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The structural design standards, particularly in concrete technology, heavily
rely on the mechanical attributes of concrete. Utilizing dependable predictive
models for these properties can minimize the need for extensive laboratory
testing, evaluations, and experiments to acquire essential design data, thereby
conserving time and resources. Metakaolin (MK) is frequently incorporated as
an alternative to Portland cement in the production of sustainable concrete,
owing to its technical advantages and positive environmental impact, aligning
with the United Nations Sustainable Development Goals (UNSDGs) aimed at
achieving net-zero objectives. However, this research presents a comparative
study between eight (8) ML classification techniques namely, gradient boosting
(GB), CN2, naïve bayes (NB), support vector machine (SVM), stochastic gradient
descent (SGD), k-nearest neighbor (KNN), Tree and random forest (RF) to
estimate the impact of adding metakaolin to concrete on its flexural strength
considering mixture components contents and concrete age. The collected
data entries for the prediction of the flexural strength (Ft) containing the
following concrete components; contentof cement (C), content of metakaolin
(MK), content of water (W), content of fine aggregates (FAg), content of coarse
aggregates (CAg), content of super-plasticizer (P), and the concrete curing
age at testing (Age) were partitioned into 80% and 20% for training and
validation sets respectively. At the end of the model protocol, it was found
that the GB, SVM, and KNN models which produced an average MSE value
of zero (0) showed their decisive ability to predict the flexural strength of the
metakaolin (MK) mixed concrete (Ft). This outcome agrees with the previous
reports in the literatures; however the work of Shah et al. happens to be the
closest in terms of concrete components used in the production of the mixes
and the application of machine learning techniques. It was found that the
present research work’s models outperformed those presented by Shah et al.
Hence the decisive models reported in this research paper show potentials
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to be applied in the design and production of MK concrete with optimal
flexural strength.

KEYWORDS

metakaolin, cement, concrete, flexural strength, machine learning, ensemble
classification regression

1 Introduction

The flexural strength of concrete plays a crucial role in
its structural performance, especially in applications where the
concrete is subjected to bending or tensile stresses (Shah et al., 2022).
In structural elements such as beams, slabs, and cantilevers, concrete
is often subjected to bending moments (Koçak et al., 2020). The
flexural strength of concrete determines its ability to resist these
bending forces without failing (Mane et al., 2019). Higher flexural
strength implies that the concrete can withstand greater bending
moments before experiencing cracking or failure (Al-alaily and
Hassan, 2016). Flexural strength is closely related to the ability of
concrete to control cracking under bending loads (Yerramala et al.,
2013). Concrete with higher flexural strength will exhibit greater
resistance to cracking and can maintain structural integrity over
time (Patil and Sangle, 2013). This is particularly important
in applications where aesthetic considerations or serviceability
requirements necessitate minimal cracking (Amin et al., 2023). The
flexural strength of concrete directly affects the serviceability of
structures by influencing factors such as deflection and deformation
under load (El-Sayed et al., 2023). Concrete with higher flexural
strength will experience less deflection and deformation, leading
to improved serviceability and user comfort in buildings and
other structures (Mohanram and Ramesh, 2022). In reinforced
concrete structures, such as beams and slabs, the flexural strength
of concrete governs the distribution of loads between the concrete
and reinforcing steel (El-Sayed et al., 2023). Higher flexural strength
allows for more efficient load transfer from the concrete to the
reinforcement, resulting in a more balanced and robust structural
system (Saini and Singh, 2020). Flexural strength is a critical
parameter considered in the design of concrete structures to ensure
adequate safety margins (Zhang et al., 2022). Design codes and
standards specify minimum requirements for flexural strength
based on factors such as structural loads, material properties, and
desired levels of safety (Onyelowe et al., 2022a). Concrete with
sufficient flexural strength helps meet these safety requirements and
ensures structural stability under design conditions (Onyelowe et al.,
2022b). The flexural strength of concrete is also linked to its
durability performance (Onyelowe et al., 2022c). Concrete with
higher flexural strength tends to have a denser microstructure and
lower permeability, which can enhance resistance to environmental
factors such as freeze-thaw cycles, chemical attack, and abrasion
(Mane et al., 2019). This improved durability contributes to the
long-term structural performance and service life of concrete
elements (Onyelowe et al., 2022d). In summary, the flexural strength
of concrete significantly influences its structural performance
by governing bending resistance, crack control, serviceability,
load distribution, safety factors, and durability (Onyelowe et al.,
2022e). Designers and engineers carefully consider flexural strength
requirements to ensure the safe and reliable performance of concrete

