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Predicting the axial Shortening strength of concrete-filled steel tubular (CFST)
columns is an important problem that this study attempts to solve for civil
engineering projects. We suggest using a deep learning-based artificial neural
network (ANN) model to address this issue, taking into account the intricate
relationship between steel tube and core concrete. Themodel, called ANN-SFRC
(Steel Fibre Reinforced Concrete), surpasses an R2 threshold of 0.90 and achieves
impressive R2 values across different types of CFST columns. Compared to
traditional linear regression methods, the ANN-SFRC model significantly
improves accuracy, with an observed inaccuracy of less than 3% compared to
actual values. With its reliable approach to forecasting the behavior of CFST
columns under axial compression, this high-performance instrument enhances
safety and accuracy during the design and planning stages of civil engineering.
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1 Introduction

Concrete is poured into steel-tube columns (CFST) to increase the engineering
constructions’ toughness (strength and ductility). This method is called a “composite
system,” which blends concrete with other composite materials (Chandramouli et al., 2022;
Fischer et al., 2022; Mohammed et al., 2023;Đorđević and Kostić, 2023). A CFSTmember is
typically made by filling a hollow steel tube with concrete. The main advantage of employing
steel tubes filled with concrete as the main component is that it considerably increases the
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toughness and plasticity of the concrete while also delaying or
preventing local steel tubular buckling (George and Selvan, 2024).

The characteristics that make CFST unique include toughness,
more remarkable plasticity, increased bearing capacity, improved
seismic performance, and practical construction refractory
capabilities. Additionally, CFST is used as a ‘structure’ in
buildings in various shapes (such as circular, square, and
rectangle) depending on the environment and the sectional form
needs. Since square CFSTs are easier to process and more stable than
other shapes [6–8], more investigations have focused on them than
rectangular and circular tubes. The main reasons for the increased
use of CFST members are the steel tube’s improved tensile strength
and the concrete core’s compressive strength.

Although the square, rectangular, and circular (Singh et al.,
2023), octagonal, round-ended rectangle, and square, rectangular,
and circular-based models (Liao et al., 2021) are the three main
varieties of CFST, there are many other shapes. They are not the only
shapes that can be used. Similar divisions of the CFST into confined
and unconfined cross-sectional forms exist. To predict material
properties like yield strength, compressive strength, ultimate
bearing capacity, ductility, thickness, and others, each CFST form
employs a unique parametric model. To correctly forecast or
approximate the CFST and its axial compression capacity and to
evaluate them, empirical formulas must be used (Romero
et al., 2011).

Concrete-filled steel tube columns have gained widespread
attention in structural engineering due to their remarkable
structural performance and versatility. These columns, composed
of a steel tube filled with high-strength concrete, exhibit enhanced
strength, ductility, and fire resistance compared to traditional
structural elements. Despite their increasing use, a comprehensive
understanding of the system parameters influencing CFST column
performance is crucial for optimal design and application.

The literature review indicates that only a few studies have
investigated the behaviour of CFST columns filled with Steel Fibre
Reinforced Concrete (SFRC) under elevated temperatures. Meng
et al. (Ujwal et al., 2024) conducted fire resistance experiments on
eight CFST columns filled with steel fiber, highlighting a notable
enhancement in fire performance, especially in an inner steel profile.
Columns exposed to fire on one or two sides exhibited fire durations
exceeding 240 min. A study addressing the long-term shrinkage of
concrete (Sharma et al., 2022; Sathvik et al., 2023) emphasized its
significant impact on strength, attributing this effect to the gradual
evaporation of water and its impact on the efficiency of wet particle
packing. (George et al., 2024). observed that using steel fibers in self-
stressing concrete-filled steel tube columns could improve the
bending moment by 2%–14% and increase the maximum load by
4%–17%. Although the increase is subtle, steel fibers delay secondary
actions, demonstrating an increased bending moment after reaching
ultimate conditions, indicating a satisfactory margin for error. Song
et al. (Moliner et al., 2013) explored CFST series with expansive and
regular concrete, subjecting them to temperatures ranging from
20◦C to 800°C to examine the temperature’s effect on bond
behavior. The results revealed a 98% reduction in bond capacity
after heating to 800°C, primarily due to diminishing contributions
from factors such as chemical adhesion at high temperatures.
Studies by Romero et al. [17] and Moliner et al. (Song et al.,
2017) investigated the impact of steel fibers on fire resistance,

showing that the addition of mixed steel fibers increased fire
resistance in columns—a conclusion supported by other studies
(Han et al., 2018; Murali and Azab, 2023). Despite ample literature
on the structural behaviour of CFST filled with standard concrete,
the influence of SFRC in CSFT remains relatively unexplored,
underscoring the necessity for further research in this domain.

