipeline which
includes data preprocessing, model development, and performance evaluation, and the green box represents the trained XGBoost models. All these
processes were conducted for four different regions, each impacted by a different hurricane.

target variable. After the data cleaning process, the number of
remaining data was as follows: for Galveston, Texas affected by
Hurricane Harvey, 1,286 to 1,294; for Florida Peninsula and Keys

affected by Hurricane Irma, 440 to 445; for Florida Panhandle
affected by Hurricane Michael, 419 to 425; and for Southwest
Louisiana affected by Hurricane Laura, 387 to 391. After cleaning
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the data, one-hot encoding was applied for the discrete inputs since
the XGBoost model does not have a preset encoding mechanism
for handling categorical data. This method converts each class
of a given discrete variable into a binary variable (Hancock and
Khoshgoftaar, 2020). It can preserve the information of discrete
variables and generally plays an important role in improving the
performance of XGBoost models (Yu et al., 2022). We performed
one-hot encoding using a pandas (Python data analysis library)
function, get_dummies, when the input dataset contained discrete
structural features. For the outputs, ordinal encoding was utilized
to convert categorical structural features into integers, as XGBoost
models cannot directly handle string variables. Note that scaling
and normalization were not applied to the input variables.
Unlike machine-learning approaches that utilize proximity-based
algorithms like neural networks and support vector machines, the
XGBoost model operates independently for each decision tree. As a
result, it is less affected by the range of values within individual
features. Therefore, excluding scaling and normalization does
not detrimentally affect the model’s performance and simplifies
preprocessing by eliminating unnecessary steps.

3.3 Model training

In this study, we developed site-specific XGBoost models based
on reconnaissance data collected from four regions, each affected
by a different hurricane. Note that we chose to develop site-specific
models for each region instead of a generalized model because
the site-specific models performed better, likely due to distinct
structural feature trends in each region that make it difficult to
create an accurate generalized model (Supplementary Table S1).
A total of 220 XGBoost models were trained, considering 5-fold
cross-validation with 11 structural features for four regions. For
each XGBoost model, optimal hyperparameters were selected by
performing grid searching based on the hyperparameter values
listed in Table 4. Note that the range of each hyperparameter
was selected based on preliminary tests that demonstrated high
performance. The “n_estimators” represents the number of decision
trees within XGBoost, and the ‘max_depth’ represents themaximum
depth of each decision tree.The “colsample_bytree” and “subsample”
determine the ratio of features and training data respectively
when training each decision tree. The “reg_lambda” regulates L2
regularization by applying a penalty proportional to the square
of the model’s weights, thus controlling the model’s complexity to
prevent overfitting. During hyperparameter tuning, we chose not
to use the balanced class weight option to assign equal importance
to every observation. The optimal hyperparameters were selected
based on the F1 score for the discrete variables and the R2 value for
the continuous variables. The definition of each error statistic can
be found in Section 3.4.

We employed a 5-fold cross-validation to mitigate potential
bias in model evaluation. In other words, we partitioned the
training set by randomly choosing 80% of the data, while
allocating the remaining 20% of the data as the test set for
each fold. Within the training dataset, 80% of the data was
used for model training, and 20% of the training set was used
as a validation set for hyperparameter tuning. The test dataset
was used to evaluate the performance of the trained XGBoost

TABLE 4 Possible values for each hyperparameter of the XGBoost model.

Hyperparameter Specified grid

n_estimators 50, 100, 150, 200

max_depth 6, 11, 16

colsample_bytree 0.5, 0.8, 1

Subsample 0.8, 1

reg_lambda 0.8, 1

models. Note that while there is no strict rule of thumb for the
number of folds, 5-fold cross-validation is widely accepted and
commonly used in similar studies due to its ability to provide
a reliable estimate of model performance while not being overly
computationally intensive. The sensitivity test on the number of
folds confirmed that the XGBoost model performance did not vary
significantly (Supplementary Tables S2, S3).