structures throughout their service life (Onyelowe et al., 2023a).
The addition of supplementary cementitious materials (SCMs) such
as metakaolin, fly ash, slag, and silica fume to concrete offers
numerous benefits, including improved strength and durability
(Onyelowe et al., 2023b). SCMs react with calcium hydroxide and
other byproducts of cement hydration to form additional hydration
products, such as calcium silicate hydrate (C-S-H) gel (Onyelowe
and Ebid, 2023).These results in denser andmore compact concrete,
leading to improved compressive strength, flexural strength, and
durability (Akin et al., 2020). SCMs can mitigate the heat generated
during concrete hydration, which is particularly beneficial in large
pours ormass concrete applications (Qian andLi, 2001). By reducing
the peak temperature and thermal gradients, the risk of thermal
cracking is minimized, enhancing the long-term durability of the
structure. Incorporating SCMs can improve the workability and
pumpability of concrete mixes, allowing for easier placement and
consolidation (Dinakar et al., 2013). This is especially advantageous
in high-performance concrete applications or in situations where
concrete needs to be pumped over long distances or to elevated
locations. Many SCMs, such as fly ash and slag, are byproducts of
industrial processes, which reduces the need for virgin materials
and lowers the carbon footprint of concrete production (Poon et al.,
2006). By replacing a portion of cement with SCMs, the overall
environmental impact of concrete production can be reduced,
contributing to sustainability goals. SCMs can enhance the chemical
resistance of concrete by reducing permeability and increasing the
density of the concrete matrix (Madandoust and Mousavi, 2012).
This makes concrete more resistant to chemical attack from sulfates,
chlorides, and other aggressive substances, resulting in longer
service life and reduced maintenance requirements (El-Sayed et al.,
2023). Certain SCMs, such as fly ash, can mitigate the risk of alkali-
silica reaction, a chemical reaction that can cause expansion and
cracking in concrete due to the presence of reactive aggregates and
alkalis from cement (Onyelowe et al., 2022a; Onyelowe et al., 2022b;
Onyelowe et al., 2022c; Onyelowe et al., 2022d). By incorporating
SCMs, the availability of alkalis is reduced, helping to prevent ASR
and preserve the integrity of the concrete (Onyelowe et al., 2022c).
In addition to the technical advantages, the use of SCMs in concrete
can offer economic benefits by potentially reducing material costs,
improving construction efficiency, and extending the service life of
structures, leading to lower life-cycle costs (Onyelowe et al., 2022e).
Overall, the addition of supplementary cementitious materials like
metakaolin, fly ash, slag, and silica fume in concrete can result in
enhanced performance, increased sustainability, and cost savings,
making them valuable components in modern concrete mixes
(Ramezanianpour and Jovein, 2012).

Metakaolin is a pozzolanic material commonly used as a
supplementary cementitious material in concrete (Shah et al.,
2022). When added to concrete mixes, metakaolin can have several
effects on the properties of the resulting concrete, including its
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FIGURE 1
Flowchart of research.

flexural strength (Mane et al., 2019). Metakaolin can improve
the flexural strength of concrete by enhancing the pozzolanic
reaction (Al-alaily and Hassan, 2016). Pozzolanic materials like
metakaolin react with calcium hydroxide (a byproduct of cement
hydration) to form additional calcium silicate hydrate (C-S-H) gel,
which fills in pores and voids in the concrete matrix, leading to
increased strength (Madandoust and Mousavi, 2012). The addition
of metakaolin can lead to a denser microstructure due to the
pozzolanic reaction (Güneyisi et al., 2008). This densification can
improve the interfacial transition zone (ITZ) between the cement
paste and aggregates, resulting in better load transfer and enhanced
flexural strength (Ahmad et al., 2022). Metakaolin incorporation
can decrease the porosity of concrete by filling in the voids and
capillary pores within the concrete matrix (Khatib, 2008). This
reduction in porosity can increase the concrete’s resistance to
cracking under flexural loading, thereby improving its flexural
strength (Gill and Siddique, 2017). The denser microstructure
and reduced porosity achieved with metakaolin can enhance
the durability of concrete by reducing permeability to harmful
substances such as chloride ions and sulfate ions (El-Din et al., 2017).

This improved durability can indirectly contribute to maintaining
higher flexural strength over the service life of the concrete
(Rashad, 2013). The impact of metakaolin on flexural strength can
vary depending on factors such as the dosage of metakaolin, the
characteristics of other materials in the concrete mix, and curing
conditions (Siddique and Kadri, 2011). Therefore, optimization
of mix proportions is essential to maximize the benefits of
metakaolin on flexural strength (Khatib, 2008). Overall, the addition
of metakaolin to concrete mixes has the potential to enhance
the flexural strength of concrete by improving its microstructure,
reducing porosity, and enhancing durability (Onyelowe et al.,
2022c). However, the specific impact will depend on various factors
and should be evaluated through testing and optimization for each
application.

Replacing a portion of cement with metakaolin in concrete
production can offer several net-zero benefits in terms of
sustainability (Rashad, 2013). Cement production is a significant
source of carbon dioxide emissions due to the calcination
of limestone and the energy-intensive nature of the process
(Koçak et al., 2020). By partially replacing cement with metakaolin,
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TABLE 1 Statistical analysis of collected database.

