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Introduction: The objective of this study is to develop predictive models for
rocking-induced permanent settlement in shallow foundations during
earthquake loading using stacking, bagging and boosting ensemble machine
learning (ML) and artificial neural network (ANN) models.

Methods: TheMLmodels are developed using supervised learning technique and
results obtained from rocking foundation experiments conducted on shaking
tables and centrifuges. The overall performance ofMLmodels are evaluated using
k-fold cross validation tests and mean absolute percentage error (MAPE) and
mean absolute error (MAE) in their predictions.

Results: The performances of all six nonlinear ML models developed in this study
are relatively consistent in terms of prediction accuracy with their average MAPE
varying between 0.64 and 0.86 in final k-fold cross validation tests.

Discussion: The overall averageMAE in predictions of all nonlinear MLmodels are
smaller than 0.006, implying that the ML models developed in this study have the
potential to predict permanent settlement of rocking foundations with
reasonable accuracy in practical applications.
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1 Introduction

Structural fuse mechanisms, active and passive energy dissipation devices, and base
isolation techniques have generally been used to improve the seismic performance of
important structures (e.g., Soong and Spencer, 2002; Symans et al., 2008). Geotechnical
seismic isolation, using various techniques, is a relatively new area of research that has been
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studied to some extent in the recent past. As such, the findings of
recent experimental research on rocking shallow foundations reveal
that rocking mechanism dissipates seismic energy in soil, reduces
seismic demands imposed on structures, and can be used as
geotechnical seismic isolation mechanism to improve the overall
seismic performance of structures they support (e.g., Gajan et al.,
2005; Paolucci et al., 2008; Anastasopoulos et al., 2010; Loli et al.,
2014; Ko et al., 2019; Hakhamaneshi et al., 2020; Arabpanahan et al.,
2023; Irani et al., 2023). In addition, it has been shown that
appropriately-designed rocking shallow foundations can be as
effective as structural energy dissipating mechanisms in terms of
reducing the seismic demands experienced by key structural
members (Gajan and Saravanathiiban, 2011; Gajan and
Godagama, 2019). However, the material nonlinearities (yielding
of soil and resulting plastic deformations), the geometrical
nonlinearities associated with the soil-foundation system (partial
separation of footing from supporting soil), and the uncertainties in
soil properties and earthquake loading parameters pose significant
challenges to the accurate prediction of permanent deformations in
foundation during rocking.

A recent article reviews the commonly used numerical methods
for modeling dynamic soil-structure interaction in shallow
foundations during earthquake loading including spring-based
Winkler foundation models, macro-element models for soil-
foundation system, and continuum-based models (Bapir et al.,
2023). Researchers in the past have developed constitutive
models that relate the cyclic forces and displacements acting on
the foundation during seismic loading and performed numerical
simulations of rocking foundations incorporating nonlinear
dynamic soil-foundation interaction (e.g., Allotey and Naggar,
2003; Gajan and Kutter, 2009; Gajan et al., 2010; Chatzigogos
et al., 2011; Figini et al., 2012; Pelekis et al., 2021). Though the
mechanics-based constitutive models and numerical simulation
approaches for rocking foundations have sound theoretical basis,
they include assumptions and simplifications in their formulations.
Machine learning (ML) models, on the other hand, have the ability
to generalize experimental behavior when they are trained and tested
on data and results that cover a wide range of experiments
conducted independently by different researches and using
different types of equipment. Although the ML models can have
their drawbacks (for example, they may not be able to capture every
physical mechanism that governs the problem), they are capable of
capturing the hidden complex relationships in data and have the
potential to be used in addition to mechanics-based numerical
models in practical applications.

As the number of widely available experimental databases
increases, the use of ML techniques to model geotechnical
engineering problems increases exponentially, especially in last
30 years (Ebid, 2021). For example, support vector machines,
decision trees, and neural networks have been used in
geotechnical engineering applications such as compaction
characteristics of soils, mechanical properties and strength of
soils, foundation engineering, soil slope stability, and geotechnical
earthquake engineering (e.g., Goh and Goh, 2007; Mozumder and
Laskar, 2015; Pham et al., 2017; Jeremiah et al., 2021; Amjad et al.,
2022). Artificial neural networks, gene expression programming,
and neuro-swam system algorithms have been used successfully for
the prediction of settlement of shallow and deep foundations

(Armaghani et al., 2018; Armaghani et al., 2020; Diaz et al.,
2018). Recently, ML-based predictive models have been
developed for normalized seismic energy dissipation, peak
rotation, and acceleration amplification ratio of rocking
foundations during earthquake loading (Gajan, 2021; Gajan,
2022; Gajan, 2023). A recent review article summarizes the recent
advances in application of machine learning and deep learning tools
to predict the properties of cementitious composites (concrete and
fiber-reinforce concrete) at elevated temperatures (Alkayem et al.,
2024). In addition to ML models alone, theory-guided ML is also
becoming popular slowly in predictive modeling in engineering
(Karpatne et al., 2017) and in geotechnical engineering in particular
(Xiong et al., 2023).

