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In urban environments, buildings are often seismically designed with their
standalone response, such as isolated structures devoid of surrounding
structures. Nonetheless, there is always a chance that a significant seismic
interaction between nearby buildings through the underlying soil will occur in
big urban areas with high building densities. This paper evaluates the Site-City
interaction (SCI) between different city block arrangements under seismic
excitation given different parameters of the buildings and centre-to-centre
interbuilding distances. A database of strong ground motion records with Far-
Field, Near-Field Without Pulse and Near-Field Pulse-Like characteristics are
employed. The results suggest that the SCI effects were strongly influenced by
the building properties and resonance effects of the soil stratum. Furthermore, as
a mean for all the earthquakes considered here, the SCI can amplify or reduce the
seismic response of the buildings, depending on the relative position between the
city blocks.
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1 Introduction

The population of the world has progressively moved from rural to urban areas, as a
result of urbanization and modern living. At the moment, 55% of people live in densely
populated urban areas, where many of them are located in highly seismic areas. The high
building density indicates that there may be a significant seismic interaction between the
buildings via the underlying soil, even though it is standard practice to assess a building’s
seismic reaction as if it were a separate entity isolated from its surrounding structures. This
phenomenon is better known as Structure-Soil-Structure Interaction (SSSI) and can either
magnify or attenuate the seismic response of a building (Schwan et al., 2016; Vicencio and
Alexander, 2018a; Vicencio and Alexander, 2019; Tombari and Cacciola, 2021; Vicencio
and Alexander, 2022; Vicencio et al., 2023). The study of SSSI is a complicated subject with
an excessive number of variables, such as the orientation and spatial distribution of
buildings, the dynamic properties of the structures and the soil, and the natural
characteristics of the earthquakes. So, different approach to analyze this complex problem.

The ability to perform complex analyses that account for intricate geometric
arrangements, nonlinearities, and the radiating damping of soil has been made possible
by the rapid advancement in computational power and the use of numerical methods.
Numerical methods such as Finite Element method (FEM) (Tsogka and Wirgin, 2003;
Yahyai et al., 2008; Isbiliroglu et al., 2015; Ghandil and Aldaikh, 2017; Long et al., 2021;
Vicencio and Cruz, 2021; Chen et al., 2022; Shabani et al., 2022; Shamsi et al., 2022),
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boundary element method (BEM) (Kham et al., 2006; Padrón et al.,
2011; Han et al., 2020; Zhang and Taciroglu, 2021; Jin and Liang,
2022), and hybrid method (FEM/BEM) (Clouteau et al., 2012; Aji
et al., 2022) are some of the most extensively utilized multipurpose
tools in earthquake engineering and structural dynamics. The
downside of this technics is that their computational complexity
due to large number of degrees of freedom (DOF).

Analytical methods are one of the most used technics
methods to evaluate the seismic effects in structures. These
methods intent to use a limited number of DOF, where the
mechanical properties of the system are concentrated in a
small number of lumped masses, dashpots, and springs
(Mulliken and Karabalis, 1998; Yahyai et al., 2008; Kumar and
Narayan, 2019; Cacciola and Tombari, 2020; Zhang et al., 2021;
Vicencio et al., 2024). Lu et al. (2018), Lu et al. (2019), Lu et al.
(2020) proposed a simple linear model that allows the SSSI
between structures, where the dynamic stiffness matrix is
formulated based on compliance matrices. Later, the work of
Vicencio and Alexander (Vicencio and Alexander, 2021)
proposed a linear-elastic numerical model that can include
multiple building interactions (allowing only square based
buildings), with the seismic excitation in one direction, and
considering different heights and interbuilding distances. All
these previous studies give a theoretical framework for the
study of SSSI with an efficient and straightforward
mathematical formulation. However, a gap remains in state-
of-the-art knowledge of SSSI when multiple interactions
between building clusters in a 3D arrangement are considered.