C MK W FAg CAg P Age Ft

kg/m3 kg/m3 L/m3 kg/m3 kg/m3 kg/m3 day MPa

Training set

Max 570.0 90.0 197.0 843.4 1265.0 8.6 90.0 10.8

Min 304.0 0.0 159.6 624.8 822.2 0.0 7.0 4.5

Avg 405.2 40.0 181.7 721.4 1049.3 2.0 40.3 7.3

SD 58.1 30.2 9.2 93.0 173.1 2.0 31.8 1.5

Var 0.1 0.8 0.1 0.1 0.2 1.0 0.8 0.2

Validation set

Max 450.0 100.0 197.0 843.4 1265.0 4.5 90.0 8.9

Min 304.0 0.0 162.0 624.8 822.2 0.0 7.0 6.3

Avg 377.8 60.3 184.1 697.6 1061.1 1.9 38.6 7.5

SD 45.2 32.7 9.2 74.9 117.1 1.8 25.8 0.8

Var 0.1 0.5 0.1 0.1 0.1 0.9 0.7 0.1

which typically requires lower temperatures for production
compared to cement, the overall carbon footprint of concrete
production can be reduced, contributing to net-zero carbon
emissions goals (Wang et al., 2014). Metakaolin is often produced
as a by-product of industrial processes, such as the calcination of
kaolin clay (Dinakar andManu, 2014). By incorporatingmetakaolin
into concrete mixes, it provides a beneficial use for this by-
product material, reducing waste and promoting circular economy
principles (Zhang et al., 2022). As discussed earlier, metakaolin
can enhance the performance of concrete by improving strength,
durability, and reducing permeability (Onyelowe et al., 2022a).
This can lead to longer service life and reduced maintenance
requirements for concrete structures, which align with sustainability
goals by extending the lifespan of infrastructure (Onyelowe et al.,
2022e). Cement production requires significant quantities of raw
materials, including limestone and clay. By partially replacing
cement with metakaolin, natural resources can be conserved,
reducing the environmental impact associated with quarrying
and extraction processes (Kavitha et al., 2015). The production of
metakaolin typically requires lower energy consumption compared
to cement production. By using metakaolin as a supplementary
cementitious material, energy savings can be realized, contributing
to overall energy efficiency and sustainability in concrete production
(Muduli and Mukharjee, 2019). Cement production is associated
with various environmental impacts beyond carbon emissions,
including quarrying, habitat destruction, and water consumption
(Wang et al., 2014). By reducing the demand for cement through
the use of metakaolin, these environmental impacts can be
mitigated, promotingmore sustainable practices in the construction
industry (Akin et al., 2020). Overall, replacing cement with

metakaolin in concrete production offers net-zero benefits by
reducing carbon emissions, utilizing industrial by-products,
improving performance, conserving resources, saving energy,
and mitigating environmental impacts (Patil and Sangle, 2013).
This makes it a promising approach for achieving sustainability
goals in the construction sector. In this research, the flexural
strength of MK mixed concrete has been evaluated with a view
to proposing multiple machine learning models to produce MK-
based concrete with optimal strength and with the most impactful
MK content.

2 Literature review

Shah et al. (2022) developed models for predicting the
mechanical properties of concrete containing metakaolin (MK)
utilizing four different machine learning techniques: gene
expression programming (GEP), artificial neural network (ANN),
M5P model tree algorithm, and random forest (RF). The study
collected data from peer-reviewed documents and discovered
that RF exhibits superior predictive and generalization capabilities
compared to GEP, ANN, and M5P model tree method. The study
additionally discovered that the optimal quantities of MK as a
partial replacement for cement are 10% for flexural strength (FS)
and 15% for both. Koçak et al. (2020) presented the application of
Fuzzy Logic models for predicting the flexural strength of cement
mortars.Themodels are developed using combinations of Portland-
composite cement and metakaolin. The models employed fuzzy
triangular number coefficients and Gauss membership function,
with correlation values of 0.84 and 0.87, respectively. The results
demonstrated a strong correlation between the experimental and
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FIGURE 2
Correlation, Distribution and Interpreting chart.

fuzzy outcomes, making them well-suited for applications in civil
engineering. The utilization of natural fine aggregate and cement in
civil construction has resulted in ecological concerns. Industrial
waste such as blast furnace slag, fly ash, metakaolin, and silica
fume can serve as a partial substitute for cement. Additionally,
fine aggregate can be obtained by using manufactured sand
produced by a crusher. Mane et al. (2019) created neural network
utilizing MATLAB software model to forecast the flexural strength
of concrete produced with pozzolanic ingredients and partially
substituted with synthetic sand.Themodel employed 131 outcomes,
allocating 30% for testing purposes and 70% for training purposes.

The results demonstrated a high level of precision in forecasting
the flexural strength of concrete. Al-alaily and Hassan (2016)
enhanced the strength and reduce the chloride permeability of
concrete by using metakaolin. This study employed the increased
response surface method (RSM) to examine 53 different concrete
compositions. The elements taken into account were the overall
amount of binder, the proportion of metakaolin, and the ratio of
water to binder. The models and design charts were applicable
to concrete with water-to-binder (W/B) ratios ranging from 0.3
to 0.5, metakaolin content ranging from 0% to 25%, and total
binder content ranging from 350 kg/m3 to 600 kg/m3. The findings
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FIGURE 3
Sensitivity analysis with respect to Ft.

indicated that these models and charts can assist in forecasting and
choosing the most favorable combination ratios for particular uses,
especially for designers contemplating the use of MK in structural
applications. Yerramala et al. (2013) assessed the flexural strength
of metakaolin Ferro cements by comparing them to reference
mortar and mortars containing 5%–25% metakaolin substitution.
The mortars underwent a water-curing process for durations of 7,
28, 90, and 180 days. The results indicated that flexural strengths
were consistently higher than the control Ferro cement at all curing
ages and mesh layers when up to 15% metakaolin substitution was
used. Nevertheless, substitutions that were equivalent to or greater
than 20% exhibited reduced levels of strength. According to the
study, a metakaolin concentration of 10% was determined to be the
most effective for achieving the highest flexural strength. Also, Patil
and Sangle (2013) examined the influence of mineral admixtures,
specifically Metakaolinand Fly ash, on the compressive and flexural
strengths as well as the durability of prestressed concrete beams.
A total of 90 cube samples were subjected to testing, varying the
proportions of MK and FA, in order to identify the optimal ratio
that would yield the highest compressive strength. The findings
indicated that the combination of 10% MK and FA yielded the
most advantageous results for casting prestressed concrete flexural
components. Subsequently, the optimal combination of ingredients
was employed to evaluate the flexural strength of prestressed beam
specimens. After a curing period of 28 days, the beams underwent
testing on a universal testing equipment to evaluate the strains
on the prestressed tendons. The results were compared with beams
exhibiting different levels of strains for prestressed losses andflexural
strength. Amin et al. (2023) investigated the comparative analysis
of the compressive and flexural strength of concrete when various
admixtures are utilized as partial substitutes for cement. The study
employs industrial waste materials such as Silica Fume, Rice Husk
Ash, and Iron Slag, which possess a significant amount of silica and
exhibit pozzolanic characteristics. These materials have the ability
to successfully substitute cement in High Performance Concrete,
allowing for the evaluation of load bearing capacity for the purpose
of design. The study offered significant information for identifying