2 Research significance and objective

Empirical relationships have been proposed for the estimation of
permanent settlement of rocking shallow foundations using either
the static vertical factor of safety (FSv) or critical contact area ratio
(A/Ac) of foundation and the cumulative rotation experienced by
the foundation during earthquake loading (Deng et al., 2012;
Hamidpour et al., 2022). A/Ac is conceptually a factor of safety
for rocking foundations taking into account the change of contact
area of the footing with the soil during rocking (Gajan and Kutter,
2008). The cumulative rotation (θcum) of the foundation is defined
based on the instantaneous peak rotations experienced by the
foundation (local maximums) that exceed a threshold value
(Deng et al., 2012). The threshold value for this peak rotation is
defined arbitrarily as 0.001 rad, assuming that rotations smaller than
0.001 rad do not cause permanent settlement. One difficulty or
drawback of the cumulative rotation approach for the estimation of
permanent settlement is that the θcum of the foundation can only be
known after the earthquake shaking is over (i.e., θcum itself is a
performance parameter of rocking foundation, and cannot be
known before the earthquake to predict the rocking induced
settlement of foundation).

The objective of this study is to develop predictive models for
rocking-induced permanent settlement in shallow foundations
during earthquake loading using stacking, bagging and boosting
ensemble ML models and artificial neural network (ANN) model.
Support vector regression (SVR), k-nearest neighbors regression
(KNN), stacked generalization (Stacking), random forest regression
(RFR), adaptive boosting regression (ABR), and fully-connected
artificial neural network regression (ANN) algorithms have been
utilized in this study. The ML models are trained and tested using
results obtained from rocking foundation experiments conducted on
shaking tables and centrifuges. Critical contact area ratio of
foundation, slenderness ratio of structure, rocking coefficient of
rocking soil-foundation-structure system, peak ground acceleration
of earthquake, Arias intensity of earthquake ground motion, and a
binary feature for type of soil have been used as input features to ML
models. The significance of the study presented in this paper is that
this is the first time data-driven predictive models are developed for
rocking-induced settlement of shallow foundations using ML and
deep learning algorithms. In addition, the input features used are in
the form of normalized, non-dimensional soil-foundation system
parameters and earthquake ground motion parameters that are
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readily available for design of structures in majority of the
seismic zones.

3 Rocking-induced settlement in
shallow foundations

3.1 Settlement-rotation relationship

Figure 1A illustrates the schematic of a rocking structure-
foundation system and the forces and displacements acting on
the foundation during earthquake loading. For rocking on a 2-D
plane, these forces and displacements include vertical load (V),
settlement (s), shear force (H), sliding (u), moment (M), and
rotation (θ). Figures 1B, C present experimental results for cyclic
settlement versus rotation response at the base center point of
foundation supported by sandy soils. Note that the settlement is
normalized by the width of the footing (NS = s/B). Figure 1B
presents the results obtained from a centrifuge experiment (FSv =
4 and amax = 0.55 g) (Gajan and Kutter, 2008), while Figure 1C
presents the results obtained from a shaking table experiment (FSv =
24 and amax = 0.36 g) (Antonellis et al., 2015), where FSv is the static
factor of safety for bearing capacity failure and amax is the peak
ground acceleration of the earthquake.

As shown in Figure 1B, the foundation keeps accumulating
settlement as the seismic shaking progresses and as the footing
rocks, with the permanent settlement being equal to about 1.6% of
the width of the footing (NS = 0.016) at the end of shaking. For the

other test (FSv = 24, Figure 1C), as the footing rocks, a gap opens
between the soil and the footing and it results in instantaneous
uplift of the footing (the negative values on NS axes represent uplift
of footing). Therefore, the settlement-rotation response shows
smaller permanent settlement for higher FSv foundations (NS =
0.00175). For relatively lower FSv foundations, the settlement-
rotation response is dominated by yielding of soil (material
nonlinearity) whereas for higher FSv foundations, it is
dominated by uplift of footing (geometrical nonlinearity). The
rocking-induced permanent settlement in shallow foundations
depends primarily on FSv and the magnitude, number of cycles,
and duration of earthquake loading.