Since the datasets are metadata and different calculations, the
researchers have chosen to analyze the axial compression capacity
(A.C.C.) kinds using CFST ‘Machine Learning’ based methods. Even
while “expected errors” or “loss percentage rate” are technically
“expected errors” in the assessment of datasets to recover the
expected results, machine learning is still regarded as a
computerized language/computation and standardized technique
(Zhou and Liu, 2019; Wróblewska and Kowalski, 2020). Due to the
wealth of information and understanding of the CFST column
members, not many countries support this strategy. However,
because CFST-based bridges have a far higher threshold capacity
than conventional concrete-based columns, nations like Japan,
China, the US, India, and others have chosen them as a priority
method in structural engineering. Even if only a small number of
CFST experiments were successful, it is feasible that they could falter
under pressure and have consequences in real time because of
changes and variations in the environment (Raja et al., 2021;
Zarringol and Thai, 2022). Despite being successful as prototypes,
new models developed by researchers have also failed (Le et al.,
2021). Therefore, environmental or external elements should be
considered before beginning projects for buildings and bridges that
use CFST-based columns.

China hurriedly constructed over 413 CFST bridges in 2015,
each with a 50-meter span (Asteris et al., 2021). They formed highly
ductile, ultimately load-bearing based columns using the knowledge
they received during the testing phases on circular and rectangular
CFSTs and used them in their projects. The CFST columns-based
structural strength is more suited for bridges because of its capacity
to manage external challenges, including heavy vehicle load, wind,
erosion, ductility, toughness, and elastoplastic properties (Han
et al., 2005).

The application of Machine Learning (ML) and Deep Learning
(DL) techniques for predicting and modeling the behavior of
concrete and Fiber-Reinforced Concrete (FRC) at elevated
temperatures. It highlights the advantages of employing ML/DL
models, such as their efficiency in estimating material behaviors
under fire conditions, offering insightful research ideas, and
presenting future scope for researchers and engineers globally.
ML/DL models demonstrate significant advantages over
traditional experimental testing and numerical tools, particularly
in their ability to handle high nonlinearity associated with concrete/
FRC behavior at elevated temperatures. These models offer
simplicity in mathematical paradigms, time efficiency, and a wide
range of modeling options. They also reduce dependency on
commercial software and conserve limited experimental
resources. Despite the promising performance of ML/DL
algorithms in predicting concrete/FRC properties under high
temperatures, significant research gaps persist. Further studies are
needed to predict mechanical and other physical properties
accurately. Existing ML/DL models for this purpose are still
premature and require refinement for practical applications.
Additionally, challenges related to data extraction, preprocessing,
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dataset preparation, feature selection, and model training and
validation need to be addressed. (46).

2 Research significance

Concrete-filled steel tubular (CFST) columns play a crucial role
in the structural integrity of civil engineering projects. The axial
shortening strength of CFST columns is a paramount concern, and
precise prediction of this strength is vital for ensuring the safety and
efficiency of such projects. However, a significant research gap exists
in developing high-performance predictive models for CFST
columns. The evaluation of the literature highlights important
knowledge gaps regarding the behavior of concrete-filled steel
tubular (CFST) columns under high temperatures and the effects
of long-term shrinkage, especially those filled with steel fibre
reinforced concrete (SFRC). Even though steel fibers have shown
encouraging results in improving structural performance and fire
resistance, thorough studies in these particular fields are still lacking.
Furthermore, the lack of machine learning-based predictive models
for the performance of CFST columns and the scant investigation of
the influence of environmental factors point to important directions
for future study. By filling in these gaps and investigating
applications like improving predictive modeling, validating
experiments, developing design guidelines, and putting them into
practice, we can greatly increase the resilience, efficiency, and safety
of CFST-based structures in civil engineering projects. Thus, the
current study addresses this gap by applying deep learning
techniques to create an Artificial Neural Network (ANN) model,
specifically the ANN-SFRC model, tailored to predict the axial
shortening strength of CFST columns. The intricate relationship
between core concrete and steel tube properties, coupled with the
nonlinearity inherent in compression behaviour, makes this
research essential in enhancing the reliability of CFST
column designs.

