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Introduction: This study explores the impact of Building Information Modelling
(BIM) staff on construction project performance, with a focus on the roles of the
Unified Theory of Acceptance and Use of Technology (UTAUT) and Task-
Technology Fit (TTF). The research aims to understand how BIM personnel
attributes influence project outcomes and how these effects are mediated by
TTF and moderated by UTAUT.

Methods: Partial Least Squares Structural Equation Modelling (PLS-SEM) was
employed to analyze the data, allowing for the examination of complex
interactions between BIM staff attributes, project characteristics, and
outcomes. This method is particularly suited for handling smaller sample sizes
and non-normal data distributions.

Results: The analysis revealed that BIM staff attributes—such as team size,
expertise, training, and experience—significantly influence construction project
performance. Key performance areas affected include design efficiency, error
reduction, and adherence to schedules and budgets. TTF emerged as a critical
mediator, enhancing performance metrics like stakeholder satisfaction and cost
management. UTAUT further moderated the relationship between BIM staff, TTF,
and project performance, highlighting the importance of technology acceptance
and use within BIM contexts.

Discussion: The findings emphasize the need for organizations to strategically
allocate BIM staff and invest in their professional development to optimize project
outcomes. Recommendations include fostering supportive organizational
structures and promoting a culture of collaboration and innovation to
enhance project resilience and performance, particularly in the face of
disruptive events. Future research should expand to diverse project types and
scales, investigate emerging technologies, and consider cultural factors through
cross-cultural studies. Longitudinal studies and cost-benefit analyses of BIM
training and technology adoption are also suggested to provide deeper
insights and inform strategic decision-making.

KEYWORDS

building information modelling (BIM) staff, construction project performance, unified
theory of acceptance and use of technology (UTAUT), task-technology fit (TTF), BIM
adoption, project management, SMART PLS-SEM

OPEN ACCESS

EDITED BY

Hongjiang Yao,
Shandong University, China

REVIEWED BY

Muneera Esa,
University of Science Malaysia (USM), Malaysia
Bingxin Zhang,
Henan Finance University, China

*CORRESPONDENCE

Hazel Faith Gacheri,
gacherihazel@gmail.com

Yuan Chen,
chen_yuan@zzu.edu.cn

RECEIVED 31 May 2024
ACCEPTED 19 August 2024
PUBLISHED 29 August 2024

CITATION

Chen Y, Gacheri HF and Sun G (2024) Empirical
investigation of building information modelling
(BIM) staff’s impact on construction project
performance: evidence in Kenya.
Front. Built Environ. 10:1441604.
doi: 10.3389/fbuil.2024.1441604

COPYRIGHT

© 2024 Chen, Gacheri and Sun. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 29 August 2024
DOI 10.3389/fbuil.2024.1441604

https://www.frontiersin.org/articles/10.3389/fbuil.2024.1441604/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1441604/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1441604/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1441604/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1441604/full
http://orcid.org/0000-0003-4917-3386
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2024.1441604&domain=pdf&date_stamp=2024-08-29
mailto:gacherihazel@gmail.com
mailto:gacherihazel@gmail.com
mailto:chen_yuan@zzu.edu.cn
mailto:chen_yuan@zzu.edu.cn
https://doi.org/10.3389/fbuil.2024.1441604
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2024.1441604


1 Introduction

The construction industry is undergoing a transformative phase
with the emergence of Construction 4.0, where Building
Information Modelling (BIM) stands out as a crucial component
(Adepoju, 2022; Azhar, 2011). BIM offers a plethora of benefits
including sustainability, cost predictability, time efficiency, and site
safety by facilitating digital documentation of building performance
throughout its lifecycle (UNECE. United Nations, 2021; Dung et al.,
2012). Despite its recognized advantages, global adoption of BIM
faces challenges, with varying levels of implementation across
different countries (Takyi-Annan and Zhang, 2023; Olanrewaju
et al., 2022; Olanrewaju et al., 2020; Khodeir and Nessim, 2018).

BIM staff, including roles such as BIMManagers, Coordinators,
Modelers, Technicians, and Engineers, are responsible for planning,
designing, and managing building projects using digital models,
requiring technical proficiency, attention to detail, communication,
problem-solving, project management, collaboration, and
adaptability. Their expertise and training ensure high-quality
outputs, while the team size and composition are adjusted to
meet project demands efficiently (Aladağ et al., 2023). However,
existing research has often overlooked the specific attributes and
effectiveness of BIM staff, leading to gaps in understanding the
dynamics influencing BIM adoption and project performance. This
omission leaves a significant gap in the literature, particularly
concerning how BIM staff, with focus on BIM staff attributes,
such as training, experience, and expertise, impact project outcomes.

Studies primarily focusing on return on investment (ROI) (Giel
et al., 2019; Huh et al., 2023) have overlooked crucial aspects related
to BIM staff attributes and project characteristics, highlighting the
need for a deeper exploration (Olofsson Hallén et al., 2023).
Addressing this research gap requires evaluating the influence of
BIM personnel on project outcomes, considering attributes like staff
size, training, experience, and expertise. Understanding the nuanced
relationship between BIM staff attributes and project outcomes can
inform industry practices and optimize BIM implementation
strategies.

Kenya, characterized by its low adoption of BIM, (Daniel and
University of Nairobi, 2016), provides a valuable context for this
research despite the lower usage rates. The low adoption does not
imply a lack of BIM practitioners; (Ariono et al., 2022; Adekunle
et al., 2021; Saka et al., 2020); in fact, there is a sufficient number of
professionals whose experiences and challenges offer rich insights
into the barriers to BIM adoption. Recent studies highlight that even
in regions with limited BIM usage, existing practitioners can provide
critical information on the obstacles and opportunities for broader
adoption. For example, Alasmari et al. (2022) and Cao et al. (2022)
highlight how practitioners can significantly contribute to
understanding BIM’s optimization and integration, even in less
common contexts (Cao et al., 2022; Alasmari et al., 2022).

By examining these specific barriers—such as limited user
awareness, inefficiency, perceptions, and inadequate training—we
can develop targeted strategies to enhance BIM adoption and project
performance (El Hajj et al., 2023; Kekana et al., 2015; Olugboyega
and Windapo, 2023; Mosse et al., 2020; Mtya and Windapo, 2019).
By addressing these specific barriers, the research can provide
targeted insights and strategies to enhance BIM adoption and
project performance. This focus can guide project managers on

effective BIM staffing and training needs, and motivate stakeholders
to formulate policies that ultimately enhance BIM uptake not only in
Kenya but also in other similar contexts globally. Research in Kenya,
therefore, serves as a critical case study for understanding and
overcoming the obstacles to BIM adoption in developing
countries, offering broader applicability and impact (Olugboyega
and Windapo, 2023; Mtya and Windapo, 2019).

The construction industry’s diversity in project characteristics
such as size, complexity, and delivery method significantly influence
the utilization and effectiveness of BIM staff. Examining how these
factors interact with BIM staff roles, such as BIM managers,
modelers, and engineers, is crucial for tailoring implementation
strategies to specific project requirements (Hampson and Tatum,
1997). Empirical evidence is vital in justifying the role of BIM staff
and assessing the effectiveness of BIM implementation practices
(Raza et al., 2023). By systematically measuring key performance
indicators, researchers can quantitatively assess the impact of BIM
staff on project outcomes, enabling evidence-based decision-making
and targeted interventions.

Despite the importance of BIM staffing, its impact on project
productivity and performance has rarely been studied, indicating a
significant gap in the literature (Ham and Yuh, 2023; Neelamkavil
and Ahamed, 2012). Key issues include limited awareness and
expertise among professionals, resistance to change, and
inadequate stakeholder support. (Maina and University of
Nairobi, 2018; Mwero et al., 2019). Existing literature, primarily
from regions like Hong Kong (Chan, 2014), identifies these
challenges but often fails to provide effective strategies for
overcoming them (Chan et al., 2019). The real issue lies in the
lack of examination of BIM staff attributes and their interaction with
BIM tools to perform tasks (Semaan et al., 2021). Using the task-
technology fit (TTF) framework can assess whether the technology
suits the tasks considering user attributes, while the Unified Theory
of Acceptance and Use of Technology (UTAUT) can enhance
understanding of these attributes. Integrating TTF and UTAUT
in empirical studies can provide insights into optimizing BIM
staffing and technology use, thereby improving project outcomes
and filling a critical gap in the current research. Additionally,
optimizing BIM adoption in regions like Kenya necessitates
tailored strategies and recommendations addressing specific
barriers and contextual challenges (Oyuga et al., 2021).
Ultimately, improving the expertise and mindset of BIM staff is
essential for overcoming adoption barriers and fostering a robust
implementation of BIM practices within the construction industry.