3.4 Performance evaluation

Once the XGBoost models were trained, we evaluated themodel
performance based on the test set, whichwas never used for training.
For discrete structural features, the F1 score was used as a metric,
one of the widely used indicators to measure the performance of
binary and multiclass classification problems. F1 score represents
the harmonic mean of precision and recall and is calculated with the
following formula (Equations 1–3):

F1score = 2×
precision× recall
precision+ recall

(1)

precision = TP
TP+ FP

(2)

recall = TP
TP+ FN

(3)

where TP represents the number of true positives, FP is the number
of false positives, and FN is the number of false negatives. F1
score is calculated as a value between 0 and 1, and the model
performance increases as it approaches 1. To calculate the F1 score
for multiple classes, we aggregated the TP, FP, and FN values for all
classes to compute the micro F1 score, which focuses on evaluating
the overall model performance rather than the performance of
individual classes. For continuous structural features, R2 value was
used, which ranges between 0 and 1 (Equation 4). As the R2 value
approaches 1, it indicates better model performance.

R2 = 1−

N

∑
i=1
(yi − ŷi)

2

N

∑
i=1
(yi − ̄y)

2

(4)

where, yi represents the ith observed value, ŷi represents the ith
estimated value, and ̄y represents the averaged observed value. N
is the total number of observed values. The overall error statistic
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value was derived by averaging the error statistic values of the
cross-validations.

4 Results and discussion

4.1 XGBoost model performance

The performances of XGBoost models for each region affected
by the four hurricanes are shown in Table 5. Among the discrete
structural features, the secondary roof shape and the secondary wall
cladding show high performance with F1 scores exceeding 0.8 for
all regions (see bold numbers in Table 5). There were performance
differences in XGBoost models depending on the region. Overall,
the XGBoost models for Southwest Louisiana affected by Hurricane
Laura outperformed those for the other regions, achieving F1 scores
of 0.86 or higher for all discrete structural features. Note that the
XGBoost models could not be trained for the wall structure and
roof system for Southwest Louisiana because only one class was
present. Similarly, the first-floor elevation of buildings in Southwest
Louisiana shows an R2 value of 0.98, while the R2 values for this
feature in the other three regions show 0.67 or lower values. In
the Galveston, Texas dataset, the wall structure and roof system
both achieved an F1 score of 1.00. This is because these two
variables each contain only two classes and the data is highly
skewed, leading to relatively high F1 scores. Additionally, truncation
errors during the calculation process contributed to the F1 score
of 1.00. All confusion matrices and scatter plots were provided
in the supplementary material (Supplementary Figures S1–S11). It
is challenging to interpret the differing performance of XGBoost
models for different regions due to the black-box nature of machine
learning, but this may be attributed to the number of training
data, the degree of data skew, and regional structural characteristics
(e.g., construction practices, architectural styles, and regulatory
environments).

Some of the results of Table 5 appear to be driven by common
construction practices throughout the regions impacted by each
hurricane. Homogeneous house archetypes resulting from common
construction practices in specific regions make some features easier
to predict. For example, for all regions except Southwest Louisiana,
the model performance was higher for secondary roof shape and
wall cladding compared to primary roof shape and wall cladding.
This is related to the skewness of the dataset. While primary roof
shape and wall cladding show a relatively diverse distribution
across multiple classes without extreme skewness towards any
single category (Supplementary Figures S13, S16), secondary roof
shape and wall cladding are predominantly concentrated in the
None class (Supplementary Figures S14, S17). Primary roof shape
and primary wall cladding in Southwest Louisiana exhibited
relatively homogeneous construction patterns compared to the other
three regions (Supplementary Figures S13D, S16D). Consequently,
these homogeneous patterns led to higher model performance.
Furthermore, the model’s performance in estimating first-floor
elevation was notably higher for Southwest Louisiana compared to
other regions. Skewness of first-floor elevation data for Galveston,
Texas, and the Florida Peninsula and Keys was relatively low (0.48
and 0.19, respectively; see Supplementary Figures S22A, S22B),
whereas skewness for the Florida Panhandle and Southwest