In the context of using Artificial Neural Networks (ANNs) for
analyzing structural behavior the scope of the study are as follows
Past Scope: Early Adoption: ANNs have been used in structural
analysis for several decades, primarily in the latter half of the 20th
century. Early studies focused on basic structural analysis tasks, such
as static and dynamic load analysis, with relatively simple network
architectures and datasets. Challenges in the past included limited
computing power, lack of standardized methodologies, and
relatively small datasets, which constrained the accuracy and
applicability of ANN models.

Present Scope: Advanced Applications: Present-day applications
of ANNs in structural analysis encompass a wide range of tasks,
including predictingmaterial properties, structural healthmonitoring,
and optimizing structural designs.Modern ANNmodels featuremore
complex architectures, including deep learning techniques such as
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), allowing for more accurate and nuanced
analyses. Availability of large-scale datasets, coupled with advances
in computing power and data processing techniques, enables more
comprehensive training and validation of ANN models. Validation
Techniques: Present studies employ rigorous validation techniques,
such as cross-validation and regularization methods, to ensure the
generalization and reliability of ANN models.

Future Scope: Further Advancements: Future research in the
field is expected to focus on refining ANN architectures, optimizing
training algorithms, and integrating hybrid modeling approaches for
enhanced accuracy and efficiency. Integration with IoT and Big
Data: Integration of ANNs with Internet of Things (IoT) devices and
utilization of big data analytics are anticipated to revolutionize
structural analysis, enabling real-time monitoring and predictive
maintenance of structures. ANNs will likely find broader
applications in interdisciplinary fields such as civil engineering,
architecture, and materials science, leading to more holistic and
sustainable approaches to structural design and analysis.

The present study likely employs more advanced ANN
architectures and techniques compared to previous studies,
leading to improved accuracy and robustness in predicting
structural behavior. With access to larger and more diverse
datasets, the present study benefits from better data quality and
increased representativeness of real-world scenarios. Validation
processes, as discussed in the provided conclusion, ensure that
the ANN models developed in the present study exhibit superior
generalization ability and effectiveness compared to earlier studies.

3 Materials and methods

3.1 Properties of materials

Rectangular sections were used to construct the CFST column
tensile test in ASTM-E8/8 M in line with the code (Liew et al., 2016).
The characteristics of steel tubes identified by sample evaluation are
listed in Table 1 (which shows the mean findings of three specimens
for each tube form). The study aimed to ascertain the maximum
weight that could be supported by concrete columns enclosed in
rectangular steel tubes. The fill was made of steel fibre reinforced
concrete (SFRC), grade M30. The experiment shown in Table 1
above investigated specimens that had undergone axial shortening.

3.2 Preparation of specimen

The fundamental components of a Concrete-Filled Steel Tubular
(CFST) typically consist of a concrete core encased within an iron
pipe. While concrete and iron pipe are the primary constituents,
additional elements may include hollow steel tubes, moisture, super
softeners, or other alloying elements, depending on the specific
requirements of the structural application. Notably, rectangular
Concrete-Filled Steel Tube Structural Columns (CFST-SCs) are
often constructed using concrete with average strength
characteristics. When exposed to elevated temperatures, CFSTs
made from the aforementioned concretes exhibit enhanced
physical and mechanical properties (Han et al., 2007; Sarkar
et al., 2023). This phenomenon is particularly advantageous, as it
contributes to the improved performance of CFST columns under
challenging conditions. The strengthened concrete used in these
structures plays a pivotal role in augmenting key attributes of the
CFST column, such as stiffness, stress capacity, and current
capacities. The interaction between the concrete core and the
surrounding steel tube creates a synergistic effect, combining the
compressive strength of concrete with steel’s ductility and tensile
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strength. This results in a composite material with superior
structural performance, making CFST columns a preferred choice
in various engineering applications.

3.3 Preparation of concrete

The study used 53-grade Ordinary Portland Cement (OPC),
which has a higher compressive strength than other types of OPC.
(Meng et al., 2020). The cement’s specific gravity of 3.15 exposes its
density, while the loss of ignition value of 0.98 indicates how much
volatile material is lost when heated. The fine sand can flow through
the sieve’s 4.75 mm opening. While a higher value indicates a
coarser particle size dispersion in the sand, a lower value of the
fineness modulus predicts a smaller particle size distribution (Hu
et al., 2003; Sakino et al., 2004). Sand’s density in terms of water is

shown by its specific gravity of 2.71. Better mechanical properties are
suggested by the cement’s chemical composition, which contains an
argillaceous proportion of approximately 30% and a neoplastic
section of around 70% (Du et al., 2016). The mix proportions for
various concrete grades are listed in Table 2.

