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The stabilization and application of expansive geomaterials are critical in
geotechnical engineering. These naturally expansive materials exhibit complex
hydro-chemo-mechanical properties because they undergo volumetric changes
in response to variations in moisture content and/or temperature. The
characteristic shrink-swell behavior of these materials makes their use
problematic and plays a substantial role in influencing the stability of geo-
infrastructure applications. However, there is a lack of comprehensive
knowledge of the mechanisms and factors impacting their behavior to ensure
mechanical integrity in natural and built infrastructure and geo-engineering
projects. This work provides a comprehensive review of the intrinsic and
extrinsic factors contributing to the shrink-swell behavior and expansion
mechanisms of frost-heaving and natural-expansive geomaterials, such as
expansive clays and sulfate minerals. We reviewed and synthesized peer-
reviewed published works in various databases and academic repositories in
the last 100 years. The influence of shrink-swell behavior of these geomaterials
and the critical role they play in engineering infrastructure were highlighted,
explicitly focusing on their involvement in geotechnical-related hazards, such as
the freeze-thaw cycle, and the damage and sulfate-attack of geo-infrastructure.
We analyzed the interactions between clay minerals, especially how bentonite
enhances grout stability and acts as a buffer material in high-level nuclear waste
repositories. The findings indicate that water interaction with geomaterials and
concrete can cause about a 10% volume expansion when frozen. Also, the
exposure of fractured rocks to low (≤0°C) and high (>0°C) temperatures can
greatly change rock deformation and strength. Finally, gypsum interacting with
water can theoretically increase in volume by 62% to form ice crystals. This
forward-leading review presents the advantages, disadvantages, and unresolved
issues of expansive natural geotechnical materials that improve the resiliency and
sustainability of geological infrastructure.
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1 Introduction

Natural expansive geomaterials are essential to geotechnical
engineering due to their unique properties during the
construction and reinforcement of surface, near-surface, and
underground infrastructure. These natural expansive materials
exhibit complex hydro-chemo-mechanical properties, and their
use poses a threat because they undergo volumetric changes in
response to variations in moisture content and/or temperature.

These geomaterials often exhibit a freeze-thaw behavior, and
their expansion and shrinkage mechanism can be detrimental to
geo-infrastructure. Geo-infrastructure refers to infrastructures built
on or around geomaterials (rocks and soils) on the surface, near-
surface, and deep underground environments that support human
activities. The inherent volume change characteristics of naturally
expansive materials can lead to cracking and deformations
(i.e., failures), which play a substantial role in influencing the
stability and geotechnical-related hazards, especially in slopes (Qi
and Vanapalli, 2015), underground tunnels (Schullera and
Schweiger, 2002), structures (Liu et al., 2016), wellbore (Zhang
et al., 1999), and in underground mining (Feng et al., 2022). The
problematic results associated with these materials have led
researchers to address innovative approaches to mitigate
geomaterials’ freeze-thaw cycles and shrink-swell behavior,
especially in cold regions in our dynamic, fast-paced age. The
typical contributing factors that result in the volume change of
these materials are the variations in temperature, moisture content,
pressure, and chemical reaction, and the details are: (i) the soil and
rock masses undergo freeze-thaw cycles because of temperature
variations, and these cycles cause phase transitions between water
and ice, as the volume of ice is greater than that of water, which may
induce the volume expansion; and (ii) some natural soils and rocks
contains mineral constituents that could cause volume expansion
owing to water absorption and this are the clay minerals and
sulfate minerals.

Generally, frost-heaving behavior in geomaterials is one of the
leading causes of damage to geo-infrastructure in cold climates,
especially in the winter season (Huang et al., 2020). The freeze-thaw
settlement of structures on soft clay significantly impacts the
geotechnical characteristics of soft soils in cold regions (Konrad
and Morgenstern, 1980; Barker and Thomas, 2013). Also, the
seasonal and alternating temperatures can cause freeze-thaw
cycles in soil and rocks, disturbing engineered underground
infrastructure and resulting in potential hazards. Frost heaving
varies based on humidity and soil conditions, which can result in
non-uniform deformation of railway and highway subgrade
constructed on permafrost (Chen Y. et al., 2020). Geo-
infrastructure projects built in freeze-thaw geomaterials are one
of the most prevalent challenges in the world (Matsuoka, 2001).
mentioned that rocks can uptake water during slow freezing, and
thus, for frost damage, high initial water content is unnecessary.
Consequently, the implications of frost heaving on geotechnical
practices in cold regions have been investigated by several
researchers. Michaud and Dyke, (2008) discussed the mechanism
of bedrock frost heave in permafrost regions, emphasizing the
potential threat it poses to engineering design stability.

Shi et al. (2020) analyze the influence of soil frost heaving on the
internal force and displacement of foundation pit supporting

structures. Jiang et al. (2023) focused on the frost-heaving
characteristics of hydraulic tunnel wall rock in cold regions,
emphasizing the spatial distribution and variation of frozen areas
and frost-heaving forces. Low temperatures, especially below-
freezing points, significantly affect surrounding rock stability in
rock engineering projects. Prolonged exposure to negative
temperature and freezing conditions alters the deformation and
intensity of fractured rocks (Wang and Zhou, 2018). As a result, in
the study of rock tunneling in cold regions, the occurrence and
expansion of the frost-heaving temperature have been addressed to
prevent and reduce frost damage. Studies have shown that the
temperature at the entrance section of tunnels is significantly
affected by the colder air both inside and outside the tunnel
during the cold season, consequently making it the main area
susceptible to freezing damage (Yu et al., 2019; Zhou et al.,
2021). Zhang et al. (2022) reported that the decrease in
temperature in the tunnel causes the freezing of water, and the
volume expansion damages the tunnel structure further, causing
other forms of freezing damage. This highlights the critical role of
low temperatures in driving freezing damage. Furthermore, freezing
damage to tunnel foundations encompasses various aspects,
including failures in the drainage system, snowmelt and ice
formation on roadcut surfaces, foundation seepage, and icing
issues (Li et al., 2022).