Louisiana was considerably higher (2.55 and 2.62,
respectively; see Supplementary Figures S22C, S22D).This indicates
that the most skewed distribution in Southwest Louisiana (where
89% of houses had slab on grade—a flat and horizontal concrete
surface positioned at nearly the same level as the ground)
contributed to the superior model performance among the four
regions. However, even if the Florida Panhandle also had high
skewness, the model performance was lower. This is likely due
to differences in regional construction practices. In Southwest
Louisiana, themodel performance showed that the predominant use
of slab on grade was strongly correlated with other building features,
enabling the model to effectively learn and estimate first-floor
elevation based on these patterns. Conversely, construction practices
in the Florida Panhandle may lack similar uniformity, with slab on
grade showing weaker associations with other structural features.
This lack of clear relationships could hinder the model’s ability
to accurately leverage skewness in estimating first-floor elevation,
leading to observed lower performance despite high skewness.
Therefore, the model performance of this study is influenced by
the skewness of the target structural feature.

On top of that, the spatial distribution of building data
introduces variability in house archetypes, affecting the model
performance of certain features. The Florida Peninsula and Keys
dataset was collected across the entire state of Florida, thus blending
styles from the Florida Keys and both the East and West coasts
of the peninsula—Detailed information about all reconnaissance
data points was presented in Klepac et al. (2022). This creates
variation in the distribution of construction styles, increasing the
complexity of the model and resulting in relatively lower model
performance. In comparison, the Galveston, Texas and Florida
Panhandle datasets are relatively more concentrated in smaller
coastal and inland areas with greater consistency in construction
styles. The Laura dataset is even more concentrated along the
southwest coast of Louisiana, where many buildings exhibit highly
homogeneous construction features, which can be associated with
the highest model performance.

4.2 Importance of geospatial, hazard, and
damage level data

The geospatial, hazard, and damage level data were included as
inputs for the XGBoost models, along with the known structural
features. This inclusion is based on the hypothesis that these data
can help estimate the missing structural features, as damage levels
result not only from structural features (vulnerability) but also
from geospatial characteristics (exposure) and hazard intensity. To
validate this hypothesis, we trained an additional set of XGBoost
models using only known structural features (referred to as
“structural-only models”). We then compared the performance of
these structural-only models with that of the XGBoost models
(Table 5) that utilized all four types of data (referred to as “all-
considered models”). As shown in Table 6, we found that the
all-considered models outperformed the structural-only models
for most of the structural features. Among all the discrete
structural features, the F1 score for the number of stories improved
significantly. For Southwest Louisiana, in particular, the F1 score
increased noticeably from 0.70 to 0.86. For the continuous structural
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TABLE 5 XGBoost model performance in estimating missing structural features.

Structural features Error statistic GT, Harvey FPK, Irma FP, Michael SL, Laura

Number of stories F1 score 0.85 0.77 0.75 0.86

Primary roof shape F1 score 0.69 0.67 0.67 0.87

Secondary roof shape F1 score 0.91 0.93 0.91 0.92

Wall structure F1 score 1.00 0.97 0.95 NaN

Primary wall cladding F1 score 0.68 0.71 0.65 0.95

Secondary wall cladding F1 score 0.99 0.96 0.81 0.96

Large door present F1 score 0.79 0.79 0.81 0.96

Roof system F1 score 1.00 0.98 NaN NaN

Roof cover F1 score 0.87 0.60 0.74 0.96

Building age R2 0.48 0.32 0.68 0.67

First-floor elevation R2 0.67 0.36 0.41 0.98

Note: We listed the region and hurricane name in order. GT, is Galveston, Texas; FPK, is Florida Peninsula and Keys; FP, is Florida Panhandle, and SL, is Southwest Louisiana. When a structural
feature has only one class, it is marked as NaN. Bolded model performances indicate values of 0.8 or higher. A 0.8 threshold is an arbitrarily set criterion to compare relative model performance.

TABLE 6 Performance difference between the all-considered models and the structural-only models. All error statistics are calculated by subtracting
the value of the structural-only model from the value of the all-considered model.