3.2 Experimental results and key parameters

The experimental data and results utilized in this study are
extracted from a rocking foundations database (Gavras et al., 2020).
This database is freely accessible and available in Design-Safe-CI
website (https://doi.org/10.13019/3rqyd929) (Gavras et al., 2023).
This database has results obtained from centrifuge and shaking table
experiments on rocking foundations conducted by several
researchers (Gajan and Kutter, 2008; Deng et al., 2012; Deng and
Kutter, 2012; Drosos et al., 2012; Hakhamaneshi et al., 2012;
Anastasopoulos et al., 2013; Antonellis et al., 2015; Tsatsis and
Anastasopoulos, 2015). A summary of results of these experiments,
in terms of rocking foundations performance parameters, is also
available in the literature (Gajan et al., 2021).

FIGURE 1
(A) Illustration of major forces and displacements acting on a rocking structure, and experimental results of settlement versus rotation response at
the base of rocking foundations: (B) FSv = 4 and amax = 0.55 g and (C) FSv = 24 and amax = 0.36 g.
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Rocking coefficient (Cr) is essentially the normalized ultimate
moment capacity of a rocking foundation and is given by (Deng
et al., 2012),

Cr � B

2.h
. 1 − Ac

A
[ ]

where h is the effective height of the structure (height of center of gravity
of the structure from the base of the footing). Arias intensity (Ia) of the
ground motion is essentially the numerical integration of earthquake
ground acceleration in time domain. The effects of number of cycles of
earthquake loading, amplitude of cycles, frequency content and duration
are combined in Ia, and it is defined as (Kramer, 1996),

Ia � π

2.g
∫
tfin

0

a t( )[ ]2dt

where a(t) is horizontal ground acceleration as a function of time (t), g is
the gravitational acceleration, and tfin is the duration of earthquake.

Figure 2 presents the results for experimentally measured
normalized permanent settlement (NS) of rocking foundations
obtained from 140 individual experiments. The results presented in
Figure 2 are grouped based on the rocking coefficient (Cr) of foundation
and type of soil. As both NS and Ia depend on the amplitude, number of
cycles and duration of earthquake loading, the NS results are plotted as a
function of Ia in Figure 2. For a given Cr range and soil type, NS seems to
increase with Ia; however, the variability in data indicates the presence of
the effects of other variables. Another observation is that theNS in clayey
soil foundations are smaller than in sandy soil foundations with the same
Cr range (Cr > 0.2). This is consistent with the findings of recently
published results on rocking-induced settlement in shallow foundations
supported by clayey soils during slow lateral cyclic loading (Sharma and
Deng, 2019; Sharma and Deng, 2020). When the data presented in
Figure 2 are divided into three groups (based on their Cr values and soil
type) and are fit using a statistics-based simple linear regression model,
they yield coefficients of determination (R2) values that are smaller than
0.35. This indicates that purely statistics-based models are not capable of
capturing the permanent settlement of shallow foundations satisfactorily.

3.3 Input features for machine
learning models

In addition to the above-mentioned variables (Cr, Ia and type of
soil), rocking induced settlement of foundations also depends on
A/Ac, h/B, and peak ground acceleration of the earthquake (amax).
All of these six variables are chosen as the input features for the ML
models developed in this study. The selection of input features is
based on the experimentally observed relationships between NS and
the input feature parameters found in previously published results
(Gajan et al., 2021). The input feature selection is further justified in
Section 5.2: Sensitivity of MLmodels to input features. Figure 3 plots
the statistical distributions of five input features showing the
variation (numerical range) of each of the input feature extracted
from the experimental database. The box plots present the mean and
median along with the 10th, 25th, 75th and 90th percentile values of
each of the five input features used in the development of ML
models. Table 1 summarizes the range of values, mean and

coefficient of variation (COV) of all six input features and
prediction parameter (NS). The type of soil is represented by a
binary variable: 0 for sandy soil foundations and one for clayey soil
foundations. As the variation of Ia and NS are relatively high (Ia
varies from 0.03 m/s to 26.4 m/s, while the NS values are in the range
of 10−5 to 10−1), these two parameters are transformed to log-scale
(base 10). In addition, all the input feature values are normalized in
such a way that the values of each input feature vary
between 0.0 and 1.0.