1.1 Theoretical foundations of the research

This study examines the impact of BIM (Building Information
Modelling) staff on construction project performance using the
Unified Theory of Acceptance and Use of Technology (UTAUT)
and Technology Task Fit (TTF) frameworks. In this study, we utilize
the Unified Theory of Acceptance and Use of Technology (UTAUT)
framework to explore how BIM staff’s perceptions and
attitudes—specifically focusing on performance expectancy, effort
expectancy, social influence, and facilitating conditions—influence
the adoption and utilization of BIM technology, thereby impacting
project outcomes (Venkatesh et al., 2003). TTF emphasizes the
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alignment between technology capabilities and task requirements,
suggesting that successful BIM implementation depends on how
well the technology meets specific project needs, considering factors
like project size, complexity, and delivery method (Goodhue and
Thompson, 1995).

Addressing the technology utilization-acceptance gap requires
understanding both technological and human factors influencing
adoption. Various models like the Technology Acceptance Model
(TAM), (Davis et al., 1989; Venkatesh and Davis, 2000), Innovation
Diffusion Theory (IDT), (Rogers, 1995), and the Unified Theory of
Acceptance and Use of Technology (UTAUT) (Venkatesh et al.,
2003; Venkatesh et al., 2012) have been instrumental in explaining
technology acceptance. TAM emphasizes perceived usefulness and
ease of use, (Ramanayaka and Venkatachalam, 2015), while TTF
focuses on the alignment between technology characteristics and
user tasks (Goodhue and Thompson, 1995). UTAUT extends these
models by considering social and organizational influences.

Combining UTAUT with TTF provides a robust framework for
understanding BIM adoption and its impact on project
performance. This integrated model includes performance
expectancy, effort expectancy, social influence, and facilitating
conditions from UTAUT2, while TTF focuses on the alignment
between BIM technology and tasks. It considers unique project
characteristics in the construction industry and leverages empirical
validation from both models. Factors such as error reduction,
stakeholder satisfaction, and cost management are included to
offer a nuanced examination of how individual and task
characteristics interact in technology adoption.

1.1.1 Unified Theory of Acceptance and Use of
Technology

The Unified Theory of Acceptance and Use of Technology
(UTAUT), Figure 1 developed by Venkatesh et al., integrates
several prior models to explain and predict individuals’
acceptance and use of technology (Venkatesh et al., 2003). The
framework identifies four primary constructs—performance
expectancy, effort expectancy, social influence, and facilitating
conditions—that directly influence behavioural intention and
technology use.

UTAUT has been used to study the adoption of electronic health
records among healthcare professionals, demonstrating its
applicability in predicting user acceptance of health information
systems (Bawack and Kala Kamdjoug, 2018; Dash and Sahoo, 2022;
Rouidi et al., 2022). In education, UTAUT has helped analyze factors
influencing the acceptance of e-learning systems among students
and educators (Gunasinghe et al., 2020; Abbad, 2021). The theory
has also been applied in the context of information systems to
examine user acceptance of enterprise resource planning (ERP)
systems (Uddin et al., 2019). In construction, studies have
utilized UTAUT to investigate the adoption of BIM and other
technologies by construction professionals (Howard et al., 2017).

Specifically, UTAUT helps understand how these constructs
affect the adoption of new technologies like BIM in construction.
Modifying the UTAUT model for digital transformation in the
construction industry demonstrates its adaptability and relevance.
Recent studies have shown UTAUT’s flexibility, such as analyzing
factors influencing users’ intention to use Open AI’s ChatGPT,
illustrating the model’s applicability to emerging technologies
(Menon and Shilpa, 2023).

In BIM staff research, UTAUT provides insights into how
professionals perceive and adopt new tools, considering factors
like perceived usefulness, ease of integration, social influences,
and organizational support. Moderating factors like age, gender,
experience, and voluntariness help tailor interventions to specific
user groups, enhancing technology implementation (Venkatesh
et al., 2003; Zhou et al., 2010). UTAUT offers a comprehensive
analysis of technology adoption’s impact on project performance,
guiding strategies to improve outcomes like error reduction, cost
management, and stakeholder satisfaction.

UTAUT research predominantly focuses on user perceptions of
technology’s usefulness, compatibility, and relative advantage, but it
often overlooks the critical aspect of technology fit in adoption, as
well as the conditions and user-perceived factors that explain the
utilization of technology (Venkatesh et al., 2012; Bagozzi, 2007). To
address these gaps, we integrated the TTF framework with UTAUT
to provide a more comprehensive understanding of how well BIM
technology aligns with specific project tasks and user needs, thereby
enhancing its adoption and effectiveness.

FIGURE 1
UTAUT (Venkatesh et al., 2003).
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1.1.2 Task-technology fit (TTF) theory
The Task-Technology Fit (TTF) theory in Figure 2, as described

by Goodhue and Thompson (1995), emphasizes the alignment
between task characteristics, technology features, and user
capabilities to enhance individual performance (Goodhue and
Thompson, 1995). This theory posits that technology utilization
and individual performance improve when there is a good fit
between the tasks and the technology used.

In healthcare, it predicts user satisfaction with clinical decision
support systems, to understand IoT-based healthcare acceptance,
evaluate big data analytics in mobile cloud systems, assess RFID
adoption, and explore factors influencing wearable device adoption
(Misra et al., 2023; Gu and Black, 2021; Wang and Lin, 2019). In
education, it assesses e-learning acceptance (Alyoussef, 2021a;
Alyoussef, 2021b). In construction, TTF evaluates the adoption of
high off-site construction level technologies. (Cai et al., 2023).

Specifically, TTF helps in construction by evaluating how well
BIM tools fit specific tasks, impacting productivity and performance.
Recent studies have integrated TTF with UTAUT to understand
technology adoption and performance, such as in mobile banking
(Abbas et al., 2018).

Recent studies have further demonstrated the adaptability and
relevance of TTF by integrating it with UTAUT to understand
technology adoption and performance in various settings. An
example is the study on mobile banking adoption, showing how
task fit and user acceptance jointly influence technology use
(Franque et al., 2023).

Researchers can use TTF to assess how BIM tools support tasks
like construction planning and facility management. This alignment
is crucial for optimizing BIM use, leading to improved efficiency,

reduced errors, and enhanced collaboration. Integrating TTF with
BIM research provides a comprehensive analysis of how technology
adoption affects project performance, offering insights for successful
BIM implementation and better project outcomes.

1.1.3 Theory extensions
1.1.3.1 Task technology fit and Unified Theory of
Acceptance and Use of Technology

The integration of TTF with UTAUT in the TTF-UTAUTmodel
in Figure 3 represents a significant advancement in understanding
technology adoption and utilization (Venkatesh et al., 2012;
Marikyan and Papagiannidis, 2023). This combined model
leverages key constructs from both TTF and UTAUT, addressing
gaps in prior research by emphasizing the importance of task-
technology fit alongside performance expectancy, effort
expectancy, social influence, and facilitating conditions. By
focusing on the alignment between task requirements and
technology functionality, the TTF-UTAUT model enhances the
predictive power of technology adoption behavior, suggesting
that when technology aligns well with tasks, users’ performance
expectations and ease of use perceptions improve.

The integration of TTF and UTAUT frameworks provides a
robust foundation for understanding technology adoption across
diverse sectors. In mobile banking, TTF assesses how well
technologies align with user tasks, complemented by UTAUT
which explores psychological and social factors influencing
adoption. This approach has been pivotal in studying mobile
banking adoption, as well as illuminating factors shaping
consumer intentions in emerging markets. Moreover, TTF-
UTAUT models have been applied to assess social media use in

FIGURE 2
TTF (Goodhue and Thompson, 1995).
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education, organizational digital transformations, public acceptance
of autonomous buses, and students continued use of MOOCs,
demonstrating their versatility and effectiveness across different
technological contexts (Zhou et al., 2010; Abbas et al., 2018;
Dash et al., 2023; Al-Rahmi et al., 2022; Ojiaku et al., 2024; Kim
et al., 2022; Oliveira et al., 2014). In construction, the combined TTF
and UTAUT frameworks assess BIM adoption by evaluating how
well BIM functionalities align with construction tasks and user
acceptance, impacting project outcomes. Efforts to enhance BIM
acceptance in facilities management integrate TTF and UTAUT,
demonstrating their effectiveness in optimizing BIM utilization
across construction project phases (Hilal and Maqsood, 2017;
Hilal et al., 2021).