Structural features Error statistic GT, Harvey FPK, Irma FP, Michael SL, Laura

Number of stories F1 score 0.04 0.04 0.07 0.16

Primary roof shape F1 score 0.05 0.02 0.06 0.08

Secondary roof shape F1 score 0.03 0.01 0.03 −0.02

Wall structure F1 score 0.00 0.00 0.00 NaN

Primary wall cladding F1 score 0.10 0.01 0.05 −0.02

Secondary wall cladding F1 score 0.01 0.01 0.03 0.06

Large door present F1 score 0.05 0.03 0.03 0.02

Roof system F1 score 0.00 0.00 NaN NaN

Roof cover F1 score 0.05 0.11 0.04 0.00

Building age R2 0.30 0.32 0.44 0.35

First-floor elevation R2 0.22 0.22 0.10 0.10

Note: We listed the region and hurricane name in order. GT, is Galveston, Texas; FPK, is Florida Peninsula and Keys; FP, is Florida Panhandle, and SL, is Southwest Louisiana. When a structural
feature has only one class, it is marked as NaN. Bolded values indicate model performance differences of 0.05 or higher. A 0.05 threshold is an arbitrarily set criterion to compare relative
differences in model performance.

features, the building age demonstrated significant performance
increases across all four regions in terms of R2: 0.30 increase for
Harvey, 0.32 increase for Irma, 0.44 increase for Michael, and 0.35
increase for Laura.

Figure 2 shows the confusion matrices and scatter plots for
two structural features that demonstrated significant performance

increases: the number of stories in Southwest Louisiana affected
by Hurricane Laura and the building age in the Florida Panhandle
affected by Hurricane Michael. For the number of stories, the
proportion of incorrectly estimating a 1st-floor house (class: 1) as
a second story over part of the house (class: 1.5) has decreased
significantly after including the geospatial, hazard, and damage
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FIGURE 2
Comparison of performance between the structural-only models and the all-considered models. Upper: Confusion matrices for the “number of
stories” of buildings in Southwest Louisiana: (A) structural-only model (F1 score: 0.7), and (B) all-considered model (F1 score: 0.86). Lower: Scatter plots
for the “building age” of Florida Panhandle: (C) structural-only model (R2: 0.24), and (D) all-considered model (R2: 0.68). The numbers in the confusion
matrices represent the percentage of predicted classes for each specific category. The unit of building age in the scatter plot is given in years.

level data (see Figures 2A, B). For the building age, the estimated
values of the all-considered model are more aligned to the
1:1 line than the estimated values of the structural-only model
(see Figures 2C, D).

However, not all structural features showed better performance
with the all-considered models. No performance improvement was
observed in the wall structure and roof system for all regions and
in the roof cover of buildings in Southwest Louisiana. Additionally,
the performance of the all-considered models was slightly lower
than that of the structural-only models for the secondary roof shape
and primary wall cladding of buildings in Southwest Louisiana
affected byHurricane Laura, with an F1 score difference of 0.02.This

indicates that adding additional features does not always guarantee
an increase in XGBoost model performance.

To evaluate the impact of the geospatial, hazard, and damage
level data, we performed a feature importance analysis based
on the all-considered models (Figure 3). After quantifying the
importance of each feature, we aggregated the importance values
for all geospatial, hazard, and damage level features. The feature
importance was averaged across five cross-validations. Note that if
the gross feature importance of the geospatial, hazard, and damage
level data exceeds 50% (see the gray horizontal line in Figure 3),
it indicates that these data types have a greater influence on the
XGBoost model’s prediction process than the known structural
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FIGURE 3
Gross feature importance of geospatial characteristics, hazard
information, and damage level. The gray line represents a 50% feature
importance. Note that the feature importance is zero for certain cases
when there is only one class for the structural feature. The hollow dots
represent the mean gross feature importance across the four regions.
We listed the region and hurricane name in order. GT is Galveston,
Texas, FPK is Florida Peninsula and Keys, FP is Florida Panhandle, and
SL is Southwest Louisiana.