The study’s coarse aggregate is a well-graded, angular granite
stone with a maximum size of 20 mm (Sathvik et al., 2019a). It meets
the requirements of I.S.: 383–2016 (Sathvik et al., 2019b). Figure 1
shows the CFST Light gauge steel rectangular column
test specimens.

3.4 Experimental techniques of steel tube

The study’s principal goal, to evaluate how steel fibre reinforced
concrete (SFRC)-filled concrete-filled steel tube (CFST) columns

TABLE 1 Material properties of rectangular steel tubes and steel fiber.

Material properties Rectangular steel tubes Steel fiber

Size (mm) Size = 100 × 50 mm L = 30 mm&D = 0.50 mm

Yield Strength fy (MPa) 445 1,101

Ultimate strength fu (MPa) 488 1,604

Elongation (%) 15.2 22.2

Poisson’s ratio 0.28 0.27

Modulus of Elasticity Es (GPa) 205.8 210.64

TABLE 2 Mix proportions.

Grade of concrete Cement Fine aggregate Coarse aggregate Water/Cement

M30 1 1.69 3.12 0.44

FIGURE 1
CFST Light Gauge Steel Rectangular Column test specimens.
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FIGURE 2
Experimental test setup.

FIGURE 3
Typical structure of an ANN.

TABLE 3 Descriptive statistics of the input and output parameter.

Mean Median Standard deviation Minimum Maximum

Load 100 100 59.89574 0 200

AS M30 CC 1.7663 1.71 0.94563935 0 3.32

AS M30 SFRC 2.41536 2.34 1.26425 0 4.56

M30 CC ELE 3.57 3.5 1.866755 0 6.75

M30 SFRC ELE 4.6297 4.2 2.331415 0 8.94
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react in both average and high temperatures, is depicted in Figure 2.
According to I.S.: 10262–2019, the study employs the grade of
concrete (M30) with 1% steel fibre added. To make the new
concrete, add coarse and fine aggregate to the mixer and mix
for 2 minutes.

4 Artificial neural network

In the context of our study, we adopt the well-established
information processing model known as an Artificial Neural
Network (ANN), as illustrated in Figure 3. This model comprises

interconnected clusters of neurons organized into input, hidden, and
output layers (Ivakhnenko, 1971). The strength of ANNs lies in their
ability to excel in prediction tasks by deciphering the relationships
between inputs and outputs. While the literature extensively covers
the structure and functionality of ANNs, our focus diverges from
these topics. Our study intentionally steers clear of delving into the
intricacies of ANN structure and activity, as these aspects have been
thoroughly explored in existing literature. Instead, we focus on a
more specific application, emphasizing our unique approach to
predict the axial load-shortening curve of concentrically loaded
rectangular and circular Concrete-Filled Steel Tube
(CFST) columns.

Despite the immense potential of ANNs in engineering
applications, previous studies often employed them merely to
estimate final strength values. In contrast, our research takes an
innovative approach by introducing a unique methodology
specifically designed to predict the axial load-shortening
behaviour of CFST columns under concentric loads. The
subsequent subsection elucidates the intricacies of our approach,
shedding light on the innovative techniques employed to enhance
the accuracy and applicability of our predictions.

5 Result and discussion

5.1 Development of the ANN model

In Figure 4, the load-deflection curve exhibits two distinct
branches: ascending and descending. Key parameters on this
curve include the peak load (Nmax) and the corresponding axial
shortening (max), while Nre denotes the residual strength. We aim
to employ Artificial Neural Network (ANN) techniques to anticipate

FIGURE 4
Axial load-shortening curve.

FIGURE 5
Comparing the target and predicted values.
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FIGURE 6
Output of the ANN model.

FIGURE 7
Flow diagram for the ANN-Based shortening curve Plotting approach.
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the load-shortening response of Concrete-Filled Steel Tube (CFST)
columns. To achieve this, we constructed eight ANN models
utilizing the Batch Replacement (B.R.) training approach and
MATLAB’s feed-forward backpropagation network. These models
comprise four variations for circular and four for rectangular CFST
column sections.

Creating models to predict Nmax, max, the trend of the
ascending branch, and the trend of the descending branch are all
part of the forecasting process. Many strategies were used to prevent
the developed ANN model from overfitting. To guarantee the
model’s performance evaluation on untested data, the dataset was
first divided into training, validation, and testing sets. The network’s
generalizability was then improved during the training phase by
using regularization techniques like dropout to keep it from
becoming unduly dependent on particular features or nodes. To
reduce the possibility of overtraining, the training procedure also
included early stopping criteria that were used to stop training when
the model’s performance on the validation set declined. To avoid
overtraining, the maximum number of iterations (epochs) for all
ANN models in this study was set at 90.