4 Materials and methods

4.1 Base machine learning algorithms

Three baseML algorithms are considered in this study: k-nearest
neighbors regression (KNN), support vector regression (SVR), and
decision-tree regression (DTR). The KNN algorithms works by
learning to predict the output based on the test data point’s
nearest neighbors in training dataset (using the input feature
values as distance measures), their output values, and their
distance from the test data point. The number of neighbors to
consider and the method of calculating the distance between two
data points in a multi-dimensional input feature space are
hyperparameters of the KNN model. The SVR algorithms makes
the predictions by learning a hyperplane with a margin using
training dataset in multi-dimensional space. The hyperparameters
of SVR model include the margin of the hyperplane and a penalty
parameter called C that determines the magnitude of tolerance used
to adjust the margin (to accommodate datasets that have outliers).
The DTR algorithms builds a tree-like data structure based on the
input feature values and outputs of the training dataset and then
makes predictions on test data using this tree. The maximum depth

FIGURE 2
Experimental results of normalized settlement of rocking
foundations used in the development of machine learning models.

Frontiers in Built Environment frontiersin.org04

Gajan 10.3389/fbuil.2024.1402619

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1402619


of the tree and the error criteria used to split the training data to
build the tree (to create leaves) are the key hyperparameters of the
DTR model.

4.2 Ensemble machine learning algorithms

Three ensemble ML algorithms are considered in this study:
stacking, bagging, and boosting. Stacking model combines the
predictions of multiple well-performing base ML models. In the
process, the stacked model harnesses the best characteristics of
the base models and makes predictions that are better than those
of the base models. In this study, the predictions from KNN and
SVR models are combined using linear regression as the meta
model to create a stacking ensemble model. The training data for
the stacked model consist of the outputs (predictions) of the base
models and the actual, expected outputs. During testing, the
stacked model combines the predictions of base models on test
data using the trained linear regression meta model to make the
prediction. The bagging and boosting ensemble techniques are
implemented using random forest regression (RFR) and adaptive
boosting regression (ABR), respectively. In both cases, multiple
base DTR models are combined to create the ensemble model.
The RFR model builds multiple individual trees (DTR models) of
different depths and using random subsets of input features and
then simply combines them together in such a way that the final

prediction of the RFR model is the average value of each base
DTR models in the ensemble. The ABR model also builds
multiple DTR models, but sequentially, in such a way that the
succeeding DTR models attempt to correct the error made by
their preceding trees in the ensemble. The ABR model uses two
sets of weights (data instance weights and predictor weights) and
the final prediction of ABR model on test data is a weighted
average value of the predictions of each base DTR models in the
ensemble. The major hyperparameter of the RFR model include
the number of trees in the ensemble and the maximum input
features to consider when building an individual tree. The major
hyperparameter of the ABR model include the number of trees in
the ensemble and the learning rate of the model.

4.3 Artificial neural network model

Figure 4 schematically illustrates the architecture of the
sequential, fully-connected, multi-layer perceptron artificial
neural network (ANN) regression model considered in this
study. While the number of neurons in the input layer (six,
one for each input feature) and output layer (one for the
prediction parameter, NS) are fixed, the number of hidden
layers and the number of neurons in each hidden layer are
varied systematically using hyperparameter turning and grid
search to obtain their optimum values for the problem
considered. The commonly used stochastic gradient descent
(SGD) algorithm is used with the feed-forward, back-
propagation algorithm to train the ANN models. As shown in
Figure 4, the neurons in the input layer simply pass the input
features to all the neurons in the first hidden layer. The outputs
(y) of the neurons in the hidden layers are computed using the
following relationship based on the inputs (X), network
connection weights (W), bias parameters (b), and an
activation function (g) (Geron, 2019; Deitel and Deitel, 2020).

yi � g ∑k

j�1 Wj,iXj( ) + bi( )
The network is first trained using the training data and back-

propagation algorithm and the optimum values for the network
connection weights are found. When making a prediction on test
data, the ANN model propagates the test data instance using

FIGURE 3
Statistical distributions (variations of experimental data) of five input feature parameters used in the development of machine learning models.

TABLE 1 Statistical distributions of input features and prediction parameter
(normalized settlement, NS) used in this study.

Parameter Range Mean Coeff. of
variation

A/Ac 1.9–17.1 8.2 0.52

h/B 1.2–2.8 1.9 0.28

Cr 0.08–0.36 0.24 0.33

amax (g) 0.04–1.28 0.43 0.60

Ia (m/s) 0.03–26.4 2.31 1.90

Type 0 or 1 n/a n/a

NS [ = s/B] 1.17 × 10−5–1.31 × 10−1 0.011 1.57
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forward-propagation and computes the output using the above
equation with the optimum connection weights.

4.4 Flowchart of research methodology

Figure 5 presents the flowchart of the research methodology of
this study. The experimental data is first randomly split into training

dataset and testing dataset using a 70%–30% split. Results from a
total of 140 experiments are considered in this study (Figure 2) and
this split yields 98 training data instances and 42 testing instances.
First, the ML models are trained using the training dataset and the
hyperparameters of the ML models are tuned using k-fold cross
validation tests considering training dataset only. The results of
training error and hyperparameter turning presented in this paper
are obtained from this phase of the research process. Second, the

FIGURE 4
Schematic of the artificial neural network architecture utilized in this study.