the most appropriate mineral admixture variety. Another, (El-
Sayed et al., 2023) presented research conducted on the behaviour of
reinforced GPC flexural members cured at ambient temperature. A
total of twelve beams were subjected to two-point static loads, with
several combinations of GGBS and Metakaolin in the binder phase
being considered. The findings indicated that GPC beams exhibited
somewhat greater load-bearing capability compared to typical OPC
beams, along with increased deflections at various stages. The
traditional RC theory is applicable to reinforcedGPCflexural beams.
Geopolymers are emerging as a viable substitute for conventional
portland cement, primarily because of their superior energy
efficiency and environmental safeguards. This study examines the
mechanical characteristics and flexural performance of geopolymer-
reinforced concrete beams including varying proportions of fly ash,
GGBS, and MK. Mohanram and Ramesh (2022) revealed that the
combination resulted in a significant enhancement in compressive,
split tensile, and flexural strength, with increases of 147.75%,
57.21%, and 36.08%, respectively, as compared to the standard
sample. The geopolymer reinforced concrete beam exhibited a
significant increase in its ultimate load-carrying capacity, reaching
up to a 30.43% enhancement. The study also discovered a strong
correlation with the loads anticipated by theory, indicating that
alternative cement-like materials could be employed to explore the
mechanical characteristics of GPC. El-Sayed et al. (2023) examined
the utilization of fly ash as a substitute for Ordinary Portland
Cement (OPC) in the manufacturing of concrete, emphasizing its
capacity to improve compressive strength and decrease porosity.
The study examines the flexural characteristics of Geopolymer
Concrete (GPC) beams in comparison to control cement concrete
beams. The results demonstrated that using 25% GGBS enhances
the flexural strength, service load, and peak load. Saini and Singh
(2020) investigated the flexural fatigue strength of Self Compacting
Concrete (SCC) using 50% Coarse Recycled Concrete Aggregates
(RCA) and blended cements Silica Fume (SF) andMetakaolin. Data
on the fatigue life of 224 beams subjected to four-point loading
at different stress levels was collected. This work presented the
notion of failure probability and produced S-N-Pf curves. The
inclusion of recycled concrete aggregate (RCA) was seen to result
in a reduction in both the theoretical fatigue life and endurance
limit. Zhang et al. (2022) investigated the influence of metakaolin
(MK) and magnesium oxide (MgO) on the bending strength of
ultra-high performance concrete (UHPC). The study revealed
that the flexural strength of UHPC exhibits an initial rise as the
MM replacement ratios increase. Specifically, at 60 days, UHPC
with a 10% MM replacement ratio demonstrated the maximum
strength. MM enhances the creation of C-(A-)S–H and LDHs,
whereas MgO raises pH levels and facilitates the release of Al.
An excessive amount of mineral mixture (MM) leads to a higher
level of clinker dilution, which in turn decreases the flexural
strength of ultra-high-performance concrete (UHPC).The reviewed
previous research works have presented different results from
different machine learning techniques and different application
of the concrete component materials, the closest to this research
work being Shah et al. (2022), which had applied the ANN, GEP
and the RF to predict the Ft of the MK mixed concrete. In the
present research work, multiple machine learning techniques up to
eight (8) have been reported, which allows amore robust application
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FIGURE 4
The considered data flow in “Orange” software.

of the flexural strength prediction of different performance abilities
especially the use closed-form equations.

3 Methodology of the research

3.1 Statistical appraisal of the collected
database

A total of sixty-three (63) records were collected from
literature (Shah et al., 2022) forflexural strength for different mixing
ratios of metakaolin with concrete at different ages. Each record
contains the following data:

• CThe contentof cement (kg/m3)
• MKThe content of metakaolin (kg/m3)
• WThe content of water (kg/m3) or (L/m3)
• FAgThe content of fine aggregates (kg/m3)
• CAgThe content of coarse aggregates (kg/m3)
• PThe content of super-plasticizer (kg/m3)
• AgeThe concrete age at testing (days)
• Ft Flexuralstrength (MPa)

The research framework is presented in Figure 1 for guidance,
which fully shows the steps leading to the data gathering from
literature study, data sorting, deployment of the data to be learned
by machine methods and the performance analysis of the models
towards the prediction of the flexural strength (Ft) of concretemixed
with metakaolin (MK).

The collectedrecords were divided into training set (50
records≈80%) and validation set (13 records≈ 20%). Table 1
summarizes their statistical characteristics. Finally, Figure 2 shows
the Pearson correlation matrix, histograms, and the relations
between variables. This illustrates the internal consistency between
the input variables and the output in both figurative and distribution
charts. Concrete curing age (Age) showed the highest consistency
with a 0.73 index with the output (Ft), which is followed byMKwith
a 0.33 index, while others showed very poor relationship.

3.2 Sensitivity analysis

A preliminary sensitivity analysis was carried out on the
collected database to estimate the impact of each input on the (Y)
values. “Single variable per time” technique is used to determine the
“Sensitivity Index” (SI) for each input usingHoffman andGardener’s
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FIGURE 5
(Continued).

formula (Hoffman et al., 1983) as shown in Equation 1.