A total of 41 data with input feature as load have been employed
as a final dataset to construct the four ANNmodels predict the load-
shortening behavior of CFST columns. The input variables for each
model includes load and ouput variable include the corresponding
axial shortening for different conditions. The descriptive statistics of
input and output parameters is given in Table 3. A trial-and-error
tuning strategy was utilized to determine the hyperparameters,
architectures, and functions of the models during the training
phase. The model with the highest average prediction accuracy

throughout the whole training set was selected based on these
findings. The three hidden layers and one output layer
comprising the optimal structure for all four ANN models. All
optimal ANN were most suited for Tansig and Purelin’s suitable
activation functions. These models were designed to enhance the
accuracy of predicting the load-shortening behavior of CFST
columns, considering various geometric and material parameters
in their training and evaluation processes. The dataset was subjected
to multiple rounds of preprocessing prior to the development
prediction models. Part of this process involved randomly
dividing the initial dataset into seventy-percent training sets and
thirty-percent testing sets. Then, in order to remove any outliers and
bring the data into a range of [0, 1], normalization was applied to
both sets. The model development process was carried out solely on
the training set, while the prediction models were tested on the
testing set, which contained unseen data.

Two ANNmodels were developed to predict the Nmax of CFST
columns: one for rectangular columns and the other for circular
columns. The Nmax values from the database were the goals, and the
Nmax values that the models projected were the outputs. Two ANN
models were developed to predict the maximum value of the
rectangular and circular columns. The models’ targets were the
maximum value database values, and the outputs were the
maximum values that the models predicted. The following
formula, which was developed and used to forecast the trend of
the ascending branch, was inspired by the well-known
Popovics model:

CapNi � Nmax xyy − 1 + xy( ) (1)

FIGURE 8
ANN models’ error range (E.R.).
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TABLE 4 Actual and predicted value for Axial Shortening.

No Load
K.N.