FIGURE 5
Flowchart of research methodology showing the sequence of key processes.
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trained ML models with optimum values of hyperparameters are
tested using the testing dataset and the results for testing error are
obtained using this phase. Finally, to compare the overall
performance of ML models, the ML models with the optimum
hyperparameters are evaluated using k-fold cross validation tests
considering entire dataset. For both k-fold cross validations,
repeated 5-fold cross validation tests are carried out (with
number of repeats being equal to 3). Mean absolute percentage
error (MAPE) and mean absolute error (MAE) are used to evaluate
the performance ofMLmodels by comparing their predictions of NS
with experimental results. MAE quantifies the error by averaging the
absolute difference between predicted and actual (experimental)
values for NS, while MAPE quantifies the average error by
normalizing the absolute difference between predicted and actual
values by the actual value of NS. It should be noted that a
multivariate linear regression (MLR) ML model is also developed
for the purpose of comparison of results and performance of all the
ML models. All the ML models are implemented in Python
programming platform using the functional classes available in
Scikit-Learn (https://scikit-learn.org/stable/) and TensorFlow and
Keras (https://keras.io/) libraries (Geron, 2019; Deitel and
Deitel, 2020).

5 Results and discussion

5.1 Initial evaluation of base and ensemble
machine learning models

Figure 6 presents the testing results of four base ML models:
MLR, KNN, SVR and DTR. For all four models, the predicted results
of NS are plotted on y-axes against the experimental results on
x-axes along with 1:1 comparison lines. It should be noted that the
hyperparameters of all the models are kept at their optimum values
for these predictions (please see Section 5.3). The testing MAPE
values, calculated using 48 testing data results, are also included in
Figure 6 for all four models. As seen in the figure, the KNN model
(MAPE = 0.48) performs better than the other models in terms of
accuracy of predictions and it is followed by SVR model (MAPE =
0.51). The base DTR model (a single decision tree) shows poor
performance (MAPE = 0.77) during testing phase, even worse than
the baseline MLR model (MAPE = 0.70). Figure 7 presents the
testing results of Stacking, RFR and ABR ensemble ML models.
KNN and SVR models are combined using linear regression meta-
model to build the Stacking model. Other combinations of stacking
were also tested; however, their performance did not improve. For

FIGURE 6
Machine learning model predictions of normalized settlement (NS) during initial testing of four base-ML models: (A) MLR, (B) KNN, (C) SVR and
(D) DTR.
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RFR and ABR models, 100 base DTR models are combined using
bagging and boosting techniques, respectively. The prediction
accuracy of RFR and ABR ensemble models on test data is
improved significantly (MAPE = 0.45 and 0.53) when compared
to a single DTR model (about 30%–40% improvement in prediction
accuracy). From the results presented in Figure 7, it appears that the
Stacking model is not effective (MAPE of Stack model is 0.5 whereas
the MAPE of KNN alone is 0.48). However, in final k-fold cross
validation tests of models (presented in Section 5.7), the
effectiveness of Stacking model becomes apparent.

For the purpose of comparison, if a model always predicted the
mean NS value (zero rule algorithm), it would yield an MAPE of
32.5 when tested on entire NS dataset. If a statistics-based simple
linear regression model were run through the entire NS dataset, in
log(NS)–log(Ia) space, it would yield anMAPE of 8.5 when tested on
entire NS dataset. It should be noted that all the MAPE and MAE
values are calculated based on the actual values of NS (not in log
scale). These comparisons show that (i) there is significant scatter
and randomness in NS data and (ii) when compared to the above-
mentioned simple modes, the ML models presented in this paper
perform better by an order of magnitude.

5.2 Sensitivity of machine learning models to
input features

The RFRmodel’s “feature importances” function in Scikit-Learn
quantifies the significance of each input feature based on how an
input feature reduces uncertainty in data (as the nodes split the
training dataset into smaller subsets while building the trees). The
feature importance scores are normalized in such a way that the
summation of feature importance scores of all input features is equal
to 1.0. To investigate the effect of input features chosen in this study,
twenty different RFR models are built by randomly selecting twenty
different training datasets and the feature importance values are
computed for each RFR model. The mean and standard deviation of
the normalized feature importance scores are plotted in Figure 8 for
each input feature. The rocking coefficient (Cr) has the greatest effect
in reducing the uncertainty in data with a feature importance score
of about 28%, and it is followed by slenderness ratio (h/B) and
critical contact area ratio (A/Ac). This indicates that the geometry of
the foundation and structure and bearing capacity of soil contribute
more to the prediction of rocking-induced permanent settlement
than the properties of earthquake ground motion. At the same time,

FIGURE 7
Machine learning model predictions of normalized settlement (NS) during initial testing of three ensemble-ML models: (A) Stack, (B) RFR and
(C) ABR.
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the normalized feature importance scores of ground motion
intensity parameters are around 10% each, indicating that they
cannot be considered as redundant input features. The standard
deviations of all the feature importance scores are less than 2%
across 20 different random selection of training datasets, indicating
the consistency of the RFR models built and the consistency of
influence of each individual input feature on the prediction of NS.