SI(Xn) =
Y(Xmax) −Y(Xmin)

Y(Xmax)
(1)

A sensitivity index of 1.0 indicates complete sensitivity, a
sensitivity index less than 0.01 indicates that the model is insensitive
to changes in the parameter. Figure 3 shows the sensitivity analysis
with respect to Ft. The result has shown that cement (C) is the
most influential parameter on the flexural strength of theMKmixed
concrete, which is followed in order by the aggregates (CAg and
FAg), plasticizer (P) and curing age (A). Meanwhile, MK is the least
impactful on the behavior of the MK-concrete flexural strength. A

5% degree of influence produced by a supplementary cementitious
material such as metakaolin on the flexural behavior of concrete
is of important consideration due to the concrete admixtures’
requirement allowed by design conditions.

3.3 Research program

Eight different MLclassification techniques were used to predict
the flexural strength of concrete mixed with meta-kaolin using
the collected database. These techniques are “Gradient Boosting
(GB)”, “CN2 Rule Induction (CN2)”, “Naive Bayes (NB)”, “Support
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FIGURE 5
(Continued). The framework of the ensemble machine learning techniques .

vector machine (SVM), “Stochastic Gradient Descent (SGD)”, “K-
Nearest Neighbors (KNN)”, “Tree Decision (Tree)” and “Random
Forest (RF)”. Thedeveloped models were used to predict (Ft) using
the concrete mixture contents (C, MK, W, FAg, CAg, P) and the
concrete age (Age). All the developed models were created using
“Orange Data Mining” software version 3.36. The considered data
flow diagram is shown in Figure 4.

3.4 Theory of the learning techniques

Ensemble machine learning and symbolic regression are two
different approaches to solving machine learning problems, each
with its own principles and methodologies. Ensemble learning
involves combining multiple individual models to improve
predictive performance over any single model. The idea is that
by aggregating the predictions of multiple models, the weaknesses
of individual models can be mitigated, leading to better overall
performance. Bagging (Bootstrap Aggregating) method involves
training multiple instances of the same model on different subsets

of the training data and combining their predictions, often reducing
overfitting. Boosting algorithms build models sequentially, where
each subsequent model focuses on the examples that the previous
models have struggled with, effectively learning from their mistakes.
Ensemble methods are widely used in practice and often achieve
state-of-the-art performance in various machine learning tasks,
including classification, regression, and clustering. Symbolic
regression is a specific type of regression analysis that aims to
find mathematical expressions or formulas that best describe the
relationship between input variables and output targets. Instead
of fitting a predefined model (like linear regression or polynomial
regression), symbolic regression algorithms search formathematical
expressions within a predefined function set (such as addition,
multiplication, exponentiation, trigonometric functions, etc.).
Symbolic regression algorithms often use techniques like genetic
programming (GP) or evolutionary algorithms to search the space
of possible mathematical expressions iteratively, trying to find the
expression that minimizes a chosen objective function (typically a
measure of fit or error). Symbolic regression is particularly useful
when the underlying relationship between variables is complex and
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TABLE 2 Performance measurements of developed models for (Ft).

Model Dataset SSE MAE MSE RMSE Error % Accuracy % R2

GB Training 2 0.2 0.0 0.2 3 97 0.98

Validation 0 0.1 0.0 0.2 2 98 0.96

CN2 Training 29 0.4 0.6 0.8 10 90 0.75

Validation 4 0.3 0.3 0.6 8 92 0.55

NB Training 181 1.2 3.6 1.9 26 74 0.33

Validation 65 1.6 5.0 2.2 30 70 0.26

SVM Training 1 0.1 0.0 0.2 2 98 0.99

Validation 0 0.1 0.0 0.2 2 98 0.96

SGD Training 57 0.9 1.1 1.1 14 86 0.42

Validation 13 0.8 0.0 1.0 13 87 0.43

KNN Training 1 0.1 0.0 0.2 2 98 0.99

Validation 0 0.1 0.0 0.2 2 98 0.96

Tree Training 27 0.4 0.5 0.7 10 90 0.79

Validation 5 0.3 0.4 0.6 8 92 0.57

RF Training 63 0.7 1.3 1.1 15 85 0.41

Validation 5 0.4 0.4 0.6 8 92 0.49

FIGURE 6
Reduction in Error % with increasing the number of trees and levels.

cannot be adequately captured by traditional regression models, or
when the goal is to discover interpretablemathematical relationships
from data. In summary, while ensemble machine learning focuses
on combining multiple models to improve predictive performance,
symbolic regression aims to discover mathematical expressions that
describe the relationships within the data. Both approaches have
their strengths and are applicable in different contexts, depending
on the nature of the problem and the desired outcomes. Gradient

Boosting (GB) is a machine learning technique for regression and
classification problems that builds an ensemble of weak prediction
models, typically decision trees, sequentially. Each subsequent
model corrects the errors made by the previous one. CN2 Rule
Induction (CN2) isan algorithm used for rule-based classification,
which iteratively constructs a set of rules to describe the data. It uses
statistical significance tests and a covering algorithm to generate
rules. Naive Bayes (NB) is a simple probabilistic classifier based on
applying Bayes’ theorem with strong independence assumptions
between the features. It's often used for text classification and other
domains where feature independence assumptions are reasonable.
Support Vector Machine (SVM) is a supervised learning algorithm
used for classification and regression tasks. SVMs find the optimal
hyperplane that separates classes in the feature space by maximizing
the margin between the classes. Stochastic Gradient Descent
(SGD) isan optimization algorithm used to train machine learning
models, particularly in large-scale settings. It updates the model
parameters iteratively using a subset of training data at each
step. K-Nearest Neighbors (KNN) is a simple algorithm used for
classification and regression tasks. KNN makes predictions by
identifying the K closest training examples in the feature space and
averaging their labels for regression or taking a majority vote for
classification. Decision Tree (Tree) isa popular supervised learning
algorithm used for classification and regression tasks. Decision trees
recursively partition the feature space into regions, with each region

Frontiers in Built Environment 10 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1434159
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Velastegui et al. 10.3389/fbuil.2024.1434159

FIGURE 7
Relation between predicted and calculated strength using (GB).