Natural expansive geomaterials cause many problems in geo-
engineering and vary significantly in volume; thus, they expand as
they absorb water and shrink as they evaporate (Pooni et al., 2019).
Natural expansive geomaterials (expansive soils) are common
worldwide, covering about 33% of Sudan, 20% of Indonesia and
India, 12% of Syria, and approximately 6% of China (Jalal et al.,
2020), and their existence severely slows down geotechnical projects
and causes long-term stability problems (Aziz et al., 2015). Several
researchers have discussed the inter-particle swelling and
intercrystalline expansion mechanism of expansive soils and
pointed out that the economic losses due to the alternating
shrinkage and expansion behavior of these materials outweigh
the damage caused by natural disasters (Jones and Holtz, 1973).
Basma et al. (1996) found that cyclic swelling and shrinkage of
expansive clays can result in changes in their expansive behavior and
microstructure. Lajurkar et al. (2013) highlighted the damaging
effects of alternate swelling and shrinkage on structures built on
expansive soils. Phanikumar and Singla, (2016) discussed the
problems posed by expansive soils and explored the efficiency of
fiber reinforcement in reducing swelling and shrinkage.
Muthukumar and Shukla (2019) explained that the swelling
decreased slightly with an increase in fiber content, while
shrinkage significantly decreased with the addition of fibers.

Comparatively, sulfates cover a significant portion of the Earth’s
surface, making them a crucial area of interest for researchers due to
their significance in both geological and environmental contexts.
The diverse nature of sulphates and their widespread distribution
demands thorough investigation to understand their implications
and effects on geo-systems. Joanna, (2012) highlighted that
sulphates cover a significant portion of the Earth’s surface,
including coastal salt lakes, sabkhas, and salt lakes in different
regions. Tarragona, (2014) discussed the expansion mechanisms
of sulphated rocks and soils, emphasizing the role of gypsum
precipitation in discontinuities, which can lead to swelling strains
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and geo-structural damage. Maio et al. (2014) investigated the
natural occurrence of sulphates in groundwater, suggesting that
gypsum formations associated with specific carbonate rocks are the
predominant source of sulphates in a particular area. Samborska
et al. (2013) studied Triassic carbonate aquifers in Upper Silesia,
Poland, and found that sulphate sources included sulphide
weathering and gypsum dissolution. Fontboté et al. (2017)
focused on sulfide minerals in hydrothermal deposits, which play
a crucial role in concentrating metals and triggering the deposition
of valuable metals through the precipitation of less economically
significant sulfides. These studies represent a diverse range of
investigations into sulphates and shed light on their geological
significance, expansion mechanisms and natural occurrence
on earth.

The behavior of expansive soils, sulfate attack, and freeze-thaw
cycles can influence the volumetric expansion of cement structures.
Over time, the shrinkage and expansion of expansive soil can cause
foundation movement, cracking, and structural damage (Holtz et al.,
2011). Sulfates can penetrate concrete and react with calcium
hydroxide and hydrated calcium aluminate to form expanding
compounds that can cause cracking, spalling and loss of
structural integrity (Al-Dulaijan et al., 2003; Mamun and
Bindiganavile, 2011; Min et al., 2019; Othman et al., 2020; Zhang
et al., 2021; Tian et al., 2023). Freeze and thaw cycles can create
internal stresses within the concrete and lead to structural damage
and failure (Valenza and Scherer, 2007; Dabas et al., 2021).

The objective of this study is to comprehensively review the
expansion behavior and mechanisms of natural expansive materials
and frost-heaving behavior in geo-infrastructure. Further, this study
will provide an innovative review of: i) the relationship between
several potential underlying factors, including moisture content,
temperature, and pressure contributing to the volume expansion
and shrinkage variations of natural expansive materials; ii)
consequences of material expansion and shrinkage for mitigating
these challenges in geotechnical engineering, and iii) ongoing efforts
to enhance the resilience and sustainability of geo-engineering
practices in the face of variable natural expansive material
behavior. The rest of the paper is organized as follows: i) Section
2 introduces the swelling-shrinkage behavior of expansive natural
materials, and Section 3 covers swelling-shrinkage mechanisms of
natural expansive materials; ii) Section 4 focuses on the impact of
freeze-thaw cycles and sulfate exposure on the durability of natural
and built infrastructure, and Section 5 presents the significance and
implications of natural expansive materials in geotechnical
engineering applications, and iii) lastly, these sections will be
followed by the conclusion section and future research
direction section.

2 Swelling-shrinkage behavior of
expansive natural materials

2.1 Frost-heaving materials in geotechnical
engineering

Many types of soils and rock masses show frost-heaving
behavior during the freeze-thaw cycles because of temperature
variations when they contain water. Generally, frost heaving

occurs in the northern hemisphere (cold regions) countries like
America, Canada, Russia, and the Nordic regions e.g., Denmark,
Finland, Iceland, Norway, Sweden, and Greenland (Brown et al.,
1998; Prince et al., 2018) (Figure 1A), and its influence is a problem
of national concern since it delays many engineering projects
(Taivainen, 1963). The effect of frost heaving causes a lot of
damage to geo-structures, such as pipelines (Oswell, 2011),
subgrades (Wu et al., 2018), foundations, tunnels, etc.