5.3 Sensitivity of machine learning models to
major hyperparameters

The k-fold cross validation technique is used to tune the
hyperparameters of ML models. Instead of relying on just one
value for MAPE, the k-fold cross validation technique uses
multiple splits of data to obtain an average value for testing

MAPE considering multiple different training datasets and testing
datasets. It should be noted that only the initial training dataset is
used for this k-fold cross validation tests to tune the
hyperparameters (i.e., the multiple, reshuffled train-test split of
data for this process considers only the training dataset as shown
in the flowchart presented in Figure 5). In this study, 5-fold cross
validation tests are carried out with three random reshuffling of data
(i.e., 15 values for testing MAPE).

Figure 9 presents the variation of testing MAPE on y-axes and
the values of hyperparameters on x-axes for different ML models,
with every data point in the figures representing the average of
15 testing MAPE values. Based on the results presented in Figures
9A–C, the optimum value for k of KNN model, the optimum value
for C of SVR model, and the optimum value for maximum depth of
tree of DTR model are selected to be 3, 20 and 6, respectively. The
aforementioned values are chosen for hyperparameters to minimize
the testing MAPE values and to avoid overfitting and underfitting
the training data. For example, any value smaller than the optimum
value of k in KNN model, a value greater than the optimum value
for C in SVRmodel, and a depth greater than the optimum value for
maximum depth of DTR model would all overfit the training data.
The opposite is true for underfitting the training data. For RFR and
ABRmodels, the number of trees in the ensemble is varied while the
maximum depth of the tree is fixed at 6. Based on the trend shown
in Figure 9D, the optimum value for number of trees in both RFR
and ABR ensemble is selected to be 100. It should be noted that, for
the problem considered, the ML model predictions are not as
sensitive to the other hyperparameters and they are set at their
default values (the margin in SVR model = 0.1, maximum number
of random features considered while building a tree in RFRmodel =
2, and the learning rate of ABR model = 0.1). Apart from
hyperparameter tuning results, all other results of ML models
presented in this paper are obtained using the optimum values
of hyperparameters.

FIGURE 9
Hyperparameter tuning results: AverageMAPE in k-fold cross validation tests on training dataset versus the hyperparameters of MLmodels: (A) KNN,
(B) SVR, (C) DTR, and (D) RFR and ABR.

FIGURE 8
Significance of input features in terms normalized feature
importance scores in the construction of RFR models.
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5.4 Initial evaluation of neural
network models

ANN models with different architecture are developed, trained
and tested. While the main structure of the ANN models is kept the
same (multi-layer perceptron, fully-connected, sequential ANN
models), the number of hidden layers and the number of
neurons in each hidden layer are varied. The training and testing

results of one of the ANN models are presented in Figures 10A, B,
respectively. The same training dataset and testing dataset (same as
the ones used for otherMLmodels, described in section 5.1) are used
to obtain the results presented in Figure 10. This particular ANN
model has only one hidden layer with 20 neurons in the hidden layer
(this is the optimum architecture obtained for the problem
considered, as described in Section 5.5). During training, the
ANN model starts with random values for network connection

FIGURE 10
Comparisons of ANN model predictions with experimental values of normalized settlement (NS) during: (A) initial training phase and (B) initial
testing phase.

FIGURE 11
Hyperparameter tuning results of ANN model: Average MAPE in k-fold cross validation tests on training dataset versus hyperparameters of ANN
model: (A) number of hidden layers, (B) number of neurons in each hidden layer, (C) number of epochs and (D) learning rate.
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weights and it adjusts the weights using stochastic gradient descent
algorithm until the error reaches a minimum. This particular results
are obtained from one such random initialization of network

connection weights. The final k-fold cross validation results
presented in Section 5.7 removes the effects of this randomness
by repeating the process multiple times and evaluating the average
performance of the model. The testing MAPE of the ANN model is
0.46, which places the ANN model above all other ML models
developed in this study in terms of prediction accuracy. It is
interesting to note that the training MAPE of the ANN model is
greater than the testing MAPE, which is not common in supervised
machine learning.