features because the sum of the feature importance values equals
one.The feature importance analysis results show that “building age”
had the highest average feature importance and was the only feature
to exceed 50% for the two regions. For “building age,” we observed
similar trends in the degree of feature importance, along with the
increased performance when geospatial, hazard, and damage level
data were included (see Table 6). However, we did not find any other
clear correlations between the performance differences shown in
Table 6 and the feature importance analysis results. For example, the
feature importance of the “wall structure” of the Florida Panhandle
exceeds 50% but the performance of the all-considered model was
the same as that of the structural-only model. The features that
showed the lowest mean feature importance were “wall structure”
and “roof system,” indicating that the geospatial, hazard, and damage
level data are relatively less important for estimating these structural
features. This result is supported by Table 6, which shows no
performance improvement for “wall structure” and “roof system”
after considering the geospatial, hazard, and damage level data.

4.3 Multiple missing structural features

The proposed XGBoost modeling approach assumed that only
one structural feature is missing and the other ten structural features
are given, even though in reality, there could be two ormoremissing.
In this section, we examined the frequency of missing structural
features across all 3,796 reconnaissance datasets and assessed if our
machine-learning approach can handle scenarios where multiple
structural features are missing in a couple of cases. Note that the
number of missing geospatial and hazard information was not
considered as they could be quantified for any location using GIS
software or published hazard observations and therefore did not
have missing features.

The following analysis was performed to find themost dominant
case where multiple structural features were missing. First, we
examined the frequency distributions of the number of missing
structural features for each region to determine the most common
number of missing features (Figure 4). We found that the absence of
a single structural feature is the most prevalent scenario. Among the
observed data points with at least onemissing feature, approximately
84.6%, 53.0%, and 58.3% had only one missing feature in Galveston,
Texas, Florida Panhandle, and Southwest Louisiana, respectively.
In contrast, the reconnaissance dataset in Florida Peninsula and
Keys showed that approximately 74.4% of the data points (around
400 observations) had two missing structural features, making it
the most dominant scenario. Therefore, we chose data collected
in Florida Peninsula and Keys for subsequent analysis due to its
distinctive characteristics compared to the other regions. Second, we
analyzed the unique combinations of twomissing structural features
and their frequency for Florida Peninsula and Keys. The results
show that the most dominant combination was the missing of both
the “wall structure” and the “roof system,” accounting for 94.5% of
the cases (Table 7).

For this dominant combination, we trained two XGBoost
models, each aimed at estimating one of the missing structural
features. All training processes, such as performing 5-fold
cross-validation and grid search to determine the optimal
hyperparameters for each model, were conducted as described in
Section 3. The only difference from the XGBoost models developed
in Section 3 is that another structural feature (either “wall structure”
or “roof system”) is further removed from the input dataset. Once
the models were trained, we analyzed how much XGBoost model
performance deteriorateswhen there are twomissing data compared
to when there is only one (Table 8). The results indicate that the
absence of the roof system significantly affects the estimation of the
wall structure, leading to a 0.22 decrease in the F1 score. Similarly,
when estimating the roof system, the absence of the wall structure
has a notable impact, resulting in a 0.23 decrease in the F1 score.

To explain the difference in XGBoost model performance when
an additional structural feature is missing (either “wall structure”
or “roof system” for Florida Peninsula and Keys), we conducted
a SHAP (SHapley Additive exPlanations) analysis (Shapley, 1953).
This analysis assigns each feature an importance value, known as
the SHAP value, representing its contribution to the prediction.
Figure 5 presents one example of the SHAP analysis results in a
waterfall plot, which illustrates the combined effect of all features
on the prediction. The plot starts from the average model output
and adds the SHAP values for each feature step-by-step. Positive
SHAP values increase the probability of the given class being
true in classification tasks. The y-axis illustrates the top nine
classes that contribute the most to estimating each of the following
wall structure classes: (a) Brick/Masonry, (b) Concrete/Wood,
(c) Masonry/Concrete, (d) Masonry/Wood, and (e) Wood. We
confirmed that input variables generally increase the probability
of estimating the “Brick/Masonry” of wall structure as true for a
given house, leading to a final probability of 0.99. On the other
hand, when estimating the other four wall structure classes, most
variables reduced the probability of these classes being estimated
as true, resulting in all final probabilities being less than 0.18. The
results show that the roof system classes had the most significant
impact across all five classes of building wall structures (see red
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FIGURE 4
Frequency distributions of the number of missing structural features for four retions: (A) Galveston, Texas affected by Hurricane Harvey, (B) Florida
Peninsula and Keys affected by Hurricane Irma, (C) Florida Panhandle affected by Hurricane Michael, and (D) Southwest Louisiana affected by
Hurricane Laura. The numbers held on the histogram represent the relative percentage of frequency in percentage based on datasets that have a
certain number of missing structural features.