The prevalence of seasonal freezing and thawing in the northern
hemisphere has far-reaching implications with more than half of the
northern hemisphere’s land area (Figure 1A) (Prince et al., 2018).
Within this vast region, a significant portion, precisely one-quarter
as well as 17% of the Earth’s exposed land surface is characterized by
permafrost, where the ground remains frozen at or below 0°C for a
minimum of two consecutive years (Christiansen et al., 2010;
Gruber, 2012; Biskaborn et al., 2019). In China, there is an
extensive distribution of frozen soil in the northern climates like
Tibet, Xinjiang, and Qinghai, where the temperature is low (below
0°C), large frozen depths, and long durations in the soil throughout
two-thirds of the time in a year (Liu et al., 2017). It is reported that
engineers working at underground tunnels in these areas in China
often observe ice in fractured rock mass at low temperatures, which
sometimes causes the fissure volume to expand, resulting in
underground instability (Wang et al., 2016b). Permafrost in the
Nordic region can be found in lowland areas with marine sediments,
palsas, and peat plateaus, and in many mountainous regions at
temperatures near 0.8°C (Figure 1B), making it highly responsive to
climate variations (Christiansen et al., 2010).

In locations such as Svalbard, northeast Greenland, and the
highest mountainous zones throughout the Nordic area, permafrost
is slightly colder but still just a few degrees above freezing
(Christiansen et al., 2010). Notably, in Finland, the penetration of
frost into glacial soils exhibits distinct regional patterns; thus, in the
southern part of the country, frost reaches depths of approximately
1.22 m–1.83 m (4–6 ft), while in the northern part, this freezing
phenomenon extends much deeper, ranging from 2.13 m to 3.05 m
(7–10 ft) which accounts for more frost occurrence in the northern
climate of Finland (Taivainen, 1963). As a result, boundary markers
often shift from their designated positions due to the upward
movement of rocks resulting from the volumetric expansion of
ice beneath road beds (Taivainen, 1963).

Extensive research on frost-heaving has been conducted since
the early 1990s till date. Taber (1930) and Taber (1929) explored the
frost-heaving mechanisms such as the growth of ice lenses in soil.
Mu and Ladanyi, (1987) developed models that integrated stress-
strain behavior, heat, and mass transport to estimate frost heave.
Matsuoka (1990) focused on measuring frost-heaving strains in
rocks, observing the influence of surface area on freezing expansion
(Huang et al., 2020). Dagli et al. (2018) investigated the role of
suction in water migration to the frost front. Wang and Zhou, (2018)
emphasized how jointed rock mass properties can affect frost-
heaving pressure due to phase changes. Osokin et al. (2000),
Rekstad et al. (2013), and Liu et al. (2017) highlighted the
importance of freezing and negative temperatures in soil, leading
to volume expansion and negative pressure formation in
frozen areas.

Frost heaving is primarily affected by factors such as
temperature and pressure, and the details of each factor are
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expressed below. However, it is important to recognize that the study
of this phenomenon requires a comprehensive understanding of
multiple contributing factors (Lu et al., 2021). The change in volume
resulting from the freezing of water and the subsequent melting of
ice serves as the fundamental trigger for soil deformation within a
freezing-thawing environment. Periodic frozen soil is susceptible to
temperature variation (Niu et al., 2017; Niu et al., 2017; Lin et al.,
2018), and the cyclic pattern of freezing and thawing of soil
significantly affects soil strength. Bouyoucos (1920) studied soil
physics and chemistry and discovered that water in the soil
freezes at multiple temperatures, not just one. Huixin et al.
(2012) pointed out that in a closed system, as the freezing
temperature rises, the amount of frost heave and the ratio of
frost heave relative to the soil mass water content and dry
density also increase. Liu et al. (2017) identified frost heave in
coarse-grained soils when specific combinations of clay content (the
mass fraction of the particle with a diameter less than 0.075 mm),
initial moisture, and temperature occurred in seasonal
frozen regions.

In rock mass, as the freezing temperature decreases, the
unfrozen water film thickness between the rock and the ice
decreases, leading to an increase in disjoining pressure (De
Gennes, 1985; Rempel et al., 2001; Huang et al., 2020). Wang
and Zhou (2018) explained that under freezing conditions and
low temperatures, prolonged rock exposure can lead to
significant changes in the deformation and strength
characteristics of the fractured rock mass. Penner (1959) stated
that structures and roadways built on materials highly susceptible to
frost, along with their associated expansion, could heave up to
0.61 m. Brimblecombe et al. (2010) stated that the count of
freeze-thaw cycles can be determined based on the assumption
that rocks freeze solely when the mean daily temperature drops
below −3°C, and thawing only occurs when the mean daily
temperature rises above +1°C. Recently, a novel technique has
been developed that utilizes meteorological data to analyze the
daily maximum and minimum temperatures. This method entails

monitoring and quantifying freeze-thaw cycles, which are defined by
temperature fluctuations either from above freezing to below 0°C or
from below 0°C to above freezing (Al-Omari et al., 2015). Table 1
provides a comprehensive overview of the geographic distribution of
frost-heaving geomaterials and addresses their implications from a
geotechnical engineering perspective.