Physical experimental tests represent an important validation
point for all the numerical models presented previously. In the
same way, it provides preliminary estimates of the effects of
complex interaction problems (Kitada et al., 1999). Examined the
coupled interaction between different buildings belonging to
nuclear power plants by using forced vibration field tests and
shaking table tests. Centrifuge tests have been used to evaluate
nonlinear behaviour both on the structures and in the soil
(Mason et al., 2013; Trombetta et al., 2013; Trombetta et al.,
2015). The results showed that the interaction between the
buildings could be beneficial (i.e., reducing the seismic
response) or detrimental (i.e., increasing the seismic response),
depending on the seismic excitation and the properties of the
structures. The work of (Du et al., 2022) investigated the soil-
structure-cluster interaction (SSCI) between multiple height
structure cluster configurations by using shaking table tests
and finite element analysis. The results indicates that the
cluster effect affect the ground motion and adjacent high-rise
structures enhanced the seismic response of the structure. The
disadvantages of this kind of experiment are they are technically
challenging to undertake. Nevertheless, shake table and
centrifuge tests represent a critical dataset of results to
benchmark various computational and theoretical models.
This is especially true for the exploration of the complex
problem of SSSI for various 3D configurations.

In this study, we extend the previous work on the SSSI
(Vicencio and Alexander, 2021) by considering different city
blocks arrangements. Note that the interbuilding springs used
here were validated by finite element analysis (Aldaikh et al.,
2015), shake table tests (Aldaikh et al., 2016), and centrifuge tests

(Knappett et al., 2015). The aim of this paper is to answer the
following questions,

• Does the presence of multiple buildings affect the seismic
response of the complete system?

• Is there evidence to suggest that different types of ground
motion (far field, near field without pulse and near field pulse-
like) can affect the SSSI behaviour?

• What are the most important parameters that govern this
complex problem?

2 Reduced-order model for Site-City
interaction effects between
structure cluster

2.1 Equation of motion

The reduced-order model consists of a set of n buildings (e.g., a
model of a city blocks), distributed over a shared soil stratum, as
shown in Figure 1. A known ground displacement field xg and yg is
applied in the x- and y- direction respectively, at all foundations.
Each superstructure can be modelled as low-order model with
translational DOF xi and yi, and their sway-flexural lateral
stiffness kbxi and kbyi. The wave passage effects, coherence effects,
and spatially heterogeneous ground displacements are neglected in
the presented work. We only aim to model the important rotational
interactions between the buildings.

Each building’s foundation has two orthogonal auto-rotational
springs kxi and kyi and various interbuilding-rotational springs
defined as a vector κij � [κxij, κyij, κxyij, κyxij] (i.e., the coupling
between building ″i″ and building ″j″), where κxij is the
interbuilding-rotational stiffness coefficients in the x-direction,
κyij is the interbuilding-rotational stiffness coefficients in the
y-direction, and κxyij, κyxij are the cross-coupled terms. Note
that the springs kxi , kyi and κij represent the complete dynamic
behavior soil stratum, where only rotational DOFs at the
foundation level θxi, θyj are retained. The system geometry
and nomenclature used here are described in Figure 2. The
kinematic interaction is not considered in the present work,
i.e., the transfer function between foundation input motion
and free-field motion is one.

The potential energy of the complete system is given by Eq. 1
and is calculated by the sum of: (i) the internal work due to auto-
rotational springs, and (ii) the internal work due to inter-rotational
springs κxij, κyij and the cross-coupled term κxyij and κyxij. The
kinetic energy of the complete system is defined by Eq. 2, where each
term corresponds to: (i) translational kinetic energy due to sway and
foundation rotation of each building’s mass, (ii) the rotational
energy of each soil/foundation mass. Note that, in the particular
case where the foundation is square, the term collapse to κxij � κxji,
κyij � κyji, and κxyij � κyxij.

U � 1
2
∑n
i�1

kxiθ
2
xi + kyiθ

2
yi( ) + 1

2
∑n−1
i�1

∑n
j�i+1

(κxij θxj − θxi( )2

+κyij θyj − θyi( )2 + κxyij θyj − θxi( )2 + κyxij θxj − θyi( )2) (1)
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FIGURE 1
Idealization model of a city block arrangement.

FIGURE 2
Nomenclature of the city block arrangement model.