The TTF-UTAUT model suggests that technology adoption
hinges on the perceived fit between tasks and technology.
According to TTF, this fit is determined by the characteristics of
both the technology and the tasks. The theory posits that even if
individuals have a positive attitude towards a technology, they are
unlikely to adopt it if it does not align with their task requirements
(Goodhue and Thompson, 1995).

In line with UTAUT, technology adoption is driven by factors
such as effort expectancy, performance expectancy, facilitating
conditions, and social influence (Venkatesh et al., 2003).
Performance expectancy is particularly influenced by perceived
task-technology fit, (Zhou et al., 2010), as confirmed by studies
showing that TTF impacts perceived usefulness (Dishaw and Strong,
1999). Both performance expectancy and perceived usefulness gauge
the expected performance improvements from technology use.

Thus, effective technology functionality that meets task needs
enhances performance expectations (Zhou et al., 2010).

Furthermore, effort expectancy is shaped by technology
characteristics, with more functional technologies requiring less
effort to use (Zhou et al., 2010).

1.2 BIM adoption

Building Information Modelling (BIM) is transforming the
architectural, engineering, and construction (AEC) sectors by
enabling virtual prototyping of building designs before construction
begins, (Dung et al., 2012), integrating scheduling, cost data,
sustainability analysis, and facility management into the modelling
process. This enhances collaboration, project performance, and lifecycle
management (Aouad and L. A. Routledge, 2006; Ganah, 2015).

Globally, BIM adoption has gained traction through initiatives like
the United Kingdom government’s BIM Level 2 mandate and
government-led efforts in Singapore, South Korea, and Japan.
However, adoption in developing countries faces challenges like
limited access to technology and resource constraints (Bernstein
et al., 2014) (Cabinet Office H. Cabinet Office, 2011) (Technology,
2020). However, adoption in developing countries faces challenges such
as limited access to technology and resource constraints, although
recognition of BIM’s benefits is steadily increasing (Succar, 2015).

In Kenya, BIM adoption is at 56.6%, with significant barriers
including limited understanding of BIM capabilities, insufficient
training, resistance to change, and regulatory hurdles (Mosse et al.,

FIGURE 3
Integrated TTF and UTAUT (Zhou et al., 2010).
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2020). This study focuses on Kenya to address these specific barriers,
providing insights and strategies to enhance BIM adoption and
project performance. By identifying effective BIM staffing and
training needs, the research aims to guide project managers and
motivate stakeholders to formulate policies that will ultimately
enhance BIM uptake in Kenya and similar contexts globally.

Strategies for BIM implementation include bottom-up
approaches that foster organizational alignment and a culture of
innovation, (Xue et al., 2023), training and education programs to
equip staff with necessary skills and knowledge, (Eadie et al., 2013;
Girginkaya Akdag and Maqsood, 2020; Khosrowshahi and Arayici,
2012), collaborative workflows to enhance coordination and
communication, (Rashidian et al., 2022; Rashidian et al., 2023),
adherence to standards and guidelines for consistency and
interoperability, (Barbosa et al., 2016; Chegu Badrinath and
Hsieh, 2019), and the integration of technology acceptance
theories like TAM and UTAUT to understand users’ perceptions
and behaviours regarding BIM adoption (Hill et al., 1977)
(Venkatesh and Davis, 2000) (Davis et al., 1989) (Hilal et al.,
2019). These strategies highlight the critical role of BIM staff in
facilitating coordination, communication, and data exchange among
project stakeholders, emphasizing the collaborative nature of BIM
implementation and its impact on project performance.

1.3 BIM staff and attributes

BIM staff, including roles such as BIM managers, coordinators,
modelers, and technicians, are crucial for the successful
implementation and utilization of BIM technology in construction
projects. These professionals oversee BIM processes, create and
maintain models, facilitate stakeholder collaboration, and ensure
compliance with project standards (Oraee et al., 2019). Leveraging
BIM tools, they optimize workflows, improve coordination, and
enhance decision-making throughout the project lifecycle,
maximizing BIM benefit (Ismail et al., 2019). However, challenges
like a scarcity of technical expertise, resistance to change, and limited
training hinder effective utilization, especially in developing countries
where adoption is more industry-driven than government-mandated
(Adam et al., 2022).

The effectiveness of BIM implementation is significantly influenced
by key attributes of BIM staff. Team size is crucial; larger teams with
diverse skill sets are better equipped for comprehensive BIM
implementation and handling complex projects, leading to improved
performance (Li, 2017). Experience level enhances BIM workflows,
resulting in efficient coordination and better outcomes (Wang, 2020).
Expertise in specific domains, such as structural engineering or
architectural design, improves modeling quality and decision-
making, contributing to cost savings. Effective training programs are
essential for equipping BIM staff with the necessary skills, reducing
errors, and enhancing productivity (Zhang et al., 2018).

BIM staff roles are multifaceted, encompassing project
management, stakeholder collaboration, model creation, and
analysis. They oversee BIM processes from inception to
completion, ensuring centralized project information and
integrating data across disciplines (Davies et al., 2017; Hosseini
et al., 2018). Responsibilities also include creating detailed 3D
models, conducting optimization analyses, and providing training

to other team members (Joseph, 2011; Habib et al., 2022). These
roles are vital for driving project success, optimizing outcomes, and
ensuring efficient BIM implementation.

Research on BIM staff’s roles, challenges, and impact on project
performance is essential as the construction industry increasingly
adopts BIM. Although existing studies explore BIM adoption and
user satisfaction, they often overlook the BIM staff influence various
project performance on metrics like cost management, schedule
adherence, error reduction, and stakeholder satisfaction (Abd
Hamid et al., 2020; Azmi et al., 2018). Closing this research gap
is crucial for developing strategies to optimize BIM implementation
and enhance project outcomes. Future studies should investigate
how BIM staff attributes, such as technical skills and organizational
proficiency, directly affect project performance, guiding
stakeholders to invest in BIM staff training and development.

1.4 Project performance

The successful implementation of BIM in construction projects
is closely tied to various project performance indicators such as cost
management, schedule adherence, error reduction, and stakeholder
satisfaction. Key performance indicators (KPIs) in BIM projects,
including cost performance, schedule performance, quality
improvement, safety enhancement, and client satisfaction, serve
as benchmarks for evaluating BIM’s success (Chan and Chan,
2004; Okudan et al., 2022; Ansari et al., 2022; Cox et al., 2003).
BIM-enabled projects typically show improvements in these areas
due to enhanced collaboration, clash detection, and data-driven
decision-making. However, the specific contributions of BIM staff to
these performance improvements require further investigation.

A comprehensive understanding of BIM’s tangible impacts
necessitates a nuanced examination of performance metrics,
particularly regarding BIM staff’s role in project outcomes. As
organizations increasingly integrate BIM, it is crucial to understand
how the expertise, size, training, and characteristics of BIM staff
contribute to project performance. Existing literature acknowledges
BIM’s transformative potential in enhancing project efficiency and
collaboration (Ratajczak et al., 2019; Kim et al., 2021). For example,
BIM implementation during construction phases can identify and
resolve significant cost issues, with some studies highlighting a 15.92%
impact on total project costs due to design error identification and
resolution (Kim et al., 2017). This review critically evaluates empirical
studies on the relationship between BIM staff attributes—such as
expertise, size, training, and characteristics—and project performance,
providing a foundation for understanding the interplay between
human factors and BIM implementation in the construction industry.

2 Methodology

2.1 Study location

The study was conducted in Kenya specifically the Kenyan
Construction Industry in the counties of Nairobi, Kisumu,
Nakuru and Kiambu. The population directly involved can be
identified as the aggregate of elements possessing the attributes
or information of interest to the researcher and for which inferences

Frontiers in Built Environment frontiersin.org06

Chen et al. 10.3389/fbuil.2024.1441604

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1441604


are to be drawn (Marczyk, 2006). The study focused on construction
firms and government agencies in Nairobi, Mombasa, Nakuru, and
Kiambu counties in Kenya. These locations were chosen to provide a
diverse representation of the construction industry, reflecting
various geographic regions, urbanization levels, and development
contexts. This selection ensures a comprehensive understanding of
BIM technology’s impact across different settings in Kenya.

2.2 Study design

A survey research design was employed, consistent with deductive
research methods (Saunders et al., 2012). The research approach
highlighted in Figure 4 adopted a deductive approach, which aligns
with the positivist model, allowing for theory formulation and empirical
testing of anticipated outcomes (Bryman, 2012). Researchers employing
the deductive approach begin by establishing an abstract, logical
relationship among concepts, before progressing towards concrete
empirical validation (Kreuger and Allynand Bacon, 2006).