Freezing can generate high pressure when water is constrained
to prevent expansion. This phenomenon can also affect the physical
and mechanical properties of rocks. Taber, (1929) and Taber, (1930)
mentioned that under atmospheric pressure, when a definite
amount of water is cooled, it freezes at 0°C with an expansion in
volume at about 10%. Also, in soils, Beskow, (1991) stated that an
increase in load pressure leads to soil consolidation, resulting in the
squeezing out of water. When the pressure decreases, the soil tends
to expand and under these conditions, there is potential for the soil
to suck the water required for the volume increase (Black and
Hardenberg, 1991). Tarefder and Ahmad (2015) reported that
when water enters the road surface, under the intense action of
the wheel load, it causes a higher pressure concentration at the weak
joint between the aggregate and the asphalt binder, which accelerates
the damage process and leads to permanent deformation.

Based on the analysis made, it is recognized that freeze-thaw
cycles (temperature variations) and pressure control rock heave and
settlement in the foundation when little or no water-ice phase
change is involved. Also, the volumetric expansion of frozen
water (ice) and the melting of pore ice cause heave in wet
geomaterials, which in turn affect the concrete structure and
underground space engineering.

2.2 Expansive natural materials in
geotechnical engineering

Various types of natural soil and rock masses exhibit a volume
expansion behavior. The natural expansive minerals can be divided
into two types: i) clay minerals, mainly montmorillonite, illite, or

FIGURE 1
Freezing and thawing in geomaterials in the Northern Hemisphere: (A) Northern Hemisphere land cover [tundra (blue), forest (green), open land
(yellow), and water/ice (white); Red dots mark weather stations] [modified after (Prince et al., 2018)]; (B) Permafrost distribution in the Nordic area based
on Circum-Arctic Permafrost Map [modified after (Brown et al., 1998)].
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kaolin. Montmorillonite clay will expand significantly as the volume
increases, while illite and kaolin clay will have limited expansion.
The typical expansive geomaterials which contain montmorillonite
are mud rock and bentonite, etc. ii) The other one is the sulphate
minerals such as gypsum, anhydrite, calcium thenardite, and
anhydrous thenardite. These two types of expansive minerals
expand because of the reaction with water.

2.2.1 Clay mineral expansion behavior
Expansive clay minerals are prevalent geomaterials that exist in

various regions worldwide, including both humid and arid/semi-
arid regions, with their primary mineral constituent being dispersed
layered silicate (Cherif et al., 2018). They are heterogeneous in
nature and their chemical composition depends on other elements,
not only the swelling minerals. The expansion behavior of clay
minerals can cause significant damage to geotechnical engineering
projects. According to research, the damages associated with
expansive clays exceed the average annual damages from floods,
hurricanes, earthquakes, and tornados (Jones and Holtz, 1973;
Chen, 1975; Simmons, 1991; Jones and Jefferson, 2012; Hyndman
and Hyndman, 2014). Bouassida et al. (2022) stated that cracked

foundations, pavements, floors, and basement walls represent
common forms of damage induced by expansive clay minerals.
Chen (1975) stated that many floor slabs constructed in an
expansive clay area crack and sometimes heave due to improper
infrastructure design. Also, there have been reported cases where
swelling pressure generated by expansive clay caused lateral
deflections of basement walls in foundations (Chen, 1975;
Elarabi, 2010)

Experimental research in soil mechanics suggests that moisture
content, volume increase, swelling pressure, expansion time, surface
area, mineral composition and pore morphology are the factors that
contribute to the extensive shrink-swell behavior of most expansive
clays. The volume of expansive clay minerals tends to increase as
they absorb additional water, which is observed in approximately
90% of clays (Chen, 1975; Jones and Jefferson, 2012). When the
moisture content of the clay changes, the swelling pressure will
increase and cause volume expansion both in the vertical and
horizontal directions. Holtz et al. (2011) experimented on the
shrink/swell behavior of expansive clay minerals and observed
the following: i) the process of swelling and shrinkage are not
entirely reversible, ii) shrinkage induces cracks that upon re-

TABLE 1 Geographic distribution of frost-heaving materials and implication on geo-infrastructure.

Geographic
distribution

Location Frost susceptibility and
implications

References

Northern Hemisphere
and Arctic Regions

Canada and Alaska: Prairie Provinces (Alberta,
Saskatchewan, and Manitoba), Ontario,
Quebec.

Long, harsh winters in cold climates, frost-
susceptible soils, and large areas of permafrost
and seasonally frozen soils pose enormous
challenges to the environment and
infrastructure. These conditions cause soil
instability, impact road and building
construction, and affect local ecosystems
adapted to freeze-thaw cycles. Water
management becomes critical as frozen ground
blocks drainage and affects groundwater
recharge rates.

Wynn (2006), Stewart et al. (2019), DeBeer
et al. (2021), Loranger (2020), Akhmetiev
(2015), Panin et al. (2009), Naumov et al.
(2020), Tuukka et al. (2020), Bird (2017),
Prince et al. (2018)Russia: Siberia, Russian Far East.

Scandinavia/Nordic regions: Norway, Sweden,
Finland, Faroe Islands, Denmark, Iceland,
Greenland and Svalbard.

Temperate Zones United States: Northern states (Minnesota,
Wisconsin, Maine, Michigan, New York);

Moisture-retaining soils during cold winters
experience freezing and wetting conditions. The
frost-susceptible soils swell and shrink during
freeze-thaw cycles, causing significant
challenges. In the case of geo-infrastructure,
ground movements can cause cracks and
instability in buildings and roads. From an
environmental perspective, these conditions can
damage habitat and soil health, affecting
biodiversity and changes microbial activity in
soil that affect nutrient cycling and ecosystem.