boxes in Figure 5). Similar results observed across the entire dataset
indicate that the roof system plays a crucial role in accurately
estimating the wall structure. Likewise, the estimation of the roof
system was significantly influenced by the wall structure (see
red box in Supplementary Figure S23).

These results indicate that the wall structure and roof system
significantly influence each other in the XGBoost prediction
process, leading to a drop in model performance when both
features are missing (Table 8). The significant influence between
wall structure and roof system appears to be driven by common
construction practices across the US, observed in all four regions
affected by each hurricane. The wall structure and roof system
predominantly use wood-frame construction. Additionally, it would
be very unlikely (less than 5% of houses in a single dataset,
and less than 1% among all datasets) that a house with wood-
framed walls would not also have a wood-framed roof. These
two features are inherently linked in US construction practices,
demonstrating consistent characteristics that do not significantly
vary in US single-family houses. Therefore, special care must

be taken when applying this XGBoost modeling approach with
more than one missing structural feature, as performance is
unlikely to be as high as when only one structural feature
is missing.

4.4 Impact of fully destroyed cases

Structural features of buildings with severe damage in
reconnaissance data are sometimes difficult to collect accurately
due to debris and other remnants, leading to an increase
in data uncertainty (Xia et al., 2023). To determine whether
excluding data from severely damaged buildings, which tends
to have higher uncertainty, improves model performance, we
trained XGBoost models without the fully destroyed cases
and compared their performance to models trained on the
full dataset (Supplementary Table S4). Out of 41 XGBoost models,
only six showed a trivial performance improvement of 0.01 in the F1
score after excluding the fully destroyed cases. Otherwise, there was
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TABLE 7 Unique combination of two missing structural features of buildings in Florida Peninsula and Keys affected by Hurricane Irma and their
frequency.

Two missing structural features Number of observations Observation ratio (%)

Number of stories, roof cover 1 0.2

Wall structure, roof system 393 94.5

Primary roof shape, secondary roof shape 4 1.0

Large door present, roof cover 3 0.7

Primary wall cladding, secondary wall cladding 11 2.6

Number of stories, large door present 4 1.0

Note: The bolded structural features in the table represent the most dominant case.

TABLE 8 Example of model performance changes when two structural features are missing.

Target
structural feature

Model performance
(one-missing)

Model performance
(two-missing)

Performance
difference

Wall structure 0.97 0.75 −0.22

Roof system 0.98 0.75 −0.23

no performance change, and in some cases, performance worsened.
These results suggest that the inclusion of destroyed properties did
not negatively impact the model performance.

4.5 Study limitations

Building structural features are important in determining
building damage and loss during hurricanes. However, some
of these features such as primary roof shape, primary wall
cladding, and building age, exhibit distributions with a relatively
wider range of classes and values, which still pose challenges in
accurately predicting missing features. Including these structural
features, all the model performances presented in this study
can be further enhanced through future research. One possible
improvement is to enhance the hyperparameter tuning process.
In this study, 220 XGBoost models were individually tuned using
a simple grid search with 144 hyperparameter combinations.
Despite setting the range of each hyperparameter based on
preliminary tests showing high performance, the global optimum
may have been missed. Future studies should explore a wider
range of hyperparameters with tighter grids. Additionally, other
hyperparameter tuning approaches, such as random search and
Bayesian optimization, should be tested to reduce the computational
cost of hyperparameter tuning.