FIGURE 8
Reduction in Error % with increasing the rule length.

corresponding to a prediction. Random Forest (RF) is an ensemble
learningmethod that constructs amultitude of decision trees during
training and outputs the mode or mean prediction of the individual
trees for classification or regression tasks, respectively. Response
Surface Methodology (RSM) is a statistical technique for modeling
and optimizing processes. It involves designing experiments to
understand the relationship between input variables and the output
response of a system, typically using polynomial regression models.
The working theoretical frameworks of these machine learning
techniques are illustrated in Figure 5. Each of these algorithms and
methodologies has its own strengths, weaknesses, and specific use
cases.The choice of which one to use depends on factors such as the
nature of the problem, the characteristics of the data, computational
resources available, and the desired interpretability of the model.

3.5 Performance accuracy checks

Each of the accuracy check metrics provides different insights
into the performance of amachine learningmodel, and the choice of

which to use depends on the specific task and goals. For regression
tasks, SSE, MAE, MSE, and RMSE are commonly used, while for
classification tasks, accuracy is more appropriate. R2 can be used
in regression tasks to assess the goodness of fit of the model. It's
often a good practice to evaluate models using multiple metrics
to gain a comprehensive understanding of their performance. The
accuracies of developed models were evaluated by comparing SSE,
MAE, MSE, RMSE, Error %, Accuracy % and R2 between predicted
and calculated shear strength parameters values. The definition of
each used measurement is presented in Equations 2–7. The results
of all developed models are summarized in Table 2.

MAE = 1
N

N

∑
i=1
|yi − ̂y| (2)

MSE = 1
N

N

∑
i=1
(yi − ̂y)

2 (3)

RMSE = √MSE (4)

Error% = RMSE
̂y

(5)

Accurcy% = 1−Error% (6)

R2 = 1−
∑(yi − ̂y)

2

∑(yi − y)
2

(7)

4 Results and discussion

4.1 GB model results

The developed (GB) model was based on (Scikit-learn) method
with learning rate of 0.1 and minimum tensile subset of 2. Nine
trials were conducted for each model started with two trees and two
tree levels and increased gradually to four trees and four tree levels.

Frontiers in Built Environment 11 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1434159
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Velastegui et al. 10.3389/fbuil.2024.1434159

FIGURE 9
Sample of the developed CN2 “If condition”.

FIGURE 10
Relation between predicted and calculated strength using (CN2).

FIGURE 11
Relation between predicted and calculated strength using (NB).
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FIGURE 12
Reduction in Error % with increasing the polynomial degree.

The reduction of the prediction Error, % for each trail is presented
in Figure 6. Accordingly, the models with four trees and four tree
levels are considered the optimum ones. Performance metrics of the
developed model for both training and validation dataset are listed
in Table 2. The average achieved accuracy was 97%. The relations
between calculated and predicted values are shown in Figure 7.It
is important to note that the impact of the addition of metakaolin
(MK) has been considered in the model protocol. As such, a 5%
degree of influence produced by a supplementary cementitious
material (SCM) such as metakaolin on the flexural behavior
of concrete is of important consideration due to the concrete
admixtures’ requirement allowed by design conditions.

4.2 CN2 model results

Similarly, five (CN2) models were developed considering
“Laplace accuracy” as evaluation measurement with beam width of
1.0 and minimum rule coverage of 1.0. The maximum rule length
was started by 1.0 and increased up to 9.0. Figure 8 shows the
reduction in Error % with increasing the rule length. Accordingly,
rule length of 7.0 is considered. The developed models contain
39 “IF condition” rules, Figure 9 presents some of these rules.
Performance metrics of the developed model for both training
and validation dataset are listed in Table 2. The average achieved
accuracy was (91%).The relations between calculated and predicted
values are shown in Figure 10.It is important to note that the impact
of the addition of metakaolin (MK) has been considered in the
model protocol. As such, a 5% degree of influence produced by a
supplementary cementitious material (SCM) such as metakaolin on
the flexural behavior of concrete is of important consideration due to
the concrete admixtures’ requirement allowed by design conditions.

4.3 NB model results

Traditional Naive Bayes classifier technique considering the
concept of “Maximum likelihood” was used to develop the nine
models. Although this type of classifier is highly scalable and are
used in many applications, but it showed a very low performance

as shown in Table 2. The relations between calculated and predicted
values are shown in Figure 11. The achieved average accuracy
was72%.It is important to note that the impact of the addition
of metakaolin (MK) has been considered in the model protocol.
As such, a 5% degree of influence produced by a supplementary
cementitious material (SCM) such as metakaolin on the flexural
behavior of concrete is of important consideration due to the
concrete admixtures’ requirement allowed by design conditions.

4.4 SVM model results

The developed (SVM) model was based on “polynomial” kernel
with cost value of 100, regression loss of 0.10 and numerical
tolerance of 1.0. The kernel started with one-degree polynomial
(linear) and increased up to three-degree polynomial (cubic). The
reduction in the error % with increasing the polynomial degree is
illustrated in Figure 12. Accordingly (cubic) kernel is considered.
Performancemetrics of the three developedmodels for both training
and validation dataset are listed in Table 2. The average achieved
accuracy was (98%).The relations between calculated and predicted
values are shown in Figure 13. It is important to note that the impact
of the addition of metakaolin (MK) has been considered in the
model protocol. As such, a 5% degree of influence produced by a
supplementary cementitious material (SCM) such as metakaolin on
the flexural behavior of concrete is of important consideration due to
the concrete admixtures’ requirement allowed by design conditions.
Therefore, the accuracy of 98% has been recorded with the 5%
impact contribution from the addition of MK.