The study aimed to uncover causal relationships between
variables such as BIM staff attributes, task alignment, technology
characteristics, individual characteristics, project characteristics, and
project performance indicators. A quantitative approach was chosen
for its suitability in evaluating theories and generalizing results
(Sarstedt et al., 2021; Homburg et al., 2021). The focus was on
BIM staff in BIM-enabled construction projects in Kenya.

2.3 Target population

The population involved is identified as the aggregate of
elements possessing the attributes or information of interest to

the researcher and from which inferences are to be drawn
(Marczyk, 2006). For this study, construction firms and
government agencies in Kenya constituted the population. This
included major firms as well as national and local government
agencies located in Nairobi, Mombasa, Nakuru, and Kiambu
Counties in Kenya.

These counties were selected to provide a diverse representation
of Kenya’s construction industry, encompassing various geographic
regions, levels of urbanization, and development contexts.

2.4 Sampling

In the current study, purposive sampling is chosen due to the
dispersed nature of Building Information Modelling (BIM)
professionals across different sites and cities. Despite the practical
challenges of approaching all construction firms and BIM
professionals within a restricted timeframe, significant efforts
were made to collect data from a sample of BIM professionals in
Kenya. This method is deemed appropriate for the study, and BIM
staff are selected as respondents based on previous studies, (Stemn
et al., 2019; Zhu et al., 2020), ensuring a focus on factors influencing
their adoption and implementation of BIM.

2.5 Data collection and tools

Primary data were collected using a questionnaire, a common
tool in surveys (Dörnyei and Taguchi, 2009). The study employed
the self-administered approach, although respondents were
encouraged to contact the researcher for guidance or clarification
as needed. Both electronic (e-surveys) and print versions were the

FIGURE 4
Methodological approach.
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designs employed for the questionnaire, to facilitate maximum
participation by firms. The questionnaire was organized into
three main sections:

Section A: Individual and project profile, covering demographics
such as gender, age, years of experience, respondent’s profession,
project phase, and expertise level.

Section B: Independent variables, encompassing four
constructs—BIM staff attributes, Project Characteristics,
Technology Characteristics.

Section C: Moderating variables, consisting of three
constructs—UTAUT and TTF.

The questionnaire was initially tested for accuracy with BIM
professionals in Henan Province, China. Subsequently, it was
distributed to 50 AEC firms approved by the National
Construction Authority and Board of Registration of
Architects and Quantity Surveyors of Kenya (BORAQS), and
emailed to 500 licensed engineers, architects, quantity surveyors,
MEP, and construction project manager registered with the
Engineers Board of Kenya (EBK) and BORAQS in Kenya. A
total of 412 valid responses were received and processed. A five-
point Likert scale, ranging from 5 (strongly agree) to 1 (strongly
disagree) was used.

2.6 Survey instruments

The survey instruments were designed from the methodological
approach in Survey sections

1. Demographics: Basic information about the respondents.
2. BIM Staff Attributes:

• Size: Number of BIM staff members involved in the project.
• Experience: Years of experience working with BIM
technologies.

• Expertise: Proficiency and specialization in BIM-
related tasks.

• Training: Extent and quality of BIM-specific
training received.

3. Task-Technology Fit (TTF) Constructs:
• Fit: Alignment between task requirements and technology
capabilities.

• Task Characteristics (Project Characteristics): Nature and
requirements of tasks performed in the project.

5. Technology Characteristics:
• Features and capabilities of the BIM technology.
• Usability: Ease of use of BIM technology by staff.
• Compatibility: Integration of BIM technology with existing
workflows and systems.

6. Performance Impact (Project Performance Indicators):
• Cost Management: Effectiveness in controlling project costs.
• Schedule Adherence: Ability to meet project timelines.
• Error Reduction: Enhancements in project quality
due to BIM.

• Stakeholder Satisfaction: Satisfaction of project stakeholders
with BIM-enabled outcomes.

7. UTAUT Constructs (Utilization Construct in TTF):
• Performance Expectancy: Users’ belief in BIM’s
contribution to job performance gains.

• Effort Expectancy: Perceived ease of use associated with BIM
technology.

• Social Influence: Perception of the importance of BIM use by
influential others.

• Facilitating Conditions: Belief in organizational and
technical support for BIM use.

Figure 4 to gather data on BIM staff attributes, TTF, and
UTAUT. The questionnaire, developed from validated
instruments and tailored for BIM in construction, underwent
pilot testing to ensure clarity and reliability. Content validity was
established through expert reviews, and internal consistency was
measured using Cronbach’s alpha.

2.7 Hypothesis deduction process

The conceptual framework in Figure 5 integrates Task-
Technology Fit (TTF) and the Unified Theory of Acceptance and
Use of Technology (UTAUT) providing an understanding of the
factors influencing BIM adoption and its impact on project
performance. This study proposes the following hypotheses based
on these theoretical foundations.

2.7.1 BIM staff size will significantly influence
project performance
2.7.1.1 Theoretical Foundation

According to TTF, the size of the BIM team impacts how
effectively BIM functionalities align with project tasks, thereby
influencing project outcomes. Larger teams are likely to have
more diverse skill sets and resources, enhancing project
coordination and decision-making.

2.7.1.2 Contribution of TTF-UTAUT
The integrated TTF-UTAUT framework suggests that the size of

the BIM team influences user perceptions (UTAUT constructs)
about BIM technology’s effectiveness in supporting project tasks,
thus affecting project performance indicators.

2.7.2 BIM staff experience will significantly
influence project performance
2.7.2.1 Theoretical Foundation

TTF posits that the experience level of BIM staff affects their
ability to leverage BIM functionalities effectively within project
contexts. Experienced staff are expected to contribute to
smoother project execution and improved outcomes.

2.7.2.2 Contribution of TTF-UTAUT
In the TTF-UTAUT model, BIM staff experience influences

their perceptions of effort expectancy and performance expectancy
(UTAUT constructs), which in turn impact how BIM tools are
utilized and ultimately influence project performance.

2.7.3 BIM staff expertise will significantly influence
project performance
2.7.3.1 Theoretical Foundation

TTF emphasizes that expertise in specific domains (e.g.,
structural engineering, architectural design) enhances the quality
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of BIM modeling and analysis, leading to better decision-making
and cost savings.

2.7.3 2 Contribution of TTF-UTAUT
Within the TTF-UTAUT framework, BIM staff expertise is

crucial for perceived usefulness and perceived ease of use
(UTAUT constructs), influencing their acceptance and adoption
of BIM technologies, thereby affecting project
performance outcomes.

2.7.4 BIM staff training will significantly influence
project performance
2.7.4.1 Theoretical Foundation

TTF suggests that training programs improve BIM staff’s
technical skills and knowledge, leading to more effective
utilization of BIM tools and methodologies throughout the
project lifecycle.

2.7.4.2 Contribution of TTF-UTAUT
In the TTF-UTAUT model, training programs impact

facilitating conditions (UTAUT construct), which support BIM
adoption and utilization. Enhanced training is expected to
positively influence how well BIM tasks align with technology
capabilities, thereby improving project performance.

2.7.5 Technology characteristics (e.g., Usability,
Compatibility) positively influence TTF
2.7.5.1 Theoretical Foundation

TTF highlights that favorable technology characteristics
enhance the alignment between technology capabilities and user
tasks, facilitating better task-technology fit.

2.7.5.2 Contribution of TTF-UTAUT
Within the TTF-UTAUT framework, favorable technology

characteristics influence performance expectancy and effort
expectancy (UTAUT constructs), which contribute to users’
perceptions of task-technology fit and ultimately impact project
performance.

2.7.6 TTF significantly influences project
performance indicators
2.7.6.1 Theoretical Foundation

TTF posits that the degree of alignment between technology and
task requirements directly affects project performance indicators
such as cost management, schedule adherence, and quality
improvement.

2.7.6.2 Contribution of TTF-UTAUT
In the integrated model, TTF’s influence on user perceptions

(UTAUT constructs) affects their behavioral intentions and actual

FIGURE 5
Conceptual framework.
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use of BIM technologies, thereby influencing project performance
indicators.

2.7.7 UTAUT will significantly affect TTF
2.7.7.1 Theoretical Foundation

UTAUT explains that user acceptance and behavioral intentions
are shaped by performance expectancy, effort expectancy, social
influence, and facilitating conditions.