Donald and Hansen (1974), Baladi and
Rajaei (2015), Denny, 1951, Sharifi et al.,
2019, Thiry et al. (2014), Isarin (1997),
Vaitkus et al. (2016), Kassam (1981), Wang
et al. (2017), Xiao et al. (2018), Masaki (2019)

North Africa: Tunisia, Morocco, northern
regions of Egypt, Libya, Algeria, and Western
Sahara.

Southern Africa: the southern tips of
Madagascar, Mozambique, the entire
territories of Eswatini, and Lesotho, southern
parts of Botswana, Namibia and the great part
of South Africa.

Europe: Northern and Central Europe
(Germany, Poland, United Kingdom);

Northern Middle East: northern United Arab
Emirates, northern Saudi Arabia, Bahrain,
Qatar, Iran, Iraq, Afghanistan, and Turkey.

Asia: Northern China, Japan (Hokkaido)

High Altitude Areas Rocky Mountains: High elevations in the US
and Canada

Cold temperatures and soil moisture cause
valleys and areas of standing water to freeze,
especially in cold climates where soils are
susceptible to frost, posing unique challenges
such as cracks in infrastructure, and the
environment. Environmental impacts include
damage to local ecosystems, particularly those
adapted to harsh mountain climates.

Auer et al. (2005), Jaesche et al. (2003), Savi
et al. (2015), Hauer et al. (1997), Ives and
Fahey (1971), Hewitt, 1968, Dimri and Dash
(2011).Alps: European Alpine region (Monaco,

France, Switzerland, Italy, Liechtenstein,
Austria and Slovenia).

Himalayas: High-altitude regions (Nepal,
Bhutan, Bangladesh, northern India, Pakistan)
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wetting, do not completely close which result in a slight expansion or
bulking of the soil, and also allow enhanced access to water for the
swelling process. Zhang et al. (2018) studied the expansion
characteristics of clay minerals within diverse layers of weathered
crust elution-deposited ore bodies and revealed that clay minerals in
the humus layer exhibited the highest tendency for swelling. Despite
the high swelling potential, if the moisture content of the clay
remains unchanged, there will be no volume change; and
structures founded on clays with constant moisture content will
not be subjected to movement caused by heaving Jones and
Jefferson (2012).

Several test results suggest that the swelling pressure
increases with respect to decreasing initial water content.
However, swelling pressure increases with increasing initial
dry density at a controlled initial water content. These trends
can either be linear or exponential, according to different
research studies (Komine, 2004; Rao et al., 2004; Tu and
Vanapalli, 2016). Meanwhile, Tu and Vanapalli (2016)
reported that the swelling pressure increase can be attributed
to the increased interaction between clay particles due to closer
packing. Further, the swelling pressure of clay minerals is
primarily affected by their average specific surface area. A
larger surface area leads to greater surface forces, which causes
significant changes in volume and swelling pressure (Huang et al.,
2019; Keskin et al., 2023). Moreover, the duration of expansion
and temperature are key factors in determining the linear
swelling ratio and initial expansion rate of clay minerals. As
the temperature increases, the linear swelling ratio tends to rise
which results in a higher initial expansion rate (Chen et al., 2020).
Therefore, the swelling of clay minerals is likely to increase with
temperature.

On the contrary, it has been recognized that mineralogical
composition is an influential factor since different clay minerals
have different microstructures in nature (Madsen and Müller-
Vonmoos, 1989; Azam, 2003). This variation in microstructure
affects the physical and chemical properties of the clay (kaolinite,
illite, and montmorillonite), such as its plasticity index, shrink-swell
potential, and ion exchange capacity (Shan et al., 2021). Shan et al.
(2021) investigated the impact of clay mineral composition on the
dynamic properties and structure of artificial marine clay. It was
found that marine clays with a high content of montmorillonite
showed increased plasticity index (PI) and Atterberg limits. This
increase was attributed to the tendency of montmorillonite to more
readily adsorb strong and loosely bound water (stern layer) on its
surfaces when in a plastic state. Accordingly, understanding the
specific mineralogical composition is essential for predicting and
managing the behavior of clay in various engineering applications
such as soil stabilization and contaminant containment.

Pore morphology substantially influences the swelling behavior
of clay minerals (Sarman et al., 1994). experimented on the pore
morphology of clay minerals and concluded that the swelling phase
did not only relate to the clay mineral type, but also to the pore
morphology. It was found that samples with large pore volumes
combined with a high percentage of small-sized pores exhibited high
swelling potential. The swelling characteristics of various bentonites
with different montmorillonite contents with expansion
development time, volume expansion rate, water content, and
restricted pressure are summarized in Table 2.

2.2.2 Sulfate mineral expansion behavior
Sulfate minerals are abundant and cover about 25% of the

constituent of Earth materials and are also found on other
planets (Blatt et al., 1980; Ford and Williams, 2007). They
occur mainly in the form of gypsum (CaSO4 · 2H2O) and
anhydrite (CaSO4). Gypsum, which is usually the main
source of sulphate-bearing soil is the hydrated form of
calcium sulphate and it is primarily detected in geologic
structures like veins, beds, and nodules (Alonso, 2012).
Anhydrite is reported to exist at depths where there is little
or no water (Wang et al., 2019). Fundamentally, the expansion of
sulfate mineral is associated with the formation of ettringite and
at high sulphate concentrations of gypsum (Tian and Cohen,
2000; Marchand et al., 2001; Müllauer et al., 2013).

