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Accelerometers play a crucial role in the railway industry, especially in track
monitoring. Traditionally, they are placed on the railway tracks or often on bridges
to monitor the health and condition of the infrastructure. Recently, there has
been an increased focus on using regular trains to monitor the condition of
railway infrastructure. Often, the sensors are placed based on certain
assumptions without much scientific evidence or support. This paper utilizes
the multibody simulation software GENSYS to identify the optimal placement of
accelerometers on a passenger train for monitoring railway switch wear. Switch
wear profiles were generated systematically and used as input for the simulations,
studying acceleration at a total of 93 locations distributed among the wheelsets,
bogies, and carbody. Based on both time and frequency domain analyses, optimal
sensor locations were identified, generally close to the first bogie or wheelset at
the leading carbody. Accelerations generated by the wheelset passing the switch
can also be captured in the carbody, but it is important to note that these are
several orders lower inmagnitude compared to the acceleration on the wheelset.
If accelerometers are to be placed in the carbody, correct sensitivity must be
chosen, and a high-pass filter should be applied to capture the acceleration
signals associated with switch wear. The study confirms that there is a direct
correlation between the depth of switch wear and the magnitude of the
acceleration. It remains effective even under various curve radii and train speeds.
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1 Introduction

Track maintenance holds a pivotal position within the railway industry, with routine
inspections of rail wear development being a crucial aspect. According to International
Transport Forum (ITF), between 2017 and 2021, the top fifty countries collectively invested
approximately EUR 210B (billion) annually in rail infrastructure, in which 23% (48B) was
allocated to maintenance. In 2021, the leading five countries in total rail infrastructure
investment were China (92.5B), Japan (17.0B), United Kingdom (13.3B), France (11.5B)
and Germany (10.1B). Conversely, India (21.6B), United Kingdom (6.9B), Italy (5.0B),
France (3.4B) and Netherlands (1.8B) prioritized maintenance efforts. In terms of ratio,
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Norway allocated nearly half of its railway infrastructure investment
(0.69B out of 1.48B) to maintenance work, a considerably higher
proportion than other countries (International Transport
Forum, 2024).

The prioritization of maintenance is a strategic approach
adopted by many countries to ensure the longevity, efficiency,
and safety of existing rail infrastructure. The construction of new
railway tracks requires substantial resources, in addition to the
ongoing demand for maintenance. Countries with extensive
existing railway networks, especially those with lower
transportation needs, focus on maintenance, seeking continuous
improvement amid complexity and budget constraints. Effective
maintenance practices are crucial for enhancing safety and
passenger comfort on railway tracks. Additionally, it contributes
to attracting a larger customer base, particularly in freight transport.
Monitoring railway infrastructure is essential in this context for
estimating the current state and remaining service life of existing
assets. Subsequently, it enables the accurate and efficient allocation
of limited resources for maintenance and renewal. To achieve this
goal, the use of smart and cutting-edge sensors and technologies has
become popular, especially for continuous rail track monitoring
(Castillo-Mingorance et al., 2020; Rahimi et al., 2022).

Annually, dozens of billions of euros are allocated to railway
maintenance, and switches emerge as a significant challenge to the
reliability of rail networks. Historically, switches constitute a
substantial portion, averaging 25%, of the maintenance budget,
even in developed European countries like the United Kingdom
(Cornish et al., 2016) and Switzerland (Zwanenburg, 2009).
Employing sensors to monitor the wear of switches is crucial for
enhancing predictive maintenance and reliability. Two installation
approaches for these sensors are considered: on tracks or trains.
Traditionally, sensors are placed on tracks for direct monitoring of
track status. However, this method has limitations, capturing data
only from fixed points and proving unsuitable for the complex rail
profiles in switches. Environmental factors and installation
conditions may impact sensor accuracy and reliability. In
contrast, installing sensors on trains presents new potential. The
types of sensors include accelerometer, current sensor, Global
Positioning System (GPS), Inertial Measurement Unit (IMU),
camera, 3D Lidar, and so on. This approach provides broader
and more flexible measurements while the train is in motion,
facilitating a more comprehensive recommendation for
maintenance.

Previous research has primarily utilized accelerometers to detect
vibrations for monitoring track status, given their reliability, cost-
effectiveness, and ease of sensor maintenance. Despite studies
indicating the feasibility of monitoring track status using
accelerometers on bogies or wheelsets, there is a lack of
explanation for the chosen installation locations and where
sensors are ideally positioned for effective track status detection.
Unlike the traditional optimal sensor placement for large
infrastructure, a train is a high-speed moving structure with
dynamic vibrations induced by wheel-rail contacts. These
contacts are influenced by irregularities and imperfections in
both the rail and wheel. The identification of optimal
accelerometer placement on trains becomes crucial for accurate
and efficient detection of switch wear, considering the changing
contacts along switches and varying wear conditions. In other

words, the problem is determining the optimal installation
locations for accelerometers monitoring switch wear.