4.5 SGD model results

These threemodels were developed consideringmodifiedHuber
classification function and “Elastic net” re-generalization technique
with mixing factor of 0.01 and strength factor of 0.001. The
learning rate starts with 0.01, then gradually decreased to 0.001.The
reduction in error% with reducing the learning rate is presented in
Figure 14. Performance metrics of the three developed models for
both training and validation dataset are listed in Table 2.The average
achieved accuracy was (86%). The relations between calculated and
predicted values are shown in Figure 15. It is important to note that
the impact of the addition of metakaolin (MK) has been considered
in themodel protocol. As such, a 5%degree of influence produced by
a supplementary cementitious material (SCM) such as metakaolin
on the flexural behavior of concrete is of important consideration
due to the concrete admixtures’ requirement allowed by design
conditions. Therefore, the 86% accuracy has been recorded under
the impactful addition of MK in its model protocol.

4.6 KNN model results

Considering number of neighbors of 1.0, Euclidian metric
method and weights were evaluated by distances, the developed
(KNN) models showed the best accuracy. (KNN) model showed the
best performance where the average error%was (98%).The relations
between calculated and predicted values are shown in Figure 16. It
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FIGURE 13
Relation between predicted and calculated strength using (SVM).

FIGURE 14
Reduction in Error % with reducing the learning rate.

is important to note that the impact of the addition of metakaolin
(MK) has been considered in the model protocol. As such, a 5%
degree of influence produced by a supplementary cementitious
material (SCM) such as metakaolin on the flexural behavior
of concrete is of important consideration due to the concrete
admixtures’ requirement allowed by design conditions. Therefore, a
98% accuracy from the KNN model has been recorded considering
the impact of MK as an important factor functioning as an SCM in
sustainable concrete production.

4.7 Tree model results

These five models were developed considering minimum
number of instants in leaves of 2.0 and minimum split subset of
5.0. The models began with only two tree levels and gradually
increased to six levels. Figure 17 illustrates the reduction in Error
% with increasing the number of layers.The layouts of the generated
modelsare presented in Figure 18. Performance metrics of the last
developed model for both training and validation dataset are listed
in Table 2. The average achieved accuracy was (91%). The relations

between calculated and predicted values are shown in Figure 19. It
is important to note that the impact of the addition of metakaolin
(MK) has been considered in the model protocol. As such, a 5%
degree of influence produced by a supplementary cementitious
material (SCM) such as metakaolin on the flexural behavior
of concrete is of important consideration due to the concrete
admixtures’ requirement allowed by design conditions. An accuracy
index of 91% produced by the Tree model has considered the
5% impact degree from the addition of the MK in the concrete
production.

4.8 RF model results

Finally, nine (RF) models were generated. The models began
with only two trees and two levels and increased up to four trees
and four levels. Figure 20 shows the reduction in Error % with
increasing number of Tress and layers. Accordingly, the models
with four trees and four layers are considered. The developed
modelsare graphically presented using Pythagorean Forest in
Figure 21. These arrangements leaded to a goodaverage accuracy
of (88%). The relations between calculated and predicted values
are shown in Figure 22. It is important to note that the impact
of the addition of metakaolin (MK) has been considered in the
model protocol. As such, a 5% degree of influence produced by a
supplementary cementitious material (SCM) such as metakaolin on
the flexural behavior of concrete is of important consideration due to
the concrete admixtures’ requirement allowed by design conditions.

4.9 Summary discussion of the results

Overall, the eight (8) models have presented their strengths
and weaknesses in their robust analysis of the collected database
representing the behavior of the flexural strength of concrete mixed
with metakaolin (MK). The developed (GB) model, which applied
a learning rate of 0.1 and minimum tensile subset of 2 with nine
(9) trials with the most reliable iteration of four trees and four
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FIGURE 15
Relation between predicted and calculated strength using (SGD).

FIGURE 16
Relation between predicted and calculated strength using (KNN).

FIGURE 17
Reduction in Error % with increasing the No. of layers.

tree levels produced a reduction of the prediction error. The GB
produced fit line equations of 1.00x and 0.99x for the training and

validation sets giving accuracies of 97% and 98%, respectively. From
the five (CN2) modelsdeveloped with “Laplace accuracy” as the
evaluation measurement with beam width of 1.0 and minimum
rule coverage of 1.0, the model produced an average achieved
accuracy of 91% from a representative line of fit relation of 0.97x
and 0.97x, respectively. The Naive Bayes classifier technique which
employed the “Maximum likelihood” hyperparameter showed a
very low performance with achieved average accuracy of 72%from
a representative line of fit relation of 1.09x and 1.16x, respectively.
The SVM model which was based on “polynomial” kernel with
cost value of 100, regression loss of 0.10 and numerical tolerance
of 1.0 had its kernel start with one-degree polynomial (linear) and
increased up to three-degree polynomial (cubic). The reduction
in the error % with increasing the polynomial degree shows the
advantage of the polynomialmodel over linear.The average achieved
accuracy was 98%from a representative line of fit relation of
1.00x and 0.99x, respectively. The SGD models were developed
consideringmodifiedHuber classification function and “Elastic net”
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FIGURE 18
The layout of the developed (Tree).

FIGURE 19
Relation between predicted and calculated strength using (Tree).