The formation of ettringite [Ca6Al2(SO4)3(OH)12·26H2O] in
soils, is a type of sulfate attack that occurs due to the reaction
between sulfate, calcium, and alumina-bearing stages in the
presence of water (Figure 2) (Ehwailat et al., 2022). This
phenomenon is commonly observed in cement and soils
treated with lime, especially in an environment enriched with
sulfate (Rajasekaran, 2005; Ehwailat et al., 2022). When calcium
and aluminate react with sulfate anions, ettringite can swell up to
250% when form completely and produce insoluble ettringite
with increased porosity as the reaction progresses (Zhang et al.,
2018; Akula and Little, 2020). According to Ouhadi and Yong
(2008), for soil stabilization, the lower solubility of aluminum
compounds in a clay fraction is an important source of
ettringite formation.

The expansion behavior of sulfated rock formations is more
significant than clay or marl rocks when involved in near-surface
and underground tunnel excavation (Alonso, 2012; Tarragona,
2014). Structural damage attributed to severe heave and
settlement in sulfated natural formations has often been
associated with tunneling and bridge abutments when
periodically exposed to wetting (Yılmaz, 2001; Alonso, 2012). In
open discontinuities in sulphated rock formations, gypsum, upon
contact with water molecules at a molecular level, expands and
undergoes a volume increase of about 62% creating ice crystals
(Wittke, 2006; Alonso, 2012). This percentage volume increase
causes the crystals to fill the discontinuities, thereby resulting in
heaving/expansion behavior in rocks (Figure 3).

Gypsum is susceptible to rapid dissolution upon contact with
water; as a result, its availability causes the spontaneous collapse of
individual caverns and migration of voids, eventually leading to
subsidence of the overlying ground surface (Yılmaz, 2001). When
gypsum acts as a cementing agent, the dissolution of the cement can
result in the breakdown of the soil structure (Abduljauwad and Al-
Amoudi, 1995; Yılmaz, 2001). The leaching of gypsum and
anhydrite creates cavities in the subsoil, which may induce the
collapse of light structures without prerequisite warning (Yılmaz,
2001; Azam, 2007).

Zanbak and Arthur (1986) discussed the mechanism of
hydration expansion and deformation of anhydrite rock, and
the study showed that the molar volume of anhydrite increases
after water absorption, and the volume expansion could be
62.6%. Madsen and Müller-Vonmoos, (1989) carried out
theoretical and experimental studies on the microscopic scale
from the perspective of mineralogy on the interaction between
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TABLE 2 Swelling characteristics of various bentonites with different montmorillonite contents.

Soil/rock Clay mineral
content %

Expansion
time (hr)

Volume expansion
ratio %

Water
content %

Restricted
pressure kPa

Bentonite (Komine, 2004) Montmorillonite
48

~15–70 ~6–360 13.8 ~6–941

Bentonite (Komine, 2004) Montmorillonite
69

Over 150 ~10–250 13.1 ~10–2032

Bentonite (Komine, 2004) Montmorillonite
80

~1–15 ~16–120 29.5 ~10–2098

Bentonite (Komine, 2004) Montmorillonite
76

~10−150 ~15–180 25.6 ~10–2040

Bentonite (5%) (Komine and
Ogata, 1999)

Montmorillonite
48

~5–30 ~46–77 19.4 ~21–36

Bentonite (10%) (Komine and
Ogata, 1999)

Montmorillonite
48

~15−44 ~67–90 17.6 ~31–43

Bentonite (20%) (Komine and
Ogata, 1999)

Montmorillonite
48

144 ~117–235 17.0 ~56–112

Bentonite (30%) (Komine and
Ogata, 1999)

Montmorillonite
48

~144−648 ~209–375 14.6 ~100–180

Bentonite (50%) (Komine and
Ogata, 1999)

Montmorillonite
48

720 ~350–585 17.5 ~167–280

FIGURE 2
Schematic of ettringite formation: (A) ettringite’s chemical structure, (B) columnar formation of ettringite, (B) existence of aluminum and calcium
polyhedral [modified after (Ehwailat et al., 2022)].

FIGURE 3
Gypsum crystal growth: (A) expansion of gypsum crystal within a rock vein, (B) gypsum crystals after opening with hands [modified after (Tarragona,
2014)]; and (C) Gigantic gypsum crystals in Naica’s Crystal Cave (Chihuahua, Mexico) [modified after (Van Driessche et al., 2019)].
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clay particles, anhydrite, and gypsum crystal. Kaiser (1975)
studied the growth and expansion of ettringite and anhydrite
crystals in solution, and believed that with the change of thermal
equilibrium and hydrodynamics, the anhydrite expansion curve
showed a logarithmic curve growth form. Barnhoorn et al. (2005)
used the residual strain scanning method to study the texture
characteristics of anhydrite rocks in the Swiss Bibiani Islands,
which is of great significance for underground engineering works,
such as mining and tunnels.

Rauh and Thuro (2007) performed powdery swelling tests, thin
slice analysis, electron microscope scanning analysis, x-ray
diffraction, and specific surface area analysis on gypsum rocks in
three different places, and reported that swelling is related to the
crystallinity of CaSO4, the larger the crystal size, the smaller the
expansion capacity. Azam (2007) studied the geological and
engineering issues involved in the expansion and compression of
the anhydrite-gypsum transition along the Arabian Gulf coast, some
key experimental stages of anhydrite have evaluated their
swellability using volume morphological changes, and the
gypsum compression index and rebound index were determined.
Alonso (2012) conducted softening and swelling experiments of
clay-containing anhydrite rocks under the effect of water
evaporation and studied the effect of sulphate concentration in
solution on swelling.