In recent decades, a noteworthy shift in research focus has been
observed towards Structural Health Monitoring (SHM), with a
primary emphasis on predicting structural conditions to inform
decision-making through data utilization (Artagan et al., 2020; Jiang
et al., 2023). The application of advanced sensor technologies has
proven beneficial for the continuous and reliable inspection of
critical railway infrastructure assets, including tracks. Specifically,
there is a significant emphasis on the effective measurement of
vibrations using accelerometers for track condition monitoring.
Some researchers have attempted to monitor track status by
directly placing accelerometers on tracks, for example, to assess
fatigue areas in railway turnouts (Liu and Markine, 2019) and track
geometry degradation (Barkhordari et al., 2020). The collected data
is significantly constrained by specific installation positions, posing
difficulties in supporting a comprehensive analysis of tracks in the
area of interest for decision-makers. A current trend in railway
health monitoring to overcome this limitation is to install
accelerometers on trains (Chudzikiewicz et al., 2014; Fernández-
Bobadilla and Martin, 2023; Malekjafarian et al., 2023) utilized
accelerometers on wheelsets to compute a defined track quality
indicator, while (Malekjafarian et al., 2021) successfully
differentiated between healthy and damaged tracks using
accelerometers in the bogie on a service train. They assumed that
accelerometers installed on wheelsets or in the bogie were the most
important, considering the purpose of the track quality indicator
(close to the track), the existing installation, and their lesser
susceptibility to the suspension system. However, regarding the
detailed installation locations, no specific scientific evidence or
methodology was found. The installation of accelerometers in the
carbody is seldom considered, except for assessing passenger ride
comfort (Dižo et al., 2021). Despite advancements, a significant gap
exists in the literature concerning the optimal placement of
accelerometers for effective measurement. Moreover, existing
research often concentrates on tangent rails or unworn wear
cases, with some studies employing simulation methods (Lei
et al., 2020; Dižo et al., 2021). Consistent monitoring of wear
progression in rail components, especially switches and crossings,
proves to be an effective method for promptly identifying the
severity of defects, thereby minimizing maintenance costs.
However, detecting the displacement caused by wear, experienced
by the train, proves challenging as it is relatively small (several
millimeters), especially when accelerometers are installed in
insensitive locations.

The research field of optimal sensor placement extensively
employs various indicators as objective functions, including the
Modal Assurance Criterion (MAC) (Worden and Burrows, 2001)
and information entropy (Papadimitriou, 2004). The optimal
placement of accelerometers is considered a subset of optimal
sensor placement, and several related studies have utilized
accelerometers as sensors (Aminullah et al., 2020; Mahjoubi
et al., 2020; Nieminen and Sopanen, 2023). However, the
application of accelerometers in these studies has
predominantly focused on mounted structural entities like
bridges and towers, emphasizing eigenvalue analysis and finite
elements (FE). Moreover, these investigations often disregard the
impact of external disturbances, making these methodologies less
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suitable for determining the optimal placement of accelerometers
on moving trains. On the other hand, the analysis of signals in
both the time and frequency domains remains adaptable. Some
literature demonstrates the use of the cross-correlation function
to evaluate signal sensitivity in railway applications. Usoro
(Usoro, 2015) presented a summary of cross-correlation
functions for n-dimensional vector time series. Dumitriu
(Dumitriu, 2019) explored the cross-correlation of vertical
accelerations on the bogie frame to detect the failure of the
primary suspension damper. Lei et al., 2020 utilized results
from both domains to establish a correlation between the
wavelength of irregularities and a feature threshold, referred
to as critical wavelength. Eiker (Eiken, 2022) applied a
correlation approach to establish a baseline for aligning
known signals in the time domain, while Zhang et al., 2021
used a cross-correlation method to reduce signal noise and
estimate loading speed. Most of the existing literature focuses
on tangent tracks without considering wear conditions, except
for the correlation analysis between dynamic responses and
weather conditions of a railway crossing (Liu and Markine,
2019). Notably, there is a lack of research evaluating the
correlation between switch wear and acceleration signals to
identify the optimal accelerometer placement on trains.

Based on the literature reviewed above, there is potential to use
accelerometers on trains for track condition monitoring. Two
notable gaps deserve attention in current research:

1. Deploying sensors on trains for monitoring track status shows
promise compared to installing them on tracks directly. The
utilization of accelerometers to assess the extent of rail wear has
been neglected in prior studies, particularly in the context
of switches.

2. Accelerometers installed on trains have been proven effective
in detecting track irregularity and faults through cross-
correlation analysis. However, the challenge of identifying
the optimal placement of accelerometers has been
overlooked, specifically concerning the sensitivity between
switch wear and acceleration.

This paper addresses these gaps by demonstrating how GENSYS
can be utilized to recommend accelerometer placement, taking into
account wear conditions in switches. It includes sensitivity analysis
regarding the optimal placement of accelerometers in the carbody,
bogies, and on wheelsets along the longitudinal, lateral, and vertical
directions. These optional installation locations include common
choices found in the literature, such as the center of the wheelset and
bogie, as well as potential ones in the carbody. The aim is to find the
optimal locations for the accelerometers through correlation
analysis between the sensitivity of acceleration signals and
sensor placement.

In summary, the contributions of this paper can be outlined
as follows:

1. Identify the optimal placement of accelerometers on a train for
accurate detection of wear in switches.

2. Discover the direct correlation between the depth of switch
wear and the magnitude of acceleration considering different
train speeds and curve radii.