5.5 Hyperparameter tuning of neural
network models

The hyperparameters of the ANN model are tuned using 5-
fold cross validation tests on training dataset. The number of
hidden layers (L), the number of neurons in each hidden layer
(N), the learning rate, and the number of epochs (iterations) are
varied using grid search technique to optimize the values of these
hyperparameters for the problem considered. The results
obtained for average MAPE in 5-fold cross validation tests
with the variation of hyperparameters are presented in
Figure 11 for selected cases. As can be seen from Figure 11A,
a shallow ANN model with only one hidden layer turns out to be
the optimum for the problem considered. This is interesting, but
not unusual. Research literature on neural networks suggest that
a shallow network with only one hidden layer could, in theory,
model even complicated, nonlinear data, provided that it has
enough number of neurons in the hidden layer (Geron, 2019).
Figure 11B shows that the accuracy of ANN model increases as
the number of neurons in the hidden layer increases (average
MAPE decreases); however the improvement in accuracy is not
significant when the number of neurons increases beyond 20. In
order to keep the model as simple as possible (least complexity)
without scarifying the accuracy significantly, the optimum
values for number of hidden layers and number of neurons in
the hidden layer are selected to be 1 and 20, respectively.

FIGURE 12
Mean absolute percentage error (MAPE) during training and testing of MLmodels: (A) initial random train-test split of dataset and (B) second random
train-test split of dataset.

FIGURE 13
Summary results for the average and standard deviation of MAPE
of ML models in final k-fold cross validation tests.

FIGURE 14
Summary results for the average and standard deviation of MAE
of ML models in final k-fold cross validation tests.
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Similarly, based on the trends presented in Figures 11C, D, the
optimum values for the learning rate of the SGD algorithm and
number of echoes are selected as 0.01 and 200, respectively.

5.6 Effect of initial train-test split of data

Figure 12A presents a summary of training and testing
MAPE of different ML models in the prediction of NS during
initial evaluation of models. In Figure 12A, training error
represents the performance of ML models when they are
tested using the training dataset that is used to train the
models (to quantify how much the models have learned from
the training process). The consistency between the performances
of different ML models are apparent: except for the baseline
MLR model, all five nonlinear models included in Figure 12A
have a testing MAPE that vary between 0.45 and 0.53. The
training errors of these five models are smaller than the
testing errors (this is expected especially when the data size is
relatively small). Note that the training error for KNN model is
not applicable, as KNN model stores the entire training dataset
during training phase (the MAPE of distance-weighted KNN
would be 0.0, if tested with the training data).

To investigate the effect of initial training and testing split of
dataset, a second train-test split of data is created using a different
value for the random state variable in the function used to split the
data in scikit-learn. Figure 12B presents the training and testing
errors of ML model when they are trained and tested on the second
random split of train-test data. The training errors for both splits of
data are relatively comparable, however the testing error on the
second split of data of all ML models are noticeably greater than
those on the first (initial) split of data. This indicates a bias in the
initial split of data (especially testing dataset). To eliminate or reduce
the bias resulting from a single train-test split of data, k-fold cross
validation tests are carried out considering multiple random splits of
the entire dataset. The results of this final k-fold cross validation tests
are presented in next section.

5.7 Overall comparison of model
performances

In order to compare the overall performance of all ML models
developed in this study, final k-fold cross validation tests are carried

out considering the entire dataset (5 folds with 3 repeats). For this
purpose, the hyperparameters of all ML models are set at their
optimum values and the models are trained and tested using
multiple splits of dataset (please see the flowchart presented in
Figure 5). Figure 13 presents the average testing MAPE of all ML
models obtained during this k-fold cross validation tests along with
the standard deviations of MAPE of each model as bar plots. As
shown in Figure 13, the average MAPE of all nonlinear ML models
are smaller than the baseline, linear MLRmodel for the prediction of
NS. Except for the SVR model, the average MAPE of all the
nonlinear ML models are smaller than 0.8. The average MAPE
values of five nonlinear models (all but SVR) varies between 0.64 and
0.79, indicating the consistency in the performance of the ML
models developed, though the models have different inductive
biases (the assumptions based on which they learn or their
learning objectives). The stacking ensemble model, which has the
best average accuracy in final k-fold cross validation tests, improves
the accuracy of prediction by about 33% when compared to the
baseline MLR model (MAPE of 0.64 versus 0.96). Figure 14 presents
the results of testing MAE in the predictions of NS in final k-fold
cross validation tests in the same format as in Figure 13. Figure 14
indicates that the trend of MAE of different ML models follows a
similar pattern as in Figure 13 for MAPE. The average MAE of all six
nonlinear ML models vary between 0.005 and 0.006, once again
indicating consistency among different ML models. This also
implies that the ML models developed in this study have the
potential to predict permanent settlement of rocking foundations
with reasonable accuracy in practical applications.