The analysis suggests that when the sulphate minerals absorb
water, the moisture content in gypsum increases, which causes
swelling and when the moisture content decreases, it shrinks,
leading to structural cracks in civil engineering and other
construction works.

3 Swelling-shrinkage mechanism of
natural expansive materials

3.1 Frost-heaving expansion mechanisms

The expansion mechanism of frost-heaving soil arises from the
interaction between three frost actions: water supply, frost-
susceptible soil composition, and temperature as the primary
factors (Taber, 1930; Penner, 1959; Black and Hardenberg, 1991;
Guthrie et al., 2007; Liu et al., 2017). Heaves are more likely to
happen in soil with unique textures, such as loam, silt, and clay,
which are moisture-retaining.

Freeze-thaw cycles are common in soils due to fluctuating
temperatures. When soil layers freeze, pore water movement is
transferred from unfrozen areas to negative regions, which leads
to the expansion of the soil’s volume and the development of
negative pressure (Beskow, 1991; Black and Hardenberg, 1991;
Osokin et al., 2000). In these cold regions, pore water crystallizes
and forms ice in the pores, sometimes forming ice lenses (Konrad
and Morgentern, 1980; Kozlowski and Nartowska, 2013;
Schreiber, 2014). This phenomenon can lead to significant
frosts and a decrease in the engineering properties of the soil.
In cold climates, the cyclic freezing and thawing processes
strongly influence the durability and performance of geo-
infrastructures (Tian et al., 2019). The physical and
mechanical properties of soils, including expansive soils,
change significantly due to freeze-thaw cycles (Yang et al.,

2021). Freezing and thawing cycles result in a decrease in the
soil’s bulk density and penetration resistance (Unger, 1991). The
freeze-thaw process induces uneven stresses within the soil,
which create cracks, fractures, and joints in most clay soils,
leading to a significant increase in permeability (Eigenbrod,
1996; Fouli et al., 2013; Aksakal et al., 2021). However, coarser
soils show a slight change in permeability (Eigenbrod, 1996). As
shown in Figure 4A (Schreiber, 2014), when the ice expands
within the frozen ground, it induces a soil volume increase of 9%,
as proposed by the pore water pressure hypothesis. With high soil
moisture content, the surrounding regions will continually
provide moisture to the frozen area through capillary action.

This process subsequently contributes to additional ice volume
expansion, ultimately leading to frost heaving at the base of the soil.
(Guthrie et al., 2007; Liu et al., 2017). The expansion of the frozen
water (ice lens) within the soil will exert upward pressure from the
penetration limit and induce deformation, which in turn lifts the in-
situ frozen soil (Figure 4B) (Schreiber, 2014; Wang and Zhou, 2018).
As the temperature gradually decreases over an extended period at a
point where the water supply to the lens stops, the frost front drops
down until it encounters the saturated soil and creates another ice
lens, which creates consecutive volume expansion within the soil
(Figure 5) (Schreiber, 2014). The process can continue and cause
vulnerability to the infrastructures in the affected area.
Consequently, (Alonso et al., 1987; Alonso et al., 1990; Alonso
et al., 1999), Adem and Vanapalli (2015), and Lu et al. (2018) and
reported the expansion mechanism in expansive soil during freezing
at different degrees of saturation in porous materials. Figures 5A,B
represent particle types and arrangements in unfrozen expanded
clay at higher and lower saturations, respectively.

Clay particles form aggregates that control macropore space, while
elementary clay particles regulate themicropore distribution within the
aggregates, creating dual porosity. When soil with higher saturation
freezes (Figure 5C), the pores between aggregates expand due to the
growth of ice lenses, resulting in the compression and rearrangement
of soil aggregates. Low-temperature suction forces the water within the
aggregate out, which causes drying-induced shrinkage (Lu et al., 2018).
This compensatory shrinkage is insufficient to balance the expansion
of the growing ice, resulting in an overall increase in soil volume. In
contrast, under lower saturation conditions (Figure 5D), the volume
expansion of water between the aggregate and ice is contained by the
air present in the pores.

In rock mechanics, the presence of joints and fissures
significantly affects the geological stability of a rock mass,
especially in fractured rock mass, where they play a pivotal role.
As the strength of rock is impacted by these discontinuities, the
properties of jointed rock are particularly susceptible to the influence
of ice within these joints during freezing temperatures (Wang and
Zhou, 2018). The frost heave of a rock mass is subject to various
factors: temperature, rock frost susceptibility, surrounding rock
grade, porosity, and external water supply conditions (Wang
et al., 2016a). Joint water in its free state condenses by
undergoing a phase change to ice due to negative temperature,
exhibiting an expansion coefficient of 9% (Wang et al., 2016a). The
water freezing within rock joints initiates a volumetric expansion of
the joint filling. This expansion is constrained by the surrounding
rock mass, leading to an increase in frost-heaving pressure as a result
of the phase transition. If this pressure exceeds the rock mass
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FIGURE 4
Frost heave mechanism in susceptible soils: (A) In-situ freezing, (B) ice crystals’ expansion, and (C) continuous heaving of ice crystals in soils.
Modified after (Schreiber, 2014).