3. Discover the correlation among accelerometers placed in the
carbody and switch wear.

The background and literature review are introduced in Section
1. Section 2 describes the methodology used in the experiments.
Section 3 analyzes the correlation under various worn cases for the
wheelsets, bogies, and carbody. In Section 4, a comprehensive
discussion is presented, including limitations. Finally, Section 5
concludes the findings.

2 Methodology

2.1 Train—track model

The train-track model is created using the multibody simulation
software GENSYS. Section 2.1.1 introduces the train model,
followed by Section 2.1.2 presenting the track component. The
final section (Section 2.1.3) describes the wheel-rail contact model.

2.1.1 Train model
The train model employed in this study is a NSB Class 73 train,

consisting of four carriages, as illustrated in Figure 1A, each carriage
model is composed of three layers of masses, encompassing four
wheelsets, two bogies, and one carbody. These layers are
interconnected by primary and secondary suspensions utilizing
spring-damper elements. The model incorporates various degrees
of freedom (DOFs) to account for motions such as track, rails,
wheelsets, bogies, and the carbody, including X, Y, Z, roll (p), pitch
(k), and yaw (f). Rail motions are constrained to DOFs in the Y and Z
directions, treating the rail as massless in the simulation.
Additionally, the pitch motion of the wheelset is restricted to
prevent the spring from rolling around it (Persson, 2023). The
key parameter values for the train model are outlined in Table 1.

2.1.2 Track model
As illustrated in Figure 1B, the track mass is connected to the

rigid ground through two spring-damper elements. Furthermore,
the trackmass is laterally attached to a rigid wall via a spring-damper
element. Except for vertical translation, the track masses are
constrained in all directions.

The selected switch profile is a 60E1-760-1:15 turnout without
rail inclination. It has a nominal rail profile of 60E1, a curve radius of
760 m, and a turnout angle of 15°. The switch part in this turnout is
represented by ten rail position profiles without any crossing part.
The total length of the turnout model is 90 m, with the first 30 m
representing a straight track designed to dampen the initial transient
effect, and the remaining length representing the turnout model. As
illustrated in Figure 2A, the left rail exhibits various profiles in these
ten positions (marked with s1—s10 as dotted lines), while the right
rail maintains the standard EI60 profile from start to end. Figures
2B,C display the left rail profiles aligned with the left stock rail for
these sections. Particularly, the right part of the last position, s10
(cyan), is exactly the same as the profile in s1 (blue). The rail section
is defined as the rail part between any two neighbouring positions,
having the same profiles in the first positions. Therefore, the nine
sections among the ten positions are called s1-s9 in the subsequent
parts of the paper, using the names of their start positions.
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2.1.3 Wheel—rail contact
The wheel-rail modelling process involves three key stages:

creating a geometric model, computing a normal force model, and
determining tangential forces (Wu et al., 2020). Two-point contact
situations are common due to the geometry of the rail profiles and
large lateral wheel displacements. Kassa et al., 2006 describe how
two-point contact is simulated and modelled in multibody
simulation software like GENSYS. Because of the continuous
variation in the shape of the rail cross-section, two-point
contact may occur with one point of contact on the stock rail
and the other on the switch rail. Figure 3 illustrates a wheel-rail
model with two contact points on the left side (cp1 on the tread
side and cp2 on the flange side) and only cp1 contact on the right
side. The Hertz contact was utilized to compute the normal force,
and the tangential forces were calculated using the FASTSIM
algorithm. In GENSYS, KPF is a function used to generate a
lookup table based on provided wheel and rail profiles. Wheel-
rail forces are calculated through interpolation in this table,
defined as function Creep_lookuptable_1. To address the
diverse rail section profiles along the switches, the built in
function Wr_coupl_pe4 was applied. Additional information
about wheel-rail modelling can be found in the GENSYS user
manual (Persson, 2023). The wheelset profile in the experiment is
ENS1002t32.5.

2.2 Wear model

There is limited literature on the evolution of rail profiles for
railway turnouts, particularly concerning the wear of switches. In
this work, an approximate function is utilized to simulate wear
referring to the 20 Mt (total tonnage burden) output of the
experimental results (Xu et al., 2018). The assumption is that rail
wear occurs primarily in the sliding zone, and wear simulation relies
on Archard’s wear law. According to this law, the simulated wear
depth is directly proportional to the wear coefficient, normal
stresses, and relative slide displacement, and inversely
proportional to the material hardness (Xu et al., 2018). To assess
the correlation between the degree of rail wear and optimal
accelerometer placement, nine groups of wear development
curves (wear1-wear9) were used in the experiment for all switch
profile sections. Figure 4 shows five representative sections. The first
two groups of figure are the left and right rail profiles in position s1.
The position s4 includes the likely start of two-point contact. From
s7, the flange contact had much wear and dominated the wear
development until s9. The wear9 curve referred to 20 Mt condition
and the rest are linearly interpolated with zero value, indicating
unworn rails (wear0). The grinding operation is simulated to remove
a 3 mm depth of steel from the rail, adhering to Bane NOR’s
regulations. This process ensures the rails can ideally recover
their original profiles.