As
M30 CC
actual

Predicted As
M30 SFRC-

Actual

Predicted As M30 CC
ELE actual

Predicted As M30 SFRC
ELE actual

Predicted

1 0 0 0 0 0 0 0 0 0

2 5 0.21 0.24 0.3 0.32 0.56 0.58 1.1 1.13

3 10 0.31 0.34 0.48 0.49 0.76 0.79 1.56 1.58

4 15 0.45 0.46 0.59 0.61 0.98 1.01 1.61 1.64

5 20 0.53 0.55 0.74 0.77 1.2 1.3 1.89 1.9

6 25 0.61 0.63 0.89 0.9 1.39 1.42 2.06 2.12

7 30 0.68 0.69 1.04 1.07 1.55 1.52 2.29 2.35

8 35 0.75 0.73 1.18 1.2 1.71 1.73 2.4 2.46

9 40 0.87 0.86 1.28 1.3 1.89 1.87 2.56 2.59

10 45 0.92 0.94 1.33 1.38 2.01 2.04 2.75 2.79

11 50 0.99 1.01 1.49 1.53 2.15 2.18 2.89 2.98

12 55 1.09 1.1 1.67 1.69 2.2 2.29 3.01 3.09

13 60 1.14 1.13 1.72 1.75 2.36 2.36 3.29 3.27

14 65 1.23 1.24 1.75 1.79 2.46 2.48 3.3 3.38

15 70 1.32 1.34 1.79 1.83 2.63 2.68 3.45 3.46

16 75 1.47 1.45 1.89 1.88 2.81 2.87 3.61 3.67

17 80 1.51 1.55 1.99 2.01 2.9 3.03 3.69 3.72

18 85 1.58 1.6 2.09 2.1 3.09 3.12 3.73 3.88

19 90 1.64 1.63 2.14 2.16 3.2 3.28 3.87 3.99

20 95 1.69 1.68 2.23 2.25 3.37 3.4 4.01 4.08

21 100 1.71 1.72 2.34 2.44 3.5 3.54 4.2 4.24

22 105 1.86 1.88 2.45 2.46 3.67 3.68 4.35 4.39

23 110 1.92 1.91 2.54 2.54 3.78 3.8 4.56 4.6

24 115 1.98 1.99 2.67 2.69 3.92 3.98 4.66 4.69

25 120 2.07 2.05 2.71 2.74 4.06 4.1 5.09 5.17

26 125 2.1 2.13 2.88 2.9 4.22 4.23 5.25 5.29

27 130 2.2 2.23 2.93 2.98 4.37 4.4 5.7 5.76

28 135 2.29 2.31 3.15 3.14 4.57 4.6 5.9 6.09

29 140 2.38 2.36 3.24 3.25 4.67 4.7 6.12 6.19

30 145 2.43 2.46 3.42 3.47 4.83 4.86 6.4 6.42

31 150 2.58 2.59 3.5 3.55 5.1 5.22 6.78 6.81

32 155 2.68 2.72 3.59 3.6 5.38 5.41 6.9 6.94

33 160 2.7 2.71 3.69 3.7 5.46 5.51 6.94 6.99

34 165 2.89 2.88 3.76 3.79 5.71 5,72 7.01 7.12

35 170 2.91 2.92 3.92 3.89 5.87 5.82 7.23 7.29

36 175 2.95 2.96 3.98 4.01 5.9 5.93 7.38 7.42

37 180 2.98 2.99 4.07 4.1 6.1 6.17 7.78 7.87

(Continued on following page)
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X is a variable such that x = i/max, and Ni and i stand for the
axial load and axial shortening at level I, respectively. The formula
demonstrates that the only unknown variable is y. Trial and error
was used to calculate the value of y. Eq. 1 was used to simulate the
ascending branches of the 967-axial load-shortening curves in the
database. The value of y for each simulation that most closely
mirrored the original curve was noted. The best-fit model was
created using the value of y = 3.80, as shown in Figure 5. The
data from the circular and rectangular CFST columns were used to
train the ANN models since the expected values of y were the goals,
and the values of y were the outputs. The descending branch’s trend
was ascertained using Binici’s model and the following equation:

Ni � Nre + Nmax −Nre( ) exp − Δi − Δmax β( )α[ ] (2)

where constants are present. Using Eq. 2, the 967 axial-
shortening curves from the database were reconstructed. The
procedure to compute the y value was also used to derive the
values. An example where the best-fit model was developed
using = 2.20 is shown in Figure 6. The simulation results,
experimental data, and F.E.M. data were all determined to be
best fit by values of 1.3 and 0.7 Nmax, respectively. The ANN

models were trained using the data from rectangular CFST columns
since the targets were the values and the outputs were the expected
values. The flow diagram for the axial load-shortening curve
utilizing the ANN approach is shown in Figure 7.

5.2 Performance of well-trained networks

Table 1 lists the statistical ANN model indicators that apply to
all datasets (i.e., 100% of the data). The near-unity RMSE and
R2 values exhibit the exceptional performance of the trained
networks, which is supported by all statistical measurements. The
MAPE results show a little discrepancy between the expected and
actual values. Table 2 displays the statistical indicators for the
training and testing sets, encompassing 80% and 20% of the data
about the Artificial Neural Network (ANN) models. Notably, the
statistical metrics for both the training and testing sets show
remarkable consistency, suggesting that the ANN models were
not subjected to overtraining. Figure 8 shows the error range
(E.R.), the percentage difference between the actual and projected
values for the trained models. The precision of the Artificial Neural

TABLE 4 (Continued) Actual and predicted value for Axial Shortening.

No Load
K.N.

As
M30 CC
actual

Predicted As
M30 SFRC-

Actual

Predicted As M30 CC
ELE actual

Predicted As M30 SFRC
ELE actual

Predicted

38 185 3.09 3.1 4.25 4.26 6.28 6.32 8.1 8.2

39 190 3.18 3.2 4.38 4.38 6.34 6.37 8.56 8.81

40 195 3.21 3.23 4.41 4.45 6.67 6.78 8.9 8.91

41 200 3.32 3.34 4.56 4.51 6.75 6.81 8.94 8.97

FIGURE 9
Displays the samples from the E.R. and ANN models.
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Network (ANN) models in forecasting target values is strikingly
evident, as a substantial majority of prediction outcomes exhibit an
Error Ratio (E.R.) of less than or equal to 5%. Only a minor fraction
of predictions demonstrate an E.R. exceeding 5%. For instance, the
E.R. was up to 5%, 4% was between 5% and 10%, and 1% was greater
than 10 in 95% of the Nmax forecasts for circular columns. For
instance, the experimental observation and predicted curves agreed
well for the CR4-D-4-1 and CS1-1 specimens. As was already
established, various researchers may report different results for
the same specimen due to testing settings and configuration
changes. The values of and CoV that correspond to the ultimate
strengths of 12 specimens and the actual and projected strengths
have a significant correlation. They were 1.01 and 0.04, respectively.