Frontiers in Built Environment frontiersin.org03

Vicencio and Alexander 10.3389/fbuil.2024.1403642

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1403642


TE � 1
2
∑n
i�1
(mbi _xi + _xg − hiθyi( )2 +mbi _yi + _yg − hiθxi( )2

+mbi _yi − hiθxi( )2 +msir
2
i θ2xi + θ2yi( )) (2)

where hi is the height, mbi is the total lumped modal mass of
building i and msi is the foundation/soil mass underneath
building i. kbi is the modal building lateral stiffness and ri is
the soil/foundation mass radius of gyration, and n is the number
of buildings. Hence, the Euler-Lagrange equations of motion
describing the dynamics of the discretised system of Figure 3 can
be derived in the standard way by calculus and is written in
matrix form, as follows,

M€x + C _x + Kx � p1€xg + p2 €yg (3)

where the mass matrix M (Eqs 4 and 7), the damping matrix C, the
stiffness matrix K (Eq. 8), the force vectors p1, p2 (Eqs 5 and 9) and the
DOFs vector x of the complete systemof n buildings are stated as follows,

M �

M̂1 / 0 / 0
..
.

1 ..
.

1 ..
.

0 / M̂i / 0
..
.

1 ..
.

1 ..
.

0 / 0 / M̂n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,K �

K̂1 / κ̂1i / κ̂1n
..
.

1 ..
.

1 ..
.

κ̂i1 / K̂i / κ̂in
..
.

1 ..
.

1 ..
.

κ̂n1 / κ̂ni / K̂n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

p � p̂1 / p̂i / p̂n[ ]T, x � x̂1 / x̂i / x̂n[ ]T,
x̂i � xi yi θyi θxi[ ]T (5)

C � M ∑4n
j�1

2ξjωj

ϕT
jMϕj

ϕjϕ
T
j

⎛⎝ ⎞⎠M (6)

The system’s linear viscous damping matrixC assumes that each
natural mode is damped at ξj � 0.05 of the critical damping, ϕj is the
modal eigenvector of the mode j, ωj are the natural frequencies of
the system. Thus, the Caughey orthogonal damping matrix C can be
calculated as (Clough and Penzien, 1993), by Eq. 6. Note that the
damping matrix refers to the coupled system. The fundamental
frequencies ωj of the coupled system do not change very much
compared to the uncoupled system (Vicencio and Alexander,
2018b), with a maximum of 9% variation in the natural
frequencies. Hence, the damping matrix does not vary
substantially between the SSSI and SSI systems.

The global mass matrixM corresponds to a diagonal block matrix,
where each different blocks M̂i represent the mass matrix for each
building i.

M̂i �
mbi 0 −mbihi 0
0 mbi 0 −mbihi

−mbihi 0 mbih2i +msir2i 0
0 −mbihi 0 mbih2i +msir2i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

FIGURE 3
Idealization model of a city block arrangement.
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The global stiffnessmatrixK includes the interaction effects between
the buildings (SSSI). Therefore, the diagonal block terms K̂i (of the global
stiffness matrixK) correspond to the stiffness matrix for each building i,

including the additional stiffening effect of the adjacent footings. The off-
diagonal block terms κ̂ij represent the interaction between the buildings i
and j. Note that all the interaction between buildings are considered.

FIGURE 4
Elastic response spectra for all PEER-NGA ground motions.

FIGURE 5
Schematic diagram of the structure cluster layout.
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K̂i �

kbi 0 0 0
0 kbi 0 0

0 0 kxi +∑n
j�1

κxij + κxyij( ) 0

0 0 0 kyi +∑n
j�1

κyij + κxyij( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

κ̂1i �
0 0 0 0
0 0 0 0
0 0 −κx1i −κxy1i
0 0 −κxy1i −κy1i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Finally, the global excitation vectors p1, p2 are assembled by the
block vector p̂i of each building i in both directions.

p̂ix � −mbi 0 −mbihi 0[ ]T , p̂iy � 0 −mbi 0 −mbihi[ ]T (9)

In this paper, the dynamic properties of each building “i”, which
is required in the Eq. 3, are deduced according to the following
assumptions,

• The fundamental natural period of the structure on a rigid
foundation (i.e., with no foundation/soil rotation) can be

defined as Txi � Tyi � Ti � c0h3/4i . This empirical form is
adopted by the approximate empirical relationship
proposed by the Euro Code 8 (British Standards Institution,
1996). In this equation the height of the building hi is taken in
meters, and the factor equal to c0 � 0.075, corresponding for
reinforced concrete moment resisting frames.