2.7.7.2 Contribution of TTF-UTAUT
UTAUT constructs influence users’ perceptions of how well

BIM functionalities fit with their tasks (TTF), indicating that positive
UTAUT outcomes lead to greater perceived task-technology fit and
vice versa.

2.7.8 UTAUT constructs will significantly mediate
the positive relationship between TTF and project
performance indicators
2.7.8.1 Theoretical Foundation

UTAUT constructs mediate the relationship between user
perceptions and technology adoption outcomes, suggesting that
favorable perceptions (e.g., performance expectancy, effort
expectancy) lead to better project performance.

2.7.8.2 Contribution of TTF-UTAUT
In the integrated model, UTAUT constructs mediate how TTF

influences project performance indicators. For instance, high
performance expectancy and effort expectancy (UTAUT) mediated by
TTF enhance project outcomes through improved task-technology fit.

These hypotheses are grounded in the foundational theories of
TTF and UTAUT, highlighting their relevance and applicability in
examining BIM adoption and project performance within the
construction industry. This integrated approach aims to provide
a nuanced understanding of the complex interplay between human
factors, technology fit, and project outcomes.

2.8 Data analysis

Structural Equation Modelling (SEM) was used to explore the
impact of BIM staff on project performance. SEM is a flexible
statistical technique for modelling hypotheses and examining
relationships between variables, both measurable and unmeasurable.
(Henseler et al., 2009). Confirmatory FactorAnalysis (CFA) in SEMwas
employed to test the measurement model, ensuring that the latent
constructs were measured accurately and reliably. Evaluating
convergent validity, construct validity, and discriminant validity was
crucial for drawing meaningful conclusions about the relationships
between constructs in the theoretical model.

3 Results, discussion and conclusion

3.1 Responses, distribution and profile of
respondents

A total of 530 questionnaires were distributed;
412 questionnaires were received, reflecting a response rate of

77.7%. Predominantly, respondents were within the 31–40-year
age group, comprising 48.1% of the sample, followed by the
20–30-year age group at 24.5%, and the 40–50-year age group at
16.5% as shown in Table 1.

The concentration within the 31–40-year age group aligns with
broader industry trends, suggesting this cohort is a significant part of
the construction workforce (Asis et al., 2023).

The data in Figure 6 indicates that a significant portion of staff
(219) have received BIM training, with most being “Advanced
Beginners” (215) or “Proficient” (27). However, a considerable
number (119) are “Novice,” highlighting a need for more
training. Most staff have 0–5 years of BIM experience (189), with
smaller groups having 6–10 years (99), 11–15 years (39), and over
15 years (36). A notable 49 individuals have never used BIM,
suggesting gaps in training or adoption.

3.2 Measurement model

By using CFA in SEM, we rigorously tested the measurement
model and ensure that the latent constructs are measured accurately
and reliably. This validation process is crucial for drawing
meaningful conclusions about the relationships between
constructs shown in Table 2 the theoretical model (Wang
et al., 2015).

Multicollinearity in factor analysis can compromise the validity
and reliability of the results. High correlations among variables lead
to an unreliable factor structure, making accurate interpretation
difficult. This results in inconsistent loadings, inflated standard
errors, and reduced discriminant validity, making it hard to
distinguish between factors. The presence of multicollinearity can
reduce the stability of factors, hindering replication across datasets
and limiting generalizability. It can also cause misinterpretation of
factor importance and parameter estimation instability, leading to
biased conclusions. Reduced power to detect the true factor structure
may result in model misfit, preventing the identification of
underlying data patterns.

To address multicollinearity, we analysed the correlation
matrix to identify highly correlated variables and their impact.
The Variance Inflation Factor (VIF) shown in Table 3 measured
the inflation of regression coefficients due to correlated
predictors, while tolerance (the reciprocal of VIF) indicates
the proportion of variance in a predictor not shared with
others, providing insight into the severity of multicollinearity
(Dohoo et al., 1997).

3.2.1 Convergent validity
Convergent validity Convergent validity measures how well

different indicators of the same construct correlate with each
other. This is assessed using metrics such as Composite
Reliability (CR), Cronbach’s Alpha, and Average Variance
Extracted (AVE) (Wang et al., 2015). The data in Table 4 from
the PLS-SEM analysis shows that indicators for BIM staff size,
experience, expertise, training, project characteristics, and
performance have strong loadings (>0.7), reflecting a solid
relationship with the constructs. Both Cronbach’s Alpha and CR
values exceed 0.7, indicating good internal consistency and
reliability.
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3.2.2 Discriminant validity
Discriminant validity confirms that each construct is unique

and not just an extension of another. It is established when a
construct’s value exceeds those of other constructs (Henseler et al.,
2015). The Fornell and Larcker criteria, shown in the provided
Table 5, present the square root of the Average Variance Extracted
(AVE) on the diagonal and correlations off-diagonal (Hair et al.,
2012; Hair et al., 2014). The AVE values are higher than the
correlations, indicating discriminant validity (Ab Hamid et al.,
2017). Additionally, the Heterotrait-Monotrait ratio (HTMT)
assessment shows that all HTMT values are below 0.90,
confirming non-multicollinearity and further supporting
discriminant validity.

3.3 Structural model

In assessing the structural model, we analysed the direct
relationships between constructs using a method called
bootstrapping, which involved resampling the data 5,000 times to
ensure the robustness of the results. Additionally, R2 values were
calculated to determine the proportion of variance in the dependent

variables that could be explained by the predictor variables in the
model. Several common criteria should be considered, including the
coefficient of determination (R-squared), the blindfolding-based
cross-validated redundancy measure (Q-squared), and the
statistical significance and relevance of the path coefficients (Hair
et al., 2019).

3.3.1 Coefficient and predictive relevance
PLS predict approach should be utilized to evaluate the model’s

out-of-sample predictive power. The R-squared value measures the
variance explained by each endogenous construct and serves as an
indicator of the model’s explanatory power (Shmueli et al., 2016). It
ranges from 0 to 1, with higher values representing greater
explanatory power; R-squared values of 0.75, 0.50, and
0.25 indicate strong, moderate, and weak relationships,
respectively (Hair et al., 2019). The findings show that the major
dependent variable, Project), had a high R-squared value of 0.736,
explaining about 71.9% of the variance. A model’s predictive
relevance is assessed by its Q-squared value, which should be
greater than 0, with values of 0.02, 0.15, and 0.35 indicating
weak, moderate, and high predictive relevance, respectively. The
study’s Q values suggest that the proposed model has adequate

TABLE 1 Age of respondents.

Years Frequency Percent Valid percent Cumulative percent

20–30 years 101 24.5 24.5 24.5

31–40 years 198 48.1 48.1 72.6

41–50 years 68 16.5 16.5 89.1

Above 50 years 45 10.9 10.9 100.0

Total 412 100.0 100.0

FIGURE 6
BIM training, Level of expertise and Years of BIM use.
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TABLE 2 Constructs, codes, items and hypotheses.

Constructs Code Item tested Hypotheses

BIM staff size (BSS) BSS1 Staffing levels BIM staff size will significantly influence project performance

BSS2 Staffing Ratios

BSS3 Workload Distribution

BSS4 Project complexity

BSS5 Staffing Constraints

BSS6 Specialization and Skills

BIM staff experience (BSX) BSX1 Years of BIM Experience BIM staff experience will significantly influence project performance

BSX2 Problem solving abilities

BSX3 Technical Skills

BSX4 Adaptability

BSX5 Integration and Coordination
Skills

BSX6 Quality Assurance and Control

BSX7 Decision-Making Abilities

BSX8 Project-Specific Experience

BIM staff expertise BSP1 Depth of Knowledge BIM staff expertise will significantly influence project performance

BSP2 Quality Assurance

BSP3 Knowledge Transfer

BSP4 Knowledge of BIM Standards

BSP5 Innovation and Creativity

BSP6 Project Management Skills

BSP7 Technical Proficiency

BIM staff training (BST) BST1 Type of Training BIM staff training will significantly influence project performance

BST2 Frequency of Training

BST3 Training Duration

BST4 On-the-Job Training and
Mentoring

BST5 Practical Application

BST6 Cross-Disciplinary Training

BST7 Knowledge Retention

Project characteristics (PC) PC1 Project phase Project characteristics will mediate the relationship between BIM staff and project performance

PC2 Project type

PC3 Project size

PC4 Project complexity

PC5 Technology infrastructure

PC6 Project schedule

PC7 Project Budget

Technology
characteristics (TC)

TC1 Compatibility H1a Technology characteristics (e.g., Usability, Compatibility) positively influence Task-
Technology Fit

TC2 Functionality

(Continued on following page)

Frontiers in Built Environment frontiersin.org12

Chen et al. 10.3389/fbuil.2024.1441604

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1441604


predictive value. The results of the R-squared and Q-squared values
can be found in Table 6.