2.3 Analysis

The goal is to identify the optimal installation locations for
accelerometers on trains to achieve the highest sensitivity correlation
between acceleration and wear conditions. It means that placing
sensors in these locations facilitates easier and more accurate wear
detection. After comparing the results of selecting sensor locations
in the first carriage and the other three carriages, it was observed that
the accelerations in the latter were more damped out due to
increased couplings constrained and affected between sensor
locations and wheel-rail contact points. Consequently, the

FIGURE 1
A train-track model: (A) train model in side view and (B) track model in rear view.

TABLE 1 Parameters of the train model.

Parameter Values Units

Carbody mass 36,467 kg

Bogie mass 5,192 kg

Wheelset mass 1,599 kg

Carbody-bogie mass center distance 9.5 m

Bogie-wheelset mass center distance 1.35 m

Wheelset radius 0.45 m
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decision was to install all acceleration sensors only in the first
carriage for the experiments, as illustrated in Figure 5. The
naming convention follows the pattern ObjectNumXYZ (for
example, bog_1_121 represents the longitudinal front, lateral
centre and vertical bottom location in the first bogie). There are
93 locations, comprising 5 × 3 × 3 = 45 (car_1_111-car_1_533) for
the carbody, 2x3x3x2 = 36 (bog_1_111-bog_2_332) for the bogies,
and 4x1x3x1 = 12 (axl_11_111-axl_22_131) for the wheelsets.

The frequency domain results show no distinct peak frequencies
beyond 1 kHz, even with a sample rate set at 20 kHz. To capture any
peak frequencies within 1 kHz, the sample rate was adjusted to
2 kHz. The primary frequency (fp) is defined as the frequency with
the highest peak. The optimal installation location of accelerometers
must not affect fp in the presence of worn conditions, making them

easier to detect in the frequency domain. In addition, the
identification of histograms was utilized to assess whether
distribution features were impacted.

Wear development occurred simultaneously along the entire
switch sections in this research. Pearson’s linear correlation
coefficient (Pcorr) is selected as the cross-correlation function to
measure the correlation between acceleration signals under
varying worn conditions on rails and those under unworn
conditions. The resulting value falls within the range [−1, 1],
where 1 indicates perfect correlation and −1 indicates perfect
anti-correlation. The computation between two acceleration
signals X and Y is defined as Eq. 1,

Pcorr X, Y( ) � cov X, Y( )���
DX

√ ���
DY

√ � ∑i�1
n xi − �x( ) yi − �y( )�����������∑i�1

n xi − �x( )2
√ �����������∑i�1

n yi − �y( )2√ (1)

where cov (X,Y) is the covariance of X and Y; �x and �y are the mean
values respectively; DX and DY are the variances. A value of zero
indicates completely no correlation, meaning that a significant
change in the acceleration signal is likely due to wear, making it
easier to detect. Three-level guidelines for the correlation strength
analysis (Liu and Markine, 2019) are used. The levels are weak
(|Pcorr| < 0.2), moderate (0.2 ≤ |Pcorr| < 0.5) and strong
(0.5 ≤ |Pcorr| < 1)

Our research addressed the quantitative assessment of the
correlation between the sensitivity of acceleration signals and
sensor placement. The acceleration signals are in the vertical

FIGURE 2
Switch profiles of R760 1:15 turnout: (A) top view, (B) rear view (including ten left rails positions with marked X locations), (C) 45-degree side view.

FIGURE 3
A wheel—rail modelling with three contact points.
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direction only, as the longitudinal and lateral directions are not
significant for the carbody and bogies. Conversely, the results for the
wheelsets in these two directions exhibit similarity in vertical
accelerations, with no discernible difference in the installed
locations of one wheelset. To organize the analysis efficiently, a
pipeline of the analysis process is designed as Figure 6. The
installation locations of accelerometer sensors, wheel profiles, and
unworn section profiles are prepared before processing. The first

step involves producing the required rail profiles based on the given
wear degree. The worn rail profiles are then used to perform wheel-
rail geometry computation (KPF) and time simulations (TSIM),
implemented using GENSYS. The sensitivity analysis covers three
types of installed targets: wheelsets, bogies, and carbody. The final
placement suggestions for accelerometers are made in all optional
installation locations considering the x, y, and z directions in
comparison with the unworn case. The sensitivity indicators

FIGURE 4
The wear simulation curves and corresponding worn rail profiles in several typical sections (s1, s4, s7, s9).
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include Pcorr, histograms, and signal features in the time domain, as
well as fp after FFT. An optimal installation location should have
lower Pcorr values, indicating a low correlation with its unworn
counterpart in the time domain. Conversely, it should retain
significant fp values in worn cases. The grind case is covered in
the discussion section, as it closely resembles the unworn case.