• Newmark and Rosenblueth consider that the volume of soil
mass beneath a square base building is approximately equal to
msi � 0.35ρsb

3
i , where ρs are the soil density and b the

building width.
• The mass of the building can be approximated as mbi � ρbb

2
i hi,

where the average building density can be considered as ρb �
600[kg/m3].

• The radius of gyration is calculated according to the
Newmark’s empirical expression ri � 0.33bi.

• It has been supported by previous research (Vicencio et al.,
2023) the SSSI effects on structures founded on loose soil may
exhibit significant interaction, so the soil properties used
correspond to loose sand, where the soil density is
ρs � 1300[kg/m3], the shear wave velocity is Vs � 156[m/s]
and the Poisson’s ratio of the soil is ]s � 0.3.

FIGURE 6
Change in displacement power due to 3D SSSI for a 3 × 3 city blocks of nine equispaced identical buildings and the same height (Ti � 0.5[s],hi/b � 2).

FIGURE 7
Change in acceleration power due to 3D SSSI for a 3 × 3 city blocks of nine equispaced identical buildings and the same height (Ti � 0.5[s],hi/b � 2).
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FIGURE 8
Total acceleration response for (A) building 1, (B) building 5, Power spectral density (C) building 1, (D) building 5.

FIGURE 9
Change in displacement power due to 3D SSSI for a 4 × 4 city blocks of sixteen equispaced identical buildings and the same height, mean for all
earthquakes (Ti � 0.5[s],hi/b � 2).
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• For the case of a singleton building (without any interaction),
the rotational stiffness spring coefficient ksθ is obtained by
using the well know empirical formulae ksθ � 1

2
Gsb3

1−μs.
• The two orthogonal auto-rotational springs kxi and kyi and the
interbuilding-rotational springs defined as a vector κij �
[κxij, κyij, κxyij, κyxij] (i.e., the coupling between building
″i″ and building ″j″) are obtained by the methodology
presented in (Vicencio and Alexander, 2021), where the
springs are determined by an application of an empirical
surficial displacement field and inverse system identification
using of least-squares. After the calculation of the springs that
represent the soil, the complete system is ensembled according
to the system matrices described in the dynamic Eq. 3.

2.2 Evaluation of change in power

We are interested in evaluating the change in the response
between the coupled (structure-soil-structure interaction SSSI) and
the uncoupled (soil-structure interaction, SSI) system. Initially the
SSSI solution of Eq. 2 is calculated through time-history analysis.
Then, the SSI response of each building is evaluated, where the
dynamic analysis is evaluated by setting the inter-rotational springs
κxij, κyij and the cross-coupled term κxyij and κyxij equal to 0. As a
measure of change in the response between SSSI and SSI, we will
employ the displacementUi (horizontal sway + rocking, Eq. 10) and

the total acceleration Ai (horizontal sway + ground + rocking, Eq.
10) for the top of the building i (in the x-direction), denoted by,

Ui � xi − hiθyi, Ai � €xi + €xg − hi€θyi (10)

In addition, it is valuable to characterize the change in total
power caused by the multiple SSSI among the buildings. So, the
percentage change in total power €χi for the building i, when using the
uncoupled SSI analyses rather than coupled SSSI analyses is
expressed in terms of the total power spectral densities EPSD(Ai),

χi � 100
EPSD Ui( )[ ]SSSI
EPSD Ui( )[ ]SSI − 1{ }, €χi � 100

EPSD Ai( )[ ]SSSI
EPSD Ai( )[ ]SSI − 1{ } (11)

where EPSD(Ui) and EPSD(Ai) is based on the average of the square
Fourier Transform of all data points of the response acceleration
time-seriesUi andAi. The change of power χi and €χi would be zero if
there is no difference in overall response power between SSSI and
SSI analyses. Using the Eq. 11 as a comparative metric, delivers a
statistical estimate of magnitude that is more robust than employing
a single peak of the function (displacement or acceleration).