Another potential improvement is to explore different
machine learning algorithms, as this study only considered
XGBoost. For example, a recent study introduced mixgb, an
XGBoost-based multiple imputation method that combines
subsampling and predictive mean matching to manage missing
data in large, complex datasets, accurately reflecting model
uncertainty and generating reliable imputations Deng and

Lumley (2023). Furthermore, incorporating ensemble methods of
various machine learning models to enhance the generalization
performance of the model is also a significant direction for
future research.

The goal of this study was to develop site-specific machine
learning models and evaluate the combined influence of geospatial,
hazard, and damage level data. Accordingly, our analysis focused
on assessing the performance of the XGBoost model with respect
to construction practices (Section 4.1) and the significance of
geospatial, hazard, and damage level data (Section 4.2), rather
than analyzing intercorrelations between individual features. Future
research should investigate the impact of feature intercorrelations
on model performance and assess feature independence. This
analysis would aid feature engineering to improve model accuracy,
reduce training time by lowering input dimensionality, and mitigate
overfitting.

In this study, the trained models did not address all possible
cases of missing structural features. We analyzed only one case with
twomissing structural features. However, the frequency distribution
of missing structural features in the current dataset shows that
41.3% of the cases have two missing structural features, while 11.0%
have three or more missing structural features among the data
that have at least one missing value. This indicates a significant
prevalence of multiple missing structural features. To reflect this, a
more comprehensive modeling approach is necessary. For example,
predicting two missing structural features requires considering all
55 combinations from the 11 structural features. If three structural
features are missing, 165 combinations need to be considered.
Therefore, research is needed to effectively develop models for these
various missing combinations. Moreover, to improve the accuracy
of each model, effective feature engineering should be conducted.
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FIGURE 5
SHAP waterfall plots illustrating the prediction process of XGBoost models for five wall structure classes ((A) Brick/Masonry, (B) Concrete/Wood, (C)
Masonry/Concrete, (D) Masonry/Wood, and (E) Wood). The x-axis represents the log-odds values, which are the natural logarithms of the ratio of the
probability of an event occurring to the probability of it not occurring. The red bars show features that made the model more likely to predict the class
as true, while the blue bars show features that made the model more likely to predict the class as false.

Future research directions should include developing models that
consider differentmissing combinations and identifying the optimal
variables to maximize model performance.

5 Conclusion

We introduced an XGBoost approach to estimate missing
structural features of damaged buildings from the reconnaissance
datasets. A total of 220 XGBoost models were trained, considering
four regions, 11 structural features, and 5-fold cross-validation. The
results showed F1 scores between 0.65 and 1.00 for nine discrete
structural features and R2 values of 0.32 and 0.98 for two continuous
structural features. This study’s framework allows future disasters

in specific areas to utilize locally collected reconnaissance data to
quickly and efficiently generate models for reconstructing missing
structural features. The key findings are as follows:

1. Although the same XGBoost modeling approach was applied,
the performance of the XGBoost models varied depending on
each region. The XGBoost models for Southwest Louisiana
affected by Hurricane Laura outperformed others, achieving
F1 scores above 0.86 for all discrete structural features. This
is because datasets of Southwest Louisiana showed more
homogeneous construction patterns.

2. Including geospatial, hazard, and damage level data in
the training set improved XGBoost model performance,
increasing the F1 score by up to 0.16 for discrete features and
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R2 by 0.44 for continuous features compared to models trained
solely on known structural features.

3. Feature importance analysis revealed that geospatial, hazard,
and damage level data contributed between 10% and 54% on
average to reconstructing missing structural features among
four regions.

4. SHAP analysis revealed that if structural features that
significantly influence each other are missing simultaneously,
the performance of the XGBoost model can decrease.

5. While this XGBoost approach may not accurately predict all
missing structural features, we believe it has the potential
to support post-hurricane building damage assessments by
suggesting the most likely values for building details that are
not present in the reconnaissance data.
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