3 Results

3.1 Unworn rails

3.1.1 Wheelsets
The wheelsets, being the bodies closest to the source of vibration

from the wheel and rail contact, play a crucial role. The first wheelset

(ax11) encounters the vibration source initially along the driving
direction in the time domain. In Figure 7, the distance (x-axis)
represents how far the train has travelled past the switches,
indicating the longitudinal distance between the wheel-rail
contact point and the front of the switches in the time domain.
The frequency curve (s9) illustrates that ax11 preserves more
primary frequencies with varying amplitudes, such as fp1
(108.02 Hz) and fp2 (121.53 Hz). These frequency values match
the wavelength (0.09 m) inspected in the s9 section figure. The
s9 section constitutes the primary contribution of fp (120.93 Hz)
within the entire switch part, surpassing other sections. As a result of
the train suspension system’s influence, the remaining three
wheelsets consistently exhibit lower amplitudes, particularly in
the value ranges near fp. The wheelsets (ax21 and ax22) in the
second bogie introduce additional effects in the 200–400 Hz range,

FIGURE 5
The installation locations of accelerometers: (A) 3D view, (B) front view, (C) side view, (D) top view.

FIGURE 6
The pipeline of analysis process.
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causing a shift in the primary frequencies to 160 Hz as observed. The
observed shift may result from the forced vibrations of the train
components, characterized by higher frequencies induced by the
movement of the first bogie. In other words, the contamination of
excited vibrations from other components complicates the
identification of the frequency component associated with the
passage of the switch. Consequently, in the frequency domain,
The first wheelset is recommended for the optimal location,
while the least favourable choice is the last one. On the other
hand, ax11 exhibits a larger amplitude than the other three and
occurs in more sections, for example, s4, s7, s8, and s9. Ax22 covers
the least number of sections with vibration, specifically, s8 and s9,
while ax12 shows a poor response in s9. From a time-domain

perspective, ax12 and ax21 emerge as the better choices. In
summary, ax11 is undoubtedly the first choice, and ax21 could
be considered for installation if the budget allows.

Among these axles, the lateral left (highlighted in blue) has the
largest amplitude because it is the closest to the left rail, with more
changed sections. The lateral right one (red) exhibits opposite values
due to the reaction force of the rigid wheelsets, while the lateral
centre location (black) has the minimum amplitude. In the
frequency domain, the lateral centre location performs better
than the lateral right. These characteristics are more pronounced
in the first wheelset. In this case, the lateral left emerges as the most
sensitive location. Conversely, the lateral right becomes the most
sensitive if there are significant changes in the switch rails on the

FIGURE 7
Accelerations and response spectra of wheelsets: (A) ax11, s9, (B) ax11, (C) ax12, (D) ax21, (E) ax 22.
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right. In real-world scenarios, an alternative approach to measuring
acceleration along the lateral direction is to install sensors on both
sides. This allows the calculation of values for the remaining
positions through interpolation, aiding in the differentiation of
sensitivity on the left or right rails.

3.1.2 Bogies
In the vertical direction (z), there is very little difference observed

when sensors are installed at the bottom and top of the bogies. Positions
at the vertical bottom are chosen to compare results along the
longitudinal direction (x) for two bogies, as illustrated in Figure 8.

FIGURE 8
Accelerations and response spectra of bogies: (A) bogie1, lateral right, s9, (B) bogie1, lateral right, (C) bogie1, lateral center, (D) bogie1, lateral left, (E)
bogie2, lateral right, (F) bogie2, lateral center, (G) bogie2, lateral left.
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The black vertical cross marks the primary frequency fp found in
wheelsets, which would like to be found. All the figures show large
values in the low-frequency range of 0–100 Hz. However, the worst
cases are observed when installed on bogie2, where amplitudes in the

low frequency exceed even the primary frequency. This makes it
challenging to distinguish the primary frequency if it falls within the
same range. Conversely, the lateral center exhibits the smallest
amplitude but a clear frequency distribution.

FIGURE 9
Accelerations and response spectra of the carbody: (A) the first bogie (ax11) reached switch sections and (B) the second bogie (ax21) reached
switch sections.
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The rear locations of bogie (bog_1_311 and bog_2_311,
highlighted in blue) perform the best longitudinally for lateral
right, while the front locations (bog_1_121 and bog_1_131, in red)
are relatively better in the other figures. Considering the worse
performance of the installation on bogie2, the installation locations
bog_1_131, bog_1_121, and bog_1_311 are the top three choices,
maintaining larger values in sensitive sections s9, s7, s8, s4, and s5.

3.1.3 Carbody
The three optional vertical locations (floor, center, and ceiling)

yield nearly identical results to the bogies, making vertical floor
locations suitable representatives. The maximum amplitude in the
time domain is very small, approximately 0.015 g, due to the benefits
of the suspension system. In addition, only low-frequency values can
be captured, implying a limited chance of capturing any higher