2.3 Ground motion selection

To determine the effect of SSSI on the system described in Eq. 3
we consider fifty records that are taken from 25 events that occurred

FIGURE 10
Change in acceleration power due to 3D SSSI for a 4 × 4 city blocks of sixteen equispaced identical buildings and the same height, mean for all
earthquakes (Ti � 0.5[s],hi/b � 2).
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between 1971 and 2007 (see Figure 4), from the Pacific Earthquake
Engineering Research (PEER-NGA) West database. Nine of records
occurred in California (namely, San Fernando, Imperial Valley,
Coalinga, Morgan Hill, Hector Mine, Whittier Narrows,
Superstition Hills, Loma Prieta, Northridge and Parkfield), and
six of them are taken from different places around the world
(namely, Kocaeli (Turkey), Chi-Chi (Taiwan), Duzce (Turkey),
Irpinia (Italy), Kobe and Chuetsu-oki (Japan)). Each record has
two horizontal components. Event magnitudes range from Mw �
6.5 to Mw � 7.6 with an average magnitude of Mw � 7.0. Values of
their peak ground accelerations (PGAs) vary from 0.21 g to 0.82 g
with a mean value of 0.43 g. All ground motions were recorded on
weak soils, which correspond to sites of an average shear wave
velocity of less than 180 m/s, i.e., loose sand. Figure 4 displays the
elastic response spectrum for all the records and their mean.

3 Numerical studies and discussion

3.1 SCI effects on a building cluster with the
same height

To evaluate the effect of cluster interaction between the
buildings, three types of building cluster with the same
building heigh are considered, as shown in Figure 5 (Layout 1:
3 × 3 city blocks of nine equispaced identical buildings, Layout 2:

4 × 4 city blocks of sixteen equispaced identical buildings, Layout
3: 5 × 5 city blocks of twenty-five equispaced identical buildings).
The fundamental natural period of the structure on a rigid
foundation (i.e., with no foundation/soil rotation) is
Txi � Tyi � Ti � 0.5[s]. The buildings have the same square
plan area, with a height to width ratio equal to hi/b � 1.5. The
centre-to-centre interbuilding distances are equispaced at
Δxi � Δyi � 1.2b. The system is subjected to all earthquake
events (fifty in total) in both directions simultaneously (East-
West and North-South).

Figure 6 displays the variation of change in power for the
displacement on top of the buildings, corresponding to the
configuration Layout 1. The results are shown as the mean for
Far-Field (FF), Near-Field Without Pulse (NFWP), and Near-Field
Pulse Like (NFPL), in order to evaluate the changes depending on
the different types of ground motion. The maximum increase in
total power response occurred at the centre of the cluster (building
5), with a maximum of χ5 � 12.9%, corresponding to the Far-Field
records. In addition, there is a reduction in the response for some
buildings, with a maximum for building 7 (χ7 � −21.2%) to the
Near-Field Without Pulse records.

Figure 7 shows the variation of change in power for the
acceleration on top of the buildings. Similar to the displacement,
the maximum increase in total power response occurred at the
centre of the cluster (building 5), with a maximum of €χ5 � 22.6%,
corresponding to the Far-Field records. In addition, there is a

FIGURE 11
Change in acceleration power due to 3D SSSI for a 5 × 5 city blocks of twenty-five equispaced identical buildings and the same height, mean for all
earthquakes (Ti � 0.5[s],hi/b � 2).

Frontiers in Built Environment frontiersin.org09

Vicencio and Alexander 10.3389/fbuil.2024.1403642

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1403642


reduction in the response for some buildings, with a maximum for
building 7 (€χ7 � −21.2%,).

Figures 8A, B show the uncoupled SSI (blue line) and coupled
SSSI (red line) response for the top of building 1 and 5, and Figures
8C, D depict the corresponding power spectral density for the total
acceleration, considering the Supertition Hill earthquake.
Comparing the seismic response, it is clear that building 1 is
affected by the surrounding buildings, where the change in
power is €χ1 � −23.8%. On the other hand, the building 5 (at the
center of the city block), there is an amplification of €χ5 � 16.9%.

As we can observe in the previous figure, the amplification/
reduction of change in power (displacement and acceleration)
between the three different earthquake-type events (FF, NFPL,
and NFWP) are similar and follow equivalent trends for
maximum values. Therefore, from now on we are plotting the
mean of all earthquakes. Figures 9, 10 display the variation of
change in power for the displacement χi[%] and acceleration
€χi[%] on top of the buildings, respectively.

The maximum increase in total power response occurred at the
centre of the cluster, with a maximum of €χ6 � 6.79% for the
acceleration. In the case of the displacement, there is a reduction
in the response of χ6 � −4.25%.