3.3.2 Path model
The path model in Figure 7 shows that technology character,

Staff attributes, and the UTAUT explain about 60.8% of the
variability in TTF. The moderating effects are not significant in
the model. Given that the moderating impacts are not statistically
significant, it could be inferred that task technology fit accounts for
about 49.5% of the variations in project performance.

3.4 Impact of BIM staff on project
performance

The influence of Building Information Modelling (BIM) staff on
construction project performance is significant and multifaceted,
illustrating a clear connection between BIM team attributes and
project success. Research indicates that larger and more skilled BIM
teams generally enhance project performance by improving design
efficiency, reducing errors, and adhering to deadlines and budgets
(Olanrewaju et al., 2021; Begić and Galić, 2021).

The statistical analysis in Table 7 reveals that BIM staff
attributes have a significant direct positive effect on project

performance, with a beta coefficient (β) of 0.151, a t-value of
3.564, and a p-value of 0.001. This strong statistical significance
underscores that the skills, experience, and attributes of BIM
staff directly contribute to the success and overall performance
of construction projects. Competent BIM teams can streamline
workflows, improve coordination, and ensure better adherence
to project schedules and budgets (Higgs et al., 2005; Davies et al.,
2015). The expertise and training of BIM staff are crucial factors
in achieving these positive outcomes, as knowledgeable and
well-trained staff are better equipped to handle the
complexities and challenges of modern construction projects
(Zhang et al., 2018).

Additionally, the attributes of BIM staff also impact project
performance indirectly by influencing TTF. The same statistical
strength is observed in this indirect relationship, with a beta
coefficient (β) of 0.438, a t-value of 7.221, p-value of 0.001, a
95% confidence interval of (0.374, 0.502). This suggests that the
competencies of BIM staff significantly enhance how well the
technology fits the tasks at hand, which in turn leads to
improved project performance. When BIM staff are adept at
leveraging the technology available to them, they can more
effectively align technological tools with project requirements,
thereby maximizing efficiency and minimizing errors (Ham and
Yuh, 2023). This alignment is crucial for optimizing project

TABLE 2 (Continued) Constructs, codes, items and hypotheses.

Constructs Code Item tested Hypotheses

TC3 Usability

TC4 Reliability

TC5 Performance

TC6 Interoperability

TTF TTF1 Task Requirements H1d Task-Technology Fit significantly influences project performance indicators

TTF2 Task Compatibility

TTF3 Task Efficiency

TTF4 Task Decision Support

TTF5 Task Complexity Handling

TTF6 Task Flexibility

UTAUT UTAUT1 Performance expectancy H1b UTAUT will significantly affect Task-Technology Fit
H1b1 UTAUT construct will significantly mediate the positive relationship between Task-

Technology Fit and project performance indicatorsUTAUT2 Effort expectancy

UTAUT3 Social influence

UTAUT4 Facilitating conditions

UTAUT5 Behavioral intention

UTAUT6 User behavior

Project performance (PP) PP1 Project safety

PP2 Cost Management

PP3 Stakeholder satisfaction

PP4 Project schedule

PP5 Error reduction
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outcomes, as it ensures that the technology supports rather than
hinders the construction processes.

While overall trends show positive impacts, variations in staff
experience and task alignment can arise from resistance to new
methods or organizational barriers. Experienced staff might
resist new technologies due to familiarity with traditional
practices or perceived complexity (Chan, 2014; Jiang, 2019).
Additionally, inadequate training and support can hinder

effective technology integration (Hamma-adama et al., 2020;
Liao and Ai Lin, 2018). To maximize BIM staff benefits,
fostering a learning environment and addressing these
challenges is crucial. In summary, skilled and well-supported
BIM teams significantly enhance project performance through
better design efficiency, fewer errors, and adherence to schedules
and budgets. Addressing resistance and organizational barriers is
essential for optimizing these benefits.

3.5 Impact of technology characteristics on
task technology fit

The research findings reveal a profound influence of Building
Information Modelling (BIM) tool characteristics on Task
Technology Fit (TTF) and Project Performance in
construction projects.

Statistical analysis in Table 7 reveals a significant direct positive
impact, supported by a beta coefficient (β) of 0.524, a t-value of
7.630, and a p-value of 0.001. This emphasizes the pivotal function of
BIM tool qualities in aligning technology with task requirements,
highlighting their importance in project success.

Moreover, the study reveals that Technology Characteristics
demonstrate significant direct effects on both Project
Performance and TTF, as indicated by respective beta coefficients
(β) of 0.181 and 0.524, t-values of 5.765 and 7.630, and p-values of
0.001 for both. This suggests that favourable technology
characteristics positively contribute to project outcomes and the
alignment of technology with task requirements, further underlining
their significance in project success (Sloot et al., 2019; Biancardo
et al., 2020; Tsai et al., 2014).

However, the combined influence of Staff Attributes and
Technology Characteristics does not show significant direct
effects on Project Performance or TTF, with beta coefficients (β)
of 0.020 and 0.057, t-values of 1.816 and 1.671, and p-values of
0.069 and 0.095, respectively. The non-significant combined
influence of Staff Attributes and Technology Characteristics on
Project Performance or TTF can be attributed to the complexity
of their interactions, mediating and moderating factors, initial
integration challenges, individual variances, and contextual
differences. Past research underscores the multifaceted nature of
technology adoption and its impacts in organizational settings
(Venkatesh et al., 2003; Orlikowski and Iacono, 2001; Delone and
McLean, 1992).

Interestingly, the indirect effect pathway in Table 8 from
Technology Characteristics to TTF and then to Project
Performance is significant, with a beta coefficient (β) of 0.181, a
t-value of 5.765, p-value of 0.000, with a 95% confidence interval not
including zero (CI: 0.140, 0.222). This suggests that Technology
Characteristics influence Project Performance partially through
their impact on TTF, further highlighting the intricate
relationship between technology attributes, TTF, and
project outcomes.

The absence of significant moderating effects for Staff Attributes
on the relationship between Technology Characteristics and TTF or
Project Performance suggests that individual or team characteristics
may not significantly alter the direct impact of technology
characteristics. This lack of moderation could be attributed to

TABLE 3 Multicollinearity.

Indicators Variance inflation factor (VIF) < 3.3

BIM staff

BSA2 1.530

BSA3 1.489

BSA4 1.660

BSA5 1.371

Technology characteristics

TC1 1.642

TC2 1.580

TC3 1.709

TC4 1.638

TTF

TTF1 1.981

TTF2 1.825

TTF3 1.765

TTF4 1.698

TTF5 1.769

UTAUT

UTAUT1 1.522

UTAUT2 1.733

UTAUT3 1.704

UTAUT4 2.107

UTAUT5 1.663

PC1 1.657

PC3 1.608

PC4 1.723

PC5 1.702

PC6 1.863

Project performance

PP2 1.971

PP3 1.449

PP4 1.511

PP5 1.967
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several factors: complex interactions that require more detailed
models, initial integration challenges that overshadow staff
attributes’ roles, and contextual differences that might dilute the
moderating effects. These aspects highlight the need for further
research to better understand the nuanced dynamics between staff
characteristics and technology adoption.

Overall, the findings highlight the crucial role of BIM tool
characteristics in enhancing construction project performance.
Usability, functionality, and reliability are key factors: user-
friendly tools facilitate smooth integration and reduce errors,
comprehensive functionality addresses various project needs, and
reliable tools ensure consistent performance. These attributes

TABLE 4 Internal reliability and convergent validity.

Indicators Factor loadings Cronbach alpha C.R > 0.70 AVE >0.50

Project Performance 0.819 0.824 0.524

PP1 0.674

PP2 0.720

PP3 0.708

PP4 0.745

PP5 0.739

PP6 0.755

Staff Attributes 0.847 0.849 0.522

BSA1 0.691

BSA2 0.737

BSA3 0.733

BSA4 0.738

BSA5 0.690

BSA6 0.724

BSA7 0.742

Task Technology Fit 0.849 0.851 0.570

TTF1 0.767

TTF2 0.716

TTF3 0.786

TTF4 0.748

TTF5 0.758

TTF6 0.755

Tech Character 0.812 0.838 0.519

TC1 0.795

TC2 0.771

TC3 0.794

TC4 0.777

TC5 0.561

TC6 0.583

Unified Theory of Acceptance 0.690 0.811 0.52

UTAUT1 0.774

UTAUT2 0.785

UTAUT3 0.592

UTAUT4 0.716
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improve Task Technology Fit (TTF), boost productivity, and
ultimately enhance project success by aligning technology more
effectively with task requirements.