FIGURE 20
Reduction in Error % with increasing the No. of Tress and layers.

re-generalization technique with mixing factor of 0.01 and strength
factor of 0.001. The learning rate starts with 0.01, then gradually
decreased to 0.001. The average achieved accuracy was (86%), from
a representative line of fit relation of 0.95x and 0.90x, respectively.
Considering number of neighbors of 1.0, Euclidian metric method
and weights were evaluated by distances, the developed (KNN)
models showed the best accuracy. (KNN) model showed the
best performance where the average error% was (98%) from a
representative line of fit relation of 1.00x and 0.99x, respectively.
Thefive Tree models were developed considering minimum number
of instants in leaves of 2.0 and minimum split subset of 5.0. The
models began with only two tree levels and gradually increased to
six levels. The reduction in Error % with increasing the number
of layers shown by the models illustrates the models’ ability to
apply the hyperparameters to enhance performance. Performance
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FIGURE 21
Pythagorean Forest diagram for the developed (RF) models.

FIGURE 22
Relation between predicted and calculated strength using (RF).

metrics of the last developed model for both training and validation
dataset are listed in Tables 2. The average achieved accuracy was
(91%) from a representative line of fit relation of 0.96x and 0.99x,
respectively. Finally, from the RF application, the models began
with only two trees and two levels and increased up to four trees
and four levels. Accordingly, the models with four trees and four
layers are considered. These arrangements led to a good average
accuracy of 88%from a representative line of fit relation of 1.01x
and 1.00x, respectively. Finally, the GB, SVM, and KNN models
which produced an average MSE value of zero (0) showed their
decisive ability to predict the flexural strength of the metakaolin
(MK) mixed concrete (Ft). This outcome agrees with the previous
reports in the literatures (Yerramala et al., 2013; Patil and Sangle,
2013; Rosa et al., 2024), however the work of Shah et al. (2022)
happens to be the closest in terms of concrete components used in
the production of the mixes and the application of machine learning
techniques. It was found that the present research work’s models
outperformed those presented by Shah et al. (2022). These previous
works had suggested the use of 10% MK to achieve optimal Ft but
these decisivemodels with their dependable accuracy have proposed
models that allow the calibration of the optimal Ft considering

other mix options to producing a more sustainable MK mixed
concrete. Again, the machine learning performance in this work
agrees with other reports (Rosa et al., 2024; Silva et al., 2024).
Summarily, it is important to note that the impact of the addition
of metakaolin (MK) has been considered in the above metaheuristic
model protocols. As such, a 5% degree of influence produced by
a supplementary cementitious material (SCM) such as metakaolin
on the flexural behavior of concrete is of important consideration
due to the concrete admixtures’ requirement allowed by design
conditions. The summary of the models’ performance is presented
in Table 2 and Figure 23.

5 Conclusion

This research presents a comparative study between 8 ML
classification techniques namely, GB, CN2, NB, SVM, SGD, KNN,
Tree and RF to estimate theimpact of adding metakaolin to
concrete on its tensile strength considering mixture components
contents and concrete age. The outcomes of this study could be
concluded as follows:
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FIGURE 23
Comparing the accuracies of the developed models for (Ft) using Taylor charts, (A) Training dataset, (B) Validation dataset.

- GB, SVM, and KNN models showed an excellent accuracy
of about 98%, while (CN2, Tree, RF) models showed very
good accuracies of about 90% (SGD, NB) models showed fair
accuracy level of about 72%–86%.

- Sensitivity analysis indicated that cement content (C) is the
major impact on the tensile strength, followed by aggregate
contents (CAg, FAg) and super-plasticizer (P), then concrete
age, meta-kaolin and water contents (Age, MK, W). On the
other hand, the correlation analysis showed that concrete
age in the most important factor, then both cement and
metakaolin (MK) contents, while the impact of other factors
is neglected.

- The impact ofMKon the flexural strength of concrete behavior
showed a 5% degree of influence as cementing contribution
from a supplementary cementitious material (SCM) within
the required measurement allowed for its addition in concrete
production.

- All the developed models are too complicated to be used
manually, which may be considered as the main disadvantage
of the ML classification techniques compared with other
symbolic regression ML techniques such as (GP) and (EPR).

- The developed models are valid within the considered range of
parameter values, beyond this range; the prediction accuracy
should be verified.

6 Further/Action plan for the study

Future studies could expand on the original research in several
directions. These studies can address limitations, explore new
methodologies, and increase the practical applications of machine
learning (ML) models in predicting the properties of metakaolin

(MK) concrete. Potential areas for future research may include
extending the scope of ML models to predict other critical
properties of MK concrete beyond flexural strength. This may
include investigating how ML models perform in predicting the
compressive strength of MK concrete mixes. Also to predict the
durability-related properties, such as resistance to chloride ion
penetration, sulfate attack, carbonation, and freeze-thaw cycles. Use
ML models to predict time-dependent properties like shrinkage
and creep of MK concrete, which are crucial for long-term
performance in structures. By expanding ML predictions to other
concrete properties, future studies can develop comprehensive
models to help engineers optimize MK concrete mixes for various
applications. To investigate the combined effects of metakaolin
and other SCMs on concrete properties using ML models is
also an important consideration. SCMs are increasingly used
for sustainability, cost savings, and enhanced performance in
concrete. ML models can be trained to predict the synergy
between MK and these materials for more optimized concrete
mixes. Also to explore advanced ML techniques to improve the
accuracy and interpretability of predictions such deep neural
networks (DNN) or convolutional neural networks (CNN) and
Explainable AI (XAI): such as LIME (Local Interpretable Model-
agnostic Explanations) or SHAP (SHapley Additive exPlanations)
to make predictions more understandable for engineers and
practitioners. Future studies on this topic can explore a wide
range of directions, from predicting other material properties
and integrating advanced ML techniques to real-world validation
and automation. By expanding the scope of ML applications
and improving prediction accuracy, these studies will enhance
the understanding of metakaolin’s role in concrete performance
and make significant contributions to both material science
and civil engineering practices.
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