FIGURE 10
Accelerations and response spectra of wheelsets in worn cases: (A) Pcorr heatmap in the time domain, (B) Pcorr heatmap in the frequency domain, (C)
the accelerations and histograms of axl_11_131 in four wear cases (wear1, wear4, wear7, wear9).
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frequency than 70 Hz, such as the primary frequency fp of ax11. This
is because the suspension system has a much larger effect, especially
lower than 70 Hz, compared to the bogies. Therefore, a 4th-order
Butterworth high-pass 70 Hz filter was applied to all carbody
accelerometers to ensure that the accelerations could be analyzed.
Despite this, the maximum amplitude of filtered acceleration
decreased to lower than 0.001 g. Both Figures 9A,B exhibit
similar features in the time and frequency domains, indicating
that the carbody was triggered to vibrate when the first bogie
(ax11) and the second bogie (ax21) reached switch positions. It is
noted that Figure 9B has only 1/10 amplitude compared to
Figure 9A. To minimize the influence of the suspension system,
the switch positions when the first bogie reaches should be used as
the reference for further discussion since the suspension system has
less impact on the acceleration values. The intermediate locations
(highlighted in pink and green) in the longitudinal direction can be
represented by the maximum locations (red and blue) respectively.
In this case, the installation locations car_1_131 and car_1_121 are
the best choices, showing noticeable accelerations in sensitive
sections s9, s7, s4, s8, and s5.

3.2 Worn rails

3.2.1 Wheelsets
Utilizing the Pearson correlation (Pcorr) heatmap presented in

Figure 10, it is observed that correlation values decrease rapidly
after the initial two or three rounds of wear in the time domain. In
comparison to the range of the heatmap scale in the time domain,
the values in the frequency domain exhibit more stable patterns
ranging from 0.65 to 0.93, indicating more consistent frequency
curves among various worn and unworn conditions. Every set of
three consecutive rows exhibits a consistent value pattern as they
are positioned in the same longitudinal location. Within each set,
the last two rows, situated at the lateral centre and left locations,
consistently display closely aligned values in most cases. This
aligns with the observations made in the analysis of the
unworn case.

For further analysis, axl_11_131, identified as the optimal
location during the assessment of an unworn rail, is chosen to
investigate wear1, wear4, wear7, and wear9 cases. This exploration
encompasses raw data and histograms in both time and frequency
domains. Among these cases, wear1 emerges as the best match due
to its minimal wear. Notably, significant differences are observed in
specific sections, such as s7 and s5, in the time domain, where high-
frequency signals appear to initiate distortion, particularly values
exceeding 200 Hz. Although wear7 and wear9 exhibit favourable
matching distributions in the histogram, the disparity in time
domain values increases substantially from wear7 and peaks in
wear9. In summary, while the primary pattern is well-preserved
across all wear cases, escalating wear introduces challenges in
detecting frequencies exceeding 200 Hz.

3.2.2 Bogies
Figure 11 presents the results on the two bogies using heatmaps

of Pcorr. Bogie1 exhibits noticeably better sensitivity results,
characterized by a wider value range, in comparison to bogie2. In
each group along the lateral direction, consisting of three sensors,

the first (lateral right) and third sensors (lateral left) consistently
display higher values than the second sensor (lateral middle).
Additionally, the lateral left positions yield the lowest values.
Therefore, bog_1_131 is identified as the ideal location. The
signals in the frequency domain exhibit a similar trend to those
in the time domain, though not duplicated here.

The histograms in both time and frequency domains generally
exhibit good alignment, except for values near zero. The suspension
system significantly affects the low-frequency values. Compared to
the unworn case (orange), a more pronounced distortion in values
emerges from wear4 and persists until wear9 in the frequency
domain, particularly noticeable in sections s7, s9, s5, and s4 in
the time domain.

3.2.3 Carbody
About the sensor locations in the carbody, the positions (car_1_

131, car_1_121, car_1_311, and car_1_531) exhibit large value
ranges for various wear cases in the Pcorr heatmap of Figure 12
in the same longitudinal group. Considering the findings from
unworn rail cases, both car_1_131 and car_1_121 are selected for
further discussion. Both sensors display similar value patterns
throughout the wear development, such as peak values
(highlighted in blue) in sections s3, s4, s5, s6, s7, and s9 for wear
9. On the other hand, car_1_121 shows relatively smaller value
changes, indicating that some vibration has been damped out, such
as in section s7 for wear 7 and 9 cases. Therefore, car_1_131 is
superior to any other sensor on the carbody.

4 Discussion

4.1 Optimal sensor placement

Three key observations need to be addressed: similarity in the
z-axis, better in earlier contact, and the first excitation dominates.
Firstly, the vertical location of the same object will almost not affect
sensitivity, and the default location can be set to the ones closest to
the vibration source, the contact points between wheels and rails.
Secondly, installing sensors at the rear is less effective than at the
front in the longitudinal direction because more suspension
dampens out the vibration signals and adds more low-frequency
signals, posing challenges in distinguishing the primary frequency of
the wheelset. Meanwhile, the centre of the object is the least
favourable location due to less vibration occurring in the centre.
Lastly, objects will vibrate upon each time when the various
wheelsets encounter switches, with the first wheelset being the
most representative. It is attributed to the suspension system’s
inability to fully dampen the vibration triggered by external
contact forces. This occurs after the first wheelset accesses the
switch, and before the subsequent wheelset reaches it. For
example, the carbody will experience similar vibration when four
wheelsets encounter switches with different time delays. Section
3.1.3 selects two typical cases and demonstrates that the first is the
ideal signal to be analyzed.