3.6 Impact of task technology fit on project
performance

The research findings highlight the significant positive impact of
Task Technology Fit (TTF) on construction project performance.
The statistical analysis in Table 7 robustly supports this conclusion,
demonstrating a beta coefficient (β) of 0.346, a t-value of 5.606, and a
p-value of 0.001, 95% CI [0.250, 0.450]. These results emphasize the
critical importance of ensuring that the technology used in
construction projects aligns well with the tasks it is intended
to support.

Staff Attributes - > TTF - > Project Performance in Table 8
showed a significant indirect effect (β = 0.151, 95% CI [0.100, 0.200],
t = 3.564, p = 0.000), indicating that Staff Attributes influence Project
Performance partially through their impact on TTF. A good fit
between technology and tasks streamlines processes and enhances
efficiency. This alignment provides the necessary tools and features
tailored to specific task requirements, allowing staff to complete
their work more quickly and with fewer errors. The resulting
efficiency leads to significant time savings and cost reductions,
which are crucial for successful project performance.

The significant mediation of Task-Technology Fit (TTF)
highlights that aligning technology with task requirements is
essential for enhancing project performance through staff
attributes. This underscores the importance of investing in
technology that matches task needs. However, the lack of notable
moderating effects of UTAUT constructs on the TTF-project
performance relationship suggests that initial integration
challenges, insufficient training, and the complexity of

construction projects may overshadow the impact of technology
acceptance on this fit and project outcome.

A strong Task-Technology Fit (TTF) boosts project
performance by ensuring that technology effectively supports
tasks, leading to better decision-making, communication, and
timely information. This alignment helps meet deadlines, control
costs, and maintain quality, reducing delays and overruns. For
optimal project outcomes, construction managers should choose
and integrate technologies that align well with task requirements,
emphasizing the critical role of TTF in achieving efficiency and high-
quality deliverables.

3.7 Effects of UTAUT on project
performance

This research explores how technology acceptance (UTAUT),
Task Technology Fit (TTF), and project performance interact in
construction projects. It tests the direct and indirect effects of
UTAUT on project performance, mediated by TTF, and
examines the moderating effects of UTAUT on the relationship
between TTF and project performance.

Notably, the interaction effects between UTAUT and TTF as in
Table 7 did not yield a significant direct effect on Project
Performance (β = −0.044, 95% CI [0.319, 0.579], t = 1.158, p =
0.247), indicating their combined influence does not notably impact
project outcomes.

However, the UTAUT demonstrates significant direct effects on
both Project Performance (β = 0.449, t = 7.958, p = 0.001) and Task
Technology Fit (β = −0.126, 95% CI [-0.211, −0.041], t = 3.030, p =
0.002), underscoring its influential role in shaping these factors.

The study as in Table 8 further reveals a significant indirect effect
pathway, wherein UTAUT influences Project Performance partially
through its impact on TTF (β = −0.043, 95% CI [-0.073, −0.013], t =
2.886, p = 0.004), highlighting the mediating role of TTF in
technology acceptance’s influence on project outcomes.

Technology acceptance significantly enhances project
performance, facilitating improvements in efficiency,
effectiveness, and overall success (β = 0.449, t = 7.958, p =
0.001). Employees’ embrace of technology correlates with its
more effective use, driving positive project outcomes.

TABLE 5 Discriminant validity - heterotrait - monotrait ratio (HTMT) - matrix.

PP Bsa TTF TC UTAUT UTAUT x TTF Bsa x TC

Project Performance (PP)

Staff Attributes (BSA) 0.896

Task Tech Fit (TTF) 0.61 0.775

Technology
Character TC)

0.666 0.686 0.824

Unified Theory _ of Acceptance (UTAUT) 0.792 0.621 0.455 0.742

Unified Theory of Acceptance x Task Tech Fit (UTAUTxTTF) 0.175 0.122 0.019 0.074 0.251

Staff Attributes x
Technology Character (BSAxTC)

0.22 0.201 0.087 0.187 0.164 0.551

TABLE 6 Coefficient and predictive relevance.

R Square Adjusted R Q square

PP 0.569 0.566 0.550

TTF 0.617 0.614 0.611
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Intriguingly, technology acceptance negatively impacts TTF
(β = −0.126, t = 3.030, p = 0.002), suggesting potential challenges
in aligning technology with specific task requirements despite high
acceptance levels. This may stem from initial integration hurdles or a
need for additional training.

TTF partially mediates the relationship between technology
acceptance and project performance (β = −0.043, t = 2.886, p =
0.004), as shown Table 8 implying that while technology acceptance
directly boosts project performance, its influence is also mediated by
its effect on TTF.

The lack of significant moderating effects might be due to
several factors. High technology acceptance can still face practical
hurdles during initial implementation, such as integration issues,
resistance to change, or a steep learning curve with new BIM tools,
which can temporarily mitigate the benefits of task-technology fit.
Additionally, the availability and quality of training and support
are crucial for effective BIM utilization. Without adequate training,
even positively accepted technology may not reach its full
potential, thus limiting its impact on project performance.
Furthermore, the inherent complexity and variability of
construction projects, including factors like project size, scope,
team dynamics, and unforeseen challenges, can overshadow the
expected moderating impacts of UTAUT and TTF interactions on

project performance (Davies and Harty, 2013; Bekr, 2017;
Ghaffarianhoseini et al., 2017).

The research underscores the nuanced nature of technology
adoption in construction projects, emphasizing the importance of
fostering both a tech-friendly culture and ensuring technology aligns
effectively with task requirements. Managers should prioritize
efforts to promote technology acceptance while addressing
integration challenges, providing comprehensive training, and
customizing technology features, ultimately optimizing project
performance.

3.8 Critical factors of BIM staff

Several critical factors influence the effectiveness of Building
Information Modelling (BIM) staff in enhancing project
performance. Research indicates that various aspects such as staff
size, training, expertise, experience, project characteristics, and task-
technology fit play significant roles in determining how well BIM
staff can contribute to successful project outcomes. Larger BIM
teams lead to better project outcomes, improving design efficiency,
schedule adherence, and budget compliance. They offer diverse skills
and knowledge, aiding in handling complex project requirements

FIGURE 7
Path Model.
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effectively. Well-staffed teams evenly distribute workload, cross-
check thoroughly, and provide diverse perspectives for enhanced
project quality (Chan et al., 2019; Van Tam et al., 2023).

The training, expertise, and experience of BIM staff are pivotal in
driving project success. Skilled and experienced BIM professionals
contribute significantly to project efficiency by minimizing errors and
optimizing design processes (Huh et al., 2023; Ham and Yuh, 2023;
Ham et al., 2020). Training ensures that staff are up-to-date with the
latest BIM technologies and methodologies, enabling them to
implement best practices effectively. Expertise and experience allow
staff to anticipate potential issues and devise solutions proactively,
thereby streamlining workflows and improving project outcomes.

The size and complexity of a project are crucial factors that
moderate the impact of BIM staff on project performance. Larger
and more complex projects benefit more from well-equipped and
experienced BIM teams, as these teams can manage intricate details
and extensive coordination requirements better (Bosch-Sijtsema et al.,
2019;WangK. et al., 2022). Understanding the specific characteristics of
a project is essential for optimizing the deployment of BIM resources.
Tailoring BIM strategies to suit the project’s scale and complexity can
lead to more efficient management and execution.

The alignment between tasks and technology features, known as
Task Technology Fit (TTF), is significantly influenced by BIM staff
attributes and organizational support. The expertise and attributes
of BIM staff enhance the alignment between technology and task
requirements, facilitating better TTF (Zhao et al., 2023). This
alignment is crucial for project performance, as it ensures that
the technological tools are used to their full potential, effectively
supporting the tasks at hand. When BIM staff can effectively match

the capabilities of the technology with the specific needs of the
project, they can achieve higher efficiency and better outcomes.

The statistical analysis highlights a significant direct positive
effect of BIM staff attributes on Task Technology Fit, with a beta
coefficient (β) of 0.438, a t-value of 7.221, and a p-value of 0.001.
This indicates that the skills, experience, and attributes of BIM staff
greatly enhance the alignment between technology and task
requirements. This improved alignment facilitates better TTF,
which in turn positively impacts project performance. Competent
BIM staff ensure that the technology is appropriately leveraged,
leading to more efficient processes and successful project outcomes
(Zhao et al., 2023; Ganiyu et al., 2020).

