Skip to main content

ORIGINAL RESEARCH article

Front. Built Environ.
Sec. Construction Materials
Volume 10 - 2024 | doi: 10.3389/fbuil.2024.1430174
This article is part of the Research Topic Sustainable Building Materials from Recycled Cement/Concrete and Recycled Industrial Wastes View all articles

Effect of Fly Ash and Ground Waste Glass as Cement Replacement in Concrete 3D-Printing for Sustainable Construction

Provisionally accepted
  • The University of Sydney, Darlington, Australia

The final, formatted version of the article will be published soon.

    Concrete 3D printing is a promising manufacturing technology for producing geometrically complex structures efficiently and cost-effectively, by eliminating the need for formwork, reducing labor, and minimizing waste. This method has the potential to lower carbon emissions and resource use. However, it does not mitigate the carbon emissions associated with cement production. Nonetheless, utilizing waste materials in concrete 3D printing may reduce concrete carbon emissions and support recycling. This study investigates the use of two industrial waste materials-fly ash (FA) and ground waste glass (GWG)-as partial substitutes for ordinary Portland Cement (PC) in 3D printable cement paste. The chemical composition, particle size distribution, rheological properties, and flexural strength of the mixtures were analyzed. Results show that specimens containing waste materials achieved strengths comparable to traditional cement mixtures. The flexural strength reduction in 3D printed versus cast specimens varied across mixtures: control (66% reduction), FA20 (35%), FA10-GWG10 (35%), GWG10 (32%), FA10 (11%), and GWG20 (4%). Hence, incorporating waste materials in concrete 3D printing is recommended, as it maintains mechanical integrity while promoting recycling and upcycling of industrial waste.

    Keywords: Concrete 3D printing, Fly ash, Ground waste glass, Sustainable Construction, Waste recycling

    Received: 09 May 2024; Accepted: 10 Sep 2024.

    Copyright: © 2024 Samrani, Cao, Fimbres Weihs, Sanjaya, Dias-da-Costa and Abbas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ali Abbas, The University of Sydney, Darlington, Australia

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.