Figure 13A summarizes the optimal accelerometer placement
suggestions based on the evaluation results according to these three
conclusions. In the extreme case of a limited budget, the ideal
installed position is bog_1_131, using a 2g (19.6 m/s2)

Frontiers in Built Environment frontiersin.org12

Hu et al. 10.3389/fbuil.2024.1396578

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1396578


accelerometer, commonly found in mobile phones. Secondly, the
solution could involve adding sensors on car_1_131, located on the
carbody, and on the wheelset location ax_11_131 with a 20g (196 m/
s2) range. Additionally, more sensors installed on the same object
can capture the distribution of an object. For example, two sensors
on the same wheelset can be used to compute for this linear object.
Three sensors on the bogie can be used for calculating the
acceleration value at any point on the bogie. In the real world, if
changes in switch profiles occur evenly on the left and right rails, it is
suggested to add two sensors on the left and right instead of the
lateral centre.

4.2 The correlation between wear and
sensitivity of vertical acceleration

Figure 13B show that the acceleration significantly decreases
from the wheelset to the carbody with the increasing influence of the
suspension system when the rails are unworn. The amplitude ratio is
approximately 0.01 g (carbody):1 g (bogie):10 g (wheelset).
Comparing the frequency curves, the bogie still retains the
primary frequency with a zoomed amplitude in the time domain,
and the trends remain consistent. For the carbody, values in the
primary frequency are almost diminished even when zoomed in.

FIGURE 11
Accelerations and response spectra of bogies inworn cases: (A) Pcorr heatmap in the time domain for bogie1, (B) Pcorr heatmap in the time domain for
bogie2, (C) the accelerations and histograms of bog_1_131 in four wear cases (wear1, wear4, wear7, wear9).
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Analyzing the results in s9, the time delay can be observed by
tracking the x-values of red dots, and the patterns in the frequency
domain are more apparent. If no filter is used for the carbody
accelerometers, the sensor has very little frequency information
reserved and is only affected by the large geometry changes of
the switch sections. These features persist similarly regardless of how
the wear develops. The detectable range of accelerometers is only
0.001 g after using the high-pass filter. It means the accelerometers
installed in the carbody can have only 1/10000 sensitivity compared
to the wheelset in the simulation. It results in difficulty capturing any
pertinent data within this low-frequency range and makes it more
susceptible to signal noises in reality. On the other hand, the
sensitivity of vertical acceleration can be divided into four stages
(optimal, acceptable, distorted and recovered), as Figure 13C
illustrates. In the early stage, the wear is very small, and the
acceleration signals are very close to the conditions without any
wear. When the wear is large enough, the results gradually lose the
details in the time domain while still preserving the main
frequencies. In the third phase, the signals begin to be disturbed,
especially in the frequency domains. It will last to the worst case in
wear 9 and recover completely after the grind.

Taking the location axl_11_131 as a case study, the power
spectral density (PSD) analysis was conducted, with a focus on
the highest PSD value indicative of the primary frequency referred to

(Li et al., 2021). In Figure 14A (left), each section is depicted
individually, while the data in all sections is represented in grey
color. All primary frequencies are denoted by crosses. Sections s1, s2,
and s3 exhibit notably lower PSD values and distinct curve shapes
compared to the grey curve. Meanwhile, s9 (blue) emerges as the
primary contributor, closely mirroring the primary frequency (red
cross) observed in the grey curve.

Figure 14A (middle) highlighted the primary frequency,
revealing a consistent value of 117 Hz across both s9 and all
sections’ curves. These curves exhibit a high degree of similarity
in their trends. Considering the train speed 70 km/h, the
corresponding wavelength of acceleration is determined to be
168 mm. For amplitude analysis, following established literature
conventions (Böröcz and Singh, 2017; Sun et al., 2021), the unit g2/
Hz is utilized in Figure 14A (right). The top two contributing
sections to the amplitude are identified as s7 and s9, particularly
in the proximity of the primary frequency. Consequently, the unit g2/
Hz is used in the rest of this paper for better understanding.
Figure 14B illustrates that the sensitive regions can be found in
terms of PSD. From wear1 to wear4, the S9 (blue) dominates the
trend, exhibiting the highest values (marked with crosses) compared
to the grey curve (representing all sections). However, the S7 (green)
and other sensitive sections gradually influence the grey curve,
reaching their maximum impact in wear9. Eventually, it returns

FIGURE 12
Accelerations and response spectra of the carbody in worn cases: (A) Pcorr heatmap in the time domain and (B) the accelerations and histograms of
car_1_131 and car_1_121 in four wear cases (wear1, wear4, wear7, wear9).
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to a status close to the unworn case after the grinding of the rail. This
disturbance is more severe when the geometry sections are sensitive,
for example, s4, s5, s7, s8, and s9.