Figure 11 shows the variation of change in power for the
acceleration €χi[%] on top of the buildings, corresponding to the

configuration Layout 3 (5 × 5 city blocks of twenty-five equispaced
identical buildings and the same height). In this case, there is an
amplification of €χ13 � 24% at the center of the city block, and a
reduction of €χ13 � −29% at the corner of the city block. These results
are consistent with the transfer functions shown by (Isbiliroglu et al.,
2015), where the change in response is calculated in different clusters
with variable number of buildings and spacing. As mentioned in the
same work, the SCI effects increase as the number of structures
increases and the separation between buildings decreases. This is
why, in this paper we did not consider larger interbuilding
separations (the SCI effects decreases).

3.2 SCI effects on a building cluster with
different heights

Here we evaluate the effect of cluster interaction between buildings
with different height. As before, three types of building cluster are
considered (Layout 1: 3 × 3 city blocks of nine equispaced identical
buildings, Layout 2: 4 × 4 city blocks of sixteen equispaced identical
buildings, Layout 3: 5 × 5 city blocks of twenty-five equispaced identical
buildings). The fundamental natural period of the structure on a rigid
foundation (i.e., with no foundation/soil rotation) covers a range of
Txi � Tyi � (0.2[s] − 1.0[s]). All the buildings have the same square

FIGURE 12
Change in acceleration power due to 3D SSSI for a 4 × 4 city blocks of sixteen equispaced identical buildings with different height. Mean for all
earthquakes.
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plan area, therefore the centre-to-centre interbuilding distances are
equispaced at Δxi � Δyi � 1.2b. The system is subjected to all
earthquake events (fifty in total) in both directions simultaneously
(East-West and North-South).

Figure 12 shows the variation of change in power for the
acceleration €χi[%] on top of the buildings, corresponding to the
configuration Layout 2 (4 × 4 city blocks of sixteen equispaced
identical buildings), where the four central buildings are taller. In
this case, due to the differences in height, there is an amplification at
the edges of the city blocks, with a maximum of €χ5 � 20.1%. This
highlights the complexity of the interaction, and the need to evaluate
the interaction for each particular case, especially when there are
important differences between the heights of the buildings.

Finally, Figure 13 depicted the variation of change in power for the
acceleration €χi[%] on top of the buildings, corresponding to the
configuration Layout 3 (5 × 5 city blocks of twenty-five equispaced
identical buildings and different height). As the previous discussed,
there is a transfer of energy between the taller buildings, to the shorter
buildings (€χ7 � 15.6%). These results highlight the relevance of
studying the seismic interactions between the buildings and consider
the site-city interaction effects, especially in highly dense urban areas.
Future studies should consider different buildings configurations, and
nonlinear effects. In the same way, data from instrumented buildings
are required in order to validate this news numerical simulations.

4 Conclusion

In this paper, we present a theoretical formulation for Structure-
Soil-Structure Interaction (SSSI) between adjacent buildings that form a
city blocks under earthquake excitation in a 3-dimension arrangement.
Different building layout and building properties are considered. A
database of strong ground motions records with Far-Field, Near-Field
Without Pulse and Near-Field Pulse-Like characteristics are employed.
The inter-rotational springs was previously calibrated and validated by
(i) finite element analyses (ii) physical experimental test using the
University of Bristol’s shaking table and University of Dundee’s
centrifuge and (iii) an analytical formulation derived from a
Boussinesq deformation field of an elastic half-space. This research
has led to the following principal conclusions:

• In most cases, the centre of the city blocks produces the largest
amplification when compared with the isolated case (SSI),
when the buildings have the same height. The magnitude of
the change in the response depends on the dynamic
characteristics of the structure adjacent to the building
under consideration and the size of the city blocks.

• Regarding of the earthquake event, it is found that there is a
reduction in the seismic response at the corner of the
city blocks.

FIGURE 13
Change in acceleration power due to 3D SSSI for a 5 × 5 city blocks of twenty-five equispaced identical buildings with different height. Mean for all
earthquakes.
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• In the case of different building heights, the phenomenon gets
more complicated. The SCI effects depend mainly on the
relative height ratios between buildings, where the taller
buildings’ seismic response is reduced, and the shorter
building´s seismic response is increased.
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