BIM staff effectiveness in improving project performance
depends on team size, staff training and experience, and project
characteristics like size and complexity. Aligning tasks with
technology, aided by skilled BIM staff, is essential for optimizing
performance (Ganiyu et al., 2020; Ahadzie et al., 2014; Egbu, 1999).
Addressing these factors enables construction projects to fully
leverage BIM potential for superior results.

3.9 Theoretical and managerial implications

The findings highlight that technology acceptance positively
impacts project performance, leading to improved efficiency,
effectiveness, and overall success. However, there is a notable
negative effect on TTF, suggesting that while technology is
accepted, it may not immediately align perfectly with task
requirements, indicating initial integration challenges.

TABLE 7 Direct effects.

Hypothesis β STDEV T Stats p Values Decision

Staff Attributes - > Project Performance 0.151 0.042 3.564 0.001 Accept

Staff Attributes - > Task Tech Fit 0.438 0.061 7.221 0.001 Accept

Task Tech Fit - > Project Performance 0.346 0.062 5.606 0.001 Accept

Technology Character - > Project Performance 0.181 0.031 5.765 0.001 Accept

Technology Character - > Task Tech Fit 0.524 0.069 7.630 0.001 Accept

Unified Theory of Acceptance - > Project Performance 0.449 0.056 7.958 0.001 Accept

Unified Theory of Acceptance - > Task Tech Fit −0.126 0.041 3.030 0.002 Accept

Unified Theory of Acceptance x Task Tech Fit - > Project Performance −0.044 0.038 1.158 0.247 Accept

Staff Attributes x Technology Character - > Project Performance 0.020 0.011 1.816 0.069 Reject

Staff Attributes x Technology Character - > Task Tech Fit 0.057 0.034 1.671 0.095 Reject

TABLE 8 Indirect effects.

β Stdev T Stats p Values Decision

Unified Theory _of Acceptance - > Task Tech Fit - > Project Performance −0.043 0.015 2.886 0.004 Accept

Staff Attributes x Technology Character - > Task Tech Fit - > Project Performance 0.020 0.011 1.816 0.069 Reject

Technology Character - > Task Tech Fit - > Project Performance 0.181 0.031 5.765 0.000 Accept

Staff Attributes - > Task Tech Fit - > Project Performance 0.151 0.042 3.564 0.000 Accept
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The study also introduces project characteristics, such as size
and complexity, as moderating factors in the relationship between
BIM staff attributes and project performance. This suggests that
understanding these variables is essential for predicting project
outcomes accurately.

For practitioners in the Kenyan construction industry, the
research offers actionable insights:

Strategic Management of BIM Staff: Optimizing project
performance requires strategic management of BIM team size,
training, expertise, and experience. Larger and more skilled BIM
teams correlate with better project outcomes.

Understanding Project Characteristics: Tailoring BIM strategies
to the specific needs of each project, considering its size and
complexity, can enhance management and execution, leading to
improved outcomes.

Enhancing Organizational Support: Fostering a supportive
culture for innovation, providing necessary resources for training,
and ensuring access to the latest technology are vital. Enhanced
organizational support improves task-technology alignment,
reducing errors and increasing efficiency.

Emphasizing Task-Technology Fit: Selecting and implementing
technologies that are well-suited to project tasks and ensuring staff
proficiency in these tools are crucial for reducing errors, enhancing
efficiency, and improving stakeholder satisfaction.

Enhanced Focus on Task-Technology Fit: Since TTF mediates
the impact of technology acceptance on project performance,
organizations should focus on ensuring a high degree of
alignment between BIM tools and specific project tasks. This can
be achieved through customization of BIM tools, targeted training
programs, and continuous feedback loops.

Broader Strategy Development: The absence of significant
moderating effects implies that a broader range of factors should
be considered in BIM implementation strategies. This includes
organizational culture, project management practices, and
external environmental factors.

Theoretically, the study contributes to existing frameworks by
emphasizing the importance of technology acceptance and TTF and
introducing project characteristics as moderating factors.
Managerially, the findings suggest that strategic management of
BIM staff, understanding project characteristics, enhancing
organizational support, and focusing on task-technology fit are
key to optimizing project performance. By incorporating these
insights, practitioners in the Kenyan construction industry can
achieve more efficient, effective, and successful project outcomes.

3.10 Contribution of the study in BIM
adoption and implementation in Kenya

This study advances the existing knowledge of BIM adoption in
developing countries, particularly in Kenya, through the following
contributions.

3.10.1 Context-specific insights
3.10.1.1 Tailored to Kenya

By focusing on the Kenyan construction industry, the study
provides context-specific insights that are directly applicable to the
unique challenges and opportunities within the country. This fills a

gap in the existing literature, which often generalizes findings from
developed countries without considering local nuances.

3.10.1.2 Regional Relevance
The findings highlight the importance of considering regional

factors such as local market conditions, regulatory environments,
and industry practices, which are crucial for effective BIM
implementation in developing countries like Kenya.

3.10.2 Effective use of BIM staff
3.10.2.1 Localized Training Needs

The study underscores the necessity of investing in localized
training programs to build a well-trained BIM workforce. This
addresses a common barrier in developing countries where access
to advanced training resources may be limited (Mwangi et al., 2021).

3.10.2.2 Impact on Project Performance
Demonstrating the significant impact of well-trained BIM teams

on project performance provides a compelling case for stakeholders
in Kenya to prioritize human resource development, aligning with
the findings of Musa et al. on the importance of skilled labor in BIM
adoption (Kambur and Akar, 2022; Nguyen et al., 2021; Maharika
et al., 2020).

3.10.3 Project characteristics
3.10.3.1 Adaptation to Local Project Types

By emphasizing the need to understand project size and
complexity, the study guides the strategic deployment of BIM
resources tailored to the types of projects commonly undertaken
in Kenya, such as infrastructure and affordable housing projects.
This is supported by Olatunji et al., who stress the importance of
context in BIM adoption strategies (Olatunji et al., 2021; Ahuja et al.,
2020; Wang Z. et al., 2022; Herr and Fischer, 2019).

3.10.3.2 Scalability and Flexibility
The study’s insights on managing large and complex projects

with BIM are particularly relevant for Kenya’s growing construction
sector, which is increasingly engaging in large-scale urban
development projects (Pilehchian et al., 2015).

3.10.4 Task-technology fit (TTF)
3.10.4.1 Appropriate Technology Selection

The study’s emphasis on task-technology fit highlights the need
for selecting BIM tools that are suitable for local practices and
conditions. This contributes to the broader understanding of
technology adoption in developing contexts, where off-the-shelf
solutions may not always be the best fit (Yap et al., 2022).

3.10.4.2 Continuous Training and Evaluation
Emphasizing ongoing training and evaluation aligns with the

dynamic nature of technology adoption in developing countries,
where continuous improvement is crucial for overcoming initial
adoption barriers (Arayici et al., 2011; Taib et al., 2023).

3.10.5 Overcoming challenges
3.10.5.1 Organizational Support and Culture

The study identifies organizational support as a key factor for
successful BIM adoption, resonating with the findings of He et al.
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(2012) on the critical role of organizational culture in technology
adoption in developing countries (Merschbrock and ErikMunkvold,
2012; Ifenthaler and Egloffstein, 2020; Dasgupta and Gupta, 2019).

3.10.5.2 Promoting Collaboration
Highlighting the need for collaborative environments supports

the creation of knowledge-sharing networks, which are essential in
contexts where individual firms may lack resources (Brewer and
Gajendran, 2012).

3.10.6 Optimizing resources
3.10.6.1 Resource Efficiency

The study’s focus on resource optimization addresses the
economic constraints typical in developing countries. By
demonstrating how BIM can lead to cost savings and increased
profitability, it provides a practical incentive for adoption (Barlish
and Sullivan, 2012).

3.10.6.2 Strategic Alignment
Aligning BIM tools with specific project needs and resource

availability enhances the practicality of BIM implementation
strategies, making them more accessible for firms operating
under tight budgets (Jung and Joo, 2011).

By addressing these specific aspects, the study not only provides
actionable insights for the Kenyan construction industry but also
contributes to the broader discourse on BIM adoption in developing
countries. It emphasizes the importance of contextualized strategies,
localized training, and organizational support, offering a comprehensive
framework for overcoming the unique challenges faced by developing
nations in adopting advanced construction technologies.
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