4.3 Various train speeds and curve radii

The train speed (70 km/h) and curve radius (760 m) were used
in the previous experiments. Before deciding on this configuration,
variations in train speeds and curve radii were explored. For
instance, the train speed varies from 50 km/h to 80 km/h with
different curve radii (300 m, 500 m, 760 m, 1200 m, 2500 m)
according to Bane NOR regulations. Figure 15A illustrates the
values of accelerometer axl_11_131 in the vertical direction for
various train speeds under a 760 m curve radius after aligning them
with the distance to the start of switches. In the time domain, the
amplitude decreases with the decreasing train speed because the

slower speed results in softer wheel-rail contacts with less force
magnitudes. The lower train speed leads to an earlier completion of
the damping period when forces and accelerations are higher, such
as in sections s7 and s9. They show a higher and more significant
influence for all sections in the frequency domains. Figure 15B
presents the results for different curve radii assuming the train speed
is set to 70 km/h. The results for R760, R1200, and R2500 show a
similar trend in the time domain and very close features in the
frequency domain. However, excessively tight curves, such as R500
(orange) and R300 (red), show larger amplitudes and messier
frequency results, and the train speed is not allowed to be set as
high as 70 km/h in reality. In summary, a radius of R760 and a train
speed of 70 km/h can be considered representative of most cases.

There are six typical cases designed to illustrate worn scenarios
in Figure 15C. The results show that a tight curve case (red) exhibits
a very weak correlation from the early wear stage and minimal value
changes during wear development. This makes it easier to detect the

FIGURE 13
(A) The optimal accelerometer placement suggestions based on experimental data. (B) The correlation between optimal placement on the
wheelset, bogie and carbody under unworn cases.(C) Four stages of sensitivity with wear development and correlation levels.
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existence of wear but poses a high challenge in evaluating the degree
of wear development. In contrast, a case with a more straight line
(pink) shows a relatively strong correlation, making it difficult
to distinguish whether wear has occurred. Therefore, the case of
70 km/h, R760 (blue), is more representative for discussion as it
reflects the four stages of the entire process, as shown in Figure 13C.

4.4 Limitations

In this paper, the number of switch sections is limited to ten, and
the minimum interval distance is 0.797 m, occurring between s7 and
s8. Although the simulation uses a sample rate of 2 k Hz or even

higher, the larger interval value causes the simulation to be less
sensitive than the real world. The profiles of switch sections with
small intervals are challenging to measure, especially the wear
development over time. One approach to overcome this
limitation is to utilize MiniProf or 3D scanner technology for
efficient and precise measurement. It can be utilized to precisely
investigate the correlation between accelerations and track
irregularities, a topic not addressed in this paper. In addition, the
discussion of experimental results focuses on the vertical
acceleration for a representative case with a radius of R760 and a
train speed of 70 km/h. Train speeds below 50 km/h and tight
curves, such as those with radii of 300 m and 500 m, are not
recommended for analysis using our approach.

FIGURE 14
The vertical acceleration of axl_11_131. (A) (left) PSD for each section and all sections, (middle) PSD for s9 and all sections, (right) PSD for each section
and all sections with unit g2/Hz. (B) PSD for all sections and separate ones compared with various wear conditions.
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5 Conclusion

This paper utilized the multibody simulation software
GENSYS to simulate a train passing through a railway switch
under diverse wear conditions. The vertical accelerations
generated by accelerometers on the train were used to
determine the optimal placement of these sensors, namely, by

using time and frequency domain analyses. Under various worn
conditions, the discussion emphasizes the sensitive sections within
the unworn cases. The present study’s outcomes are summarized
in these conclusions.

• It is suggested that the placement is to prioritize installing
sensors on the first bogie, positioned on top of the rail side

FIGURE 15
The vertical acceleration of axl_11_131. (A) At the curve radius of 760 m, the train speeds of 80, 70, 60, and 50 km/h are considered. (B) The train
speed is 70 km/h at curve radii of 300, 500, 760, 1200, and 2500 m. (C) Pcorr in various worn scenarios for six typical cases.

Frontiers in Built Environment frontiersin.org17

Hu et al. 10.3389/fbuil.2024.1396578

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1396578


close to the wheel-rail contact points. Through our analysis,
three main key observations were identified: maintaining
similarity along the z-axis, favoring the earlier contact
position in the x-axis, and acknowledging the dominance of
the first excitation.

• The correlation between wear and vertical acceleration,
extending from wheelsets to the carbody, indicates that
sensitivity experiences four stages: optimal, acceptable,
distorted, and recovered. The measurement range ratio is
10:1:0.01 (wheelset:bogie:carbody). It is noted to employ a
high-pass filter to obtain relevant acceleration data if
accelerometers are installed in the carbody to detect wear
conditions.

• The case, with a curve radius of R760 and a train speed of
70 km/h, is considered representative after analyzing
various scenarios.

These results provide the scientific support of placing
accelerometers in more effective and sensitive locations,
selecting reasonable measurement ranges and analyzing the
most valuable collected data. Although the magnitudes of
accelerations in the carbody are significantly lower than those
on wheelsets, it demonstrates the potential for installing
accelerometers in the carbody considering the similar
correlation between wear development and acceleration for
wheelsets, bogies, and carbody. The feasibility of installation
and maintenance makes it highly promising. The direct
correlation between the depth of switch wear and the
magnitude of acceleration provides an opportunity to detect
switch wear more effectively in its early stages, thereby
indicating the appropriate time for grinding operations. If
accelerometers were installed in optimal locations on trains and
configured with thresholds for monitoring wear conditions, they
could assist decision-makers in optimizing maintenance routines
for switches, thus improving safety and efficiency in railway
operations.
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