Table 2 lists the values of average MAPE and MAE of all ML
models during final k-fold cross validation tests. The MAPE of the
statistics-based (non-ML) simple linear regression model for
rocking-induced settlement is 8.5 (described in Section 5.1). The
ML models developed in this study to predict the permanent
settlement of rocking foundations improve that accuracy by
89%–92%. Also included in Table 2 are average values of a_
20 index and a_50 index of model predictions in final k-fold
cross validation tests. The a_20 index is defined as the ratio of
number of predictions that fall within ±20% of the actual
experimental values divided by the total number of predictions
(Asteris et al., 2021). The a_50 index is defined in a similar way to
quantify the ratio of predictions that fall within ±50% of the actual
experimental values. The a_20 index of all ML models developed in
this study, except the Stacking model, varies between 0.20 and 0.23.
The relatively small values of a_20 index reflect the difficulty in

TABLE 2 Summary of average MAPE, MAE, a_20 index, and a_50 index of machine learning models in final k-fold cross validation tests of models.

Model Ave. MAPE Ave. MAE Ave. a_20 index Ave. a_50 index

MLR 0.957 0.0073 0.205 0.445

SVR 0.864 0.0060 0.226 0.671

KNN 0.731 0.0048 0.217 0.560

Stack 0.638 0.0054 0.179 0.500

RFR 0.753 0.0053 0.231 0.593

ABR 0.743 0.0056 0.226 0.586

ANN 0.790 0.0058 0.219 0.531
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predicting the rocking induced settlement accurately. It is interesting
to note that the a_20 index of the Stacking model is the smallest
(0.179) although its average MAPE is the best among all ML models
in final k-fold cross validation tests. This suggests that Stacking
model reduces the error in outliers of model predictions while the
accuracy of model predictions that are closer to the actual values are
not particularly high. Similarly, the a_50 index of the SVR model is
the greatest (0.671) of all ML models while its average MAPE and
MAE indicate that it is the least effective of all nonlinear models in
terms of overall average accuracy. This suggests that most of the SVR
model predictions are close to the actual values, while it produces
relatively more outliers in predictions thus reducing the overall
MAE and MAPE of predictions.

6 Conclusion

The major achievement of this study is the development of
multiple machine learning-based predictive models for settlement of
shallow foundations due to rocking during earthquake loading.
Though these ML models are trained and tested on a limited
amount of available experimental data, they show promising
predictive capabilities and they could possibly learn more and get
even better in terms of their accuracy of predictions as more
experimental data become available in the future. These ML
models can be used with other analytical and numerical models
and empirical relationships as complementary measures for
estimating permanent settlement in practical applications of
rocking foundations. The ML models presented here are (i)
validated using experimental results, (ii) relatively easy to use
(only six input features) and (iii) relatively fast and efficient
compared to detailed finite element based modeling procedures.
The major, specific conclusions drawn from this study include
the following.

• Given the values of six input features (three rocking system
capacity parameters, one binary feature for soil type and two
earthquake ground motion parameters) that are relatively
easily obtainable for foundation design in majority of
seismic zones, the ML models presented herein can be used
to estimate the permanent settlement of rocking foundations.

• The performances of all six nonlinear MLmodels developed in
this study are relatively consistent in terms of prediction
accuracy with their average MAPE varying between
0.64 and 0.86 in final k-fold cross validation tests.

• The overall average MAE in predictions of all nonlinear ML
models are smaller than 0.006, implying that the ML models
developed in this study have the potential to predict
permanent settlement of rocking foundations with
reasonable accuracy in practical applications.

• The ML models presented herein improve the accuracy of
prediction by about 90% in comparison to a statistics based
(non-ML) simple linear regression model (with MAPE = 8.5).
In addition, the stacking ensemble model, which has the best
average accuracy in final k-fold cross validation tests,
improves the accuracy of prediction by about 33% when
compared to the baseline MLR model (MAPE of
0.64 versus 0.96).

• Among the ANN model architectures considered, a shallow
neural network (with only one hidden layer consisting of
twenty neurons) is found to be the most suitable for the
dataset analyzed without overfitting or underfitting the
training data.

• Based on the feature importance values obtained from RFR
ensemble model, it is found that the six input features
chosen for ML models capture the permanent settlement
of rocking foundations satisfactorily, and that the
settlement of rocking foundations is more sensitive to
soil-foundation system properties than to earthquake
ground motion properties.
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