The provided data appears to be related to load testing for
different parameters associated with M30 concrete, including axial

shortening, actual versus predicted results, and the comparison of
conventional concrete (CC) and steel fibre-reinforced concrete
(SFRC) for both structural and environmental loading (E.L.E.)
shows in Table 4. These measurements and predictions are
crucial for assessing the performance and integrity of
M30 concrete in various conditions and are essential for quality
control and structural design purposes.

These visuals exhibit samples obtained from the Empirical Risk
(E.R.) and the Artificial Neural Network (ANN) models. The
comparison of these samples is essential for assessing the
performance and predictive capabilities of both models. Figure 9
provides a valuable means of evaluating how well the ANN model
approximates the outcomes of the E.R. model, enabling researchers
and stakeholders to make informed decisions based on the model’s
predictive accuracy and potential applications.

FIGURE 10
Show the validation of the model with R-values.
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The graphic presents the validation of the model by showcasing
a series of R-values, which are statistical indicators used to assess the
goodness of fit between the model’s predictions and observed data.
Figure 10 is a valuable visual tool for evaluating the accuracy and
reliability of the model’s predictions, with higher R-values indicating
a more robust correlation and better fit between the model’s output
and real-world data.

The graphical representation provides a visual depiction of the
model’s gradient, revealing the rate of change of a specific parameter
or function. The gradient is crucial in understanding how the model
responds to variations in input variables, making Figure 11 an
essential visual aid for interpreting the model’s behavior and
optimizing its performance.

5.3 Taylor diagram

Further, these statistical results were validated using Taylor
diagram. Taylor diagrams (Kumar et al., 2023) provide a concise
visual representation to evaluate the performance of different
simulation models by comparing predicted and observed values.
On a two-dimensional graph, it include regression coefficients,

standard deviations, and root-mean-square (RMS) differences.
The standard deviation is shown by the radial distance from the
center, and the correlation coefficient is represented by the
azimuthal angle. The RMS error is scaled to the difference
between actual and projected standard deviations. The model
closest to the reference point indicates the best prediction
accuracy. The Taylor diagrams for the four predictions are
shown in Figure 12. As can be observed, the marker location for
all four predictions model is closer to the “Ref” point, validating the
statistical results. The Taylor diagrams illustrate the positions of the
four prediction models relative to the “Ref” point. It is evident that
all four models are located closer to the “Ref” point, but the position
of ASM30 CC is exactly overlapping the reference point. Thus, it can
be concluded that all models prediction was good but the prediction
of ANNmodel for ASM30 CC outperformed the other three models
and obtained the best results.

5.4 Accuracy matrix

An accuracy heatmap matrix was created using the performance
metrics and results of all the proposed models to show how effective

FIGURE 11
Gradient of the model.
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they were. Figure 13 shows the accuracy heatmap matrix, which
represents the total accuracy of the built models. In order to
thoroughly assess the effectiveness and dependability of the ANN
models, a number of performance metrics, including R2, MAE,
RMSE, VAF, RSR, LMI, WMAPE, NS, WI, and PI, were carefully
calculated and accuracy of these parameters is shown in Figure 13
(Isleem et al., 2023; Kumar et al., 2024). These performance parameters
are derived and expressed in explicit terms in Eqs 3 through 12, where k
represents the total number of observations for each parameter and q
the total number of inputs used to generate the prediction. To be more
precise, the variables x̂i and xi represent the predicted and actual
output, respectively, andxmean represents themean value obtained from
the input variables. The achieved accuracies for each performance
metric were calculated using the ideal value as a benchmark. For
instance, we show that R2 = 1 and RMSE = 0 are the ideal values.

R2 � ∑k
i�1 xi − xmean( )2 − ∑k

i�1 xi − x̂i( )2∑k
i�1 xi − xmean( )2 (3)

RMSE �
�������������
1
k
∑k

i�1 xi − x̂i( )2
√

(4)

VAF � 1 − var xi − x̂i( )
var xi( ) × 100% (5)

PI � adj.R2 + 0.01VAF − RMSE (6)

RSR � RMSE�����������������
1
k∑k

i�1 xi − xmean( )2[ ]√ (7)

MAE � 1
k
∑k

i�1 x̂i − xi( )| | (8)

LMI � 1 − ∑k
i�1 xi − x̂i| |∑k

i�1 xi − xmean| |
⎡⎣ ⎤⎦, 0< LMI≤ 1 (9)

WI � 1 − ∑k
i�1 xi − x̂i( )2∑k

i�1 x̂i − xmean| | + xi − xmean| |( )2
⎡⎣ ⎤⎦ (10)

NS � 1 − ∑k
i�1 xi − x̂i( )2∑n

i�1 xi − xmean( )2 (11)

WMAPE � ∑k
i�1

xi−x̂i
xi

∣∣∣∣∣ ∣∣∣∣∣ × xi∑k
i�1xi

, (12)

It can be observed in Figure 13, the predictive accuracy of ANN
model for AS M30 CC is very good as the accuracy for most of the
performance parameters are 100%. After ANN model for AS M30,
the second best accuracy was observed for AS M30 SFRC, and AS
M30 SFRC ELE prediction’s accuracy was least compared to other
three models. Statistical results from predictions and the Taylor’s
diagram validate the overall accuracy of the proposed models, which
is very good shown in Figure 13.

FIGURE 12
Taylor diagram for prediction models.
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6 Conclusion

The stated objective was examined by gathering datasets and
data analysis to compare the outcomes of the developed ANNmodel
with regressions to those of current ANNmodels in the construction
industry. Compared to the ANN, up to 40% of the R2 values are
above 0.95; however, after the 60% size, the values gradually declined
below 0.95. Sizes with a 0.95 ratio will perform better and range
between 40% and 60%.

According to the L.R. model, the axial load R2 value was 0.89,
and the axial shortening R2 value was 0.88. The load and axial
shortening regression coefficients were 0.95 in the ANN
investigation. Due to its greater precision, the ANN model
produced a correlation coefficient near 1. The suggested ANN
model successfully predicted the axial shortening for the CFST-
Column CFST SFRC. It contains the width (B), height (H), length
(L/Le), diameter (d), and thickness (t), among other dimensions of
rectangular steel tube columns. The accuracy of the proposed ANN
model was verified. The model becomes more accurate and stable,
which makes it beneficial for future studies and inquiries.

The axial shortening for the CFST-Column, or CFST SFRC,
which comprises different geometries of rectangular steel tube
columns, along with other measurements, has width (B), height
(H), length (L/Le), diameter (d), and thickness (t)., was effectively
predicted by the suggested ANN model. The accuracy of the
proposed ANN model was verified. The model becomes more
accurate and stable, which makes it beneficial for future studies
and inquiries. For the AS M30 CC case, the ANNmodel showed the

highest predictive accuracy; however, for the AS M30 SFRC ELE, it
performed relatively worse. The Taylor diagram and accuracy
matrix supported this observation and further supported the
statistical conclusions. These findings highlight the ANN model’s
effectiveness in forecasting the behavior of Concrete-filled Steel
Tubular (CFST) columns under various circumstances, providing
insightful information for further study and useful applications in
structural engineering.

7 Limitations and future work

This study presents a novel method for predicting the structural
performance of steel tube columns filled with concrete enhanced
with SFRC in the event of a fire. The goal is to investigate whether
ANN can be used to simulate the properties of steel tube columns
filled with SFRC-enhanced concrete and aid in their design.
Obviously, the input variables chosen at this stage of the research
are somewhat limited. The input parameters can be raised in the
future with more experimental data, producing a simulation that is
even more accurate. The accuracy of the ANNmodel is significantly
limited by the study’s reliance on a small dataset. Therefore, in order
to improve the model’s predictions’ robustness and generalizability,
future work must concentrate on increasing the dataset size and
number of input parameters. Furthermore, applying sophisticated
optimization algorithms like genetic algorithms or particle swarm
optimization is crucial to improving the accuracy of the model
because of the inherent difficulties in training ANN models with

FIGURE 13
Accuracy matrix for prediction models.
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little data. Even with limited datasets, these optimization techniques
can help improve the model’s performance by fine-tuning its
architecture and parameters. Future iterations of the model can
enhance accuracy and overcome the constraints posed by small
datasets by integrating these approaches into the ANN framework.
Further avenues for improving predictive accuracy and reliability in
the context of CFST column behavior prediction could be found by
investigating ensemble learning approaches or hybrid models that
combine ANN with other machine learning techniques. Therefore,
in order to maximize the performance of the ANN model and
address the issues presented by small dataset sizes, future research
projects should give priority to the implementation of sophisticated
optimization algorithms.
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