FIGURE 5
Schematic diagram of expansive soil freezing showing freezing expansion from (A) lower saturation to (C) higher saturation; and freezing shrinkage
from (B) higher saturation to (D) lower saturation. Modified after (Lu et al., 2018).
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strength, the jointed rock will fracture and break apart as shown in
Figure 6. Given a homogeneous rockmedium, the frost heaving ratio
is the relationship between volume increment and the original rock
volume. This ratio is affected by the 9% volume phase transition
process, influencing the rate of frost heave as shown in Eq. 1 (Wang
et al., 2016a):

η � ΔV
V

(1)

where η is the frost heaving ratio, ΔV is the volume increment of the
frost heave, and V is the volume of the original rock.

Additionally, when a rock is exposed to negative temperatures
and freezing conditions for a long time, the deformation and
intensity properties of the fractured rock mass change greatly.
Such occurrences pose threats to constructions such as tunnels,
shafts, storage caves, and other infrastructure (Luo et al., 2015;Wang
and Zhou, 2018)

In contrast, the above analysis shows that the frost heaving in
geomaterials does not promote water flow, causing high hydraulic
conductivity. As geomaterials freeze, their porosity decreases and
restricts capillary flow. This phenomenon can prevent water ingress
from forming ice lenses that cause volume expansion of the
geomaterials, resulting in an uplift at the surface. On the
contrary, the freeze-thaw process of these natural expansive
materials makes it difficult to control water movement in the
underground support environment.

3.2 Expansion mechanism of natural
geomaterials

3.2.1 Expansion mechanism of clay minerals
(montmorillonite)

The expansion of the interlayer space in clay minerals is due to
the hydration energy forces associated with the interaction of the
particles (Karpiński and Szkodo, 2015). Clay mineral expansion
(montmorillonite) is generally considered to bemainly intergranular
and lattice expansion (Figure 7).

The intergranular expansion is mainly caused by the absorption
of water in the aqueous medium by the surface of the clay particles
under the effect of electrostatic attraction, which results in the
expansion of the soil or rock due to the increase of the thickness
of the combined water film (Figure 7A). The expansion of the crystal
layer (lattice) occurs when there is a change in the expansive mineral
under the action of water or in a humid environment. Water enters
the mineral either by becoming an inherent part of the mineral
composition or by occupying the spaces within its crystal lattice
structure (Tuller and Or, 2003), which causes the mineral volume to
expand significantly (Figure 7B). This phenomenon makes it
difficult to control water movement in foundations and
underground support environments.

3.2.2 Expansion mechanism of sulfate minerals
The mechanism that leads to the expansion of sulphate

minerals is primarily attributed to the evaporation-based and
gypsum (CaSO4p2H2O) precipitation through an aqueous
solution in the presence of anhydrite (CaSO4)
(Tarragona, 2014).

The evaporation-based mechanism requires a boundary that
interacts with an atmosphere of lower relative humidity than the
water potential in the soil or rock. Alternatively, the rate of
evaporation and the gypsum solubility also affect this
mechanism. The evaporation rate controls moisture removal,
while the limited solubility of gypsum restricts the amount that
can be dissolved. Nonetheless, the extent of precipitation is
constrained by the combined effects of low solubility and
controlled evaporation rates. The limited precipitation primarily
occurs on or near the evaporation surface, rather than within the
volume of the geomaterial and, therefore, initiates a small mass of
precipitated gypsum (Tarragona, 2014; Butscher et al., 2015).

Gypsum precipitation through an aqueous solution with
anhydrite can lead to larger volumes of gypsum formation,
posing greater engineering risks compared to evaporation-
based mechanisms (Alonso, 2012; Tarragona, 2014; Butscher
et al., 2015). For instance, since natural calcium sulfate-rich
water is supersaturated and anhydrite has higher solubility

FIGURE 6
Conceptual volume expansion of ice in a fractured rock mass (A) freeze-thaw cracking process of fractured rock mass [modified after (Chang et al.,
2022)], (B) Frost wedging causing the detachment of blocks from the bedrock [modified after (Geocache, 2023)].
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compared to gypsum at temperatures below 56°C, the water in
contact with anhydritic claystone at the active layer will dissolve
anhydrite and subsequently lead to the precipitation of gypsum
(Kontrec et al., 2002; Alonso, 2012; Tarragona, 2014). Afterward,
the water becomes supersaturated with respect to gypsum, which
causes the excess dissolved calcium sulphate to precipitate as
gypsum crystals.

In practical terms, the excess hydrated gypsum can be
transported in an aqueous solution or precipitate within available
voids in rocks. This action can exert pressure on the rock mass and
push it apart, while potentially triggering the expansion of
discontinuities and inducing swelling strains (Figure 8) (Alonso,
2012; Tarragona, 2014; Butscher et al., 2015). As presented in
Figure 8, the analysis shows that hydrated gypsum can be
transported in an aqueous solution and fill facture spaces in the
rock mass, making it difficult to control water movement in the geo-
infrastructural environment.

4 Impact of freeze-thaw cycles and
sulfate exposure on the durability of
natural and built infrastructure

4.1 Damage mechanism of freeze-thaw
cycles in cemented structures

The primary mechanism of freeze-thaw damage in cemented
structures is described by both the hydraulic pressure theory and the
osmotic pressure theory, and both mechanisms are attributed to
concrete deterioration (Powers, 1949; Powers, 1975; Hudec, 1991;
Pigeon et al., 1996; Valenza and Scherer, 2007; Zeng et al., 2010;
Dabas et al., 2021; Guo et al., 2022).

According to Powers and Darcy’s law, the hydraulic pressure
theory explains the effects of low temperatures on concrete (Powers,
1949; Powers, 1975). When concrete is exposed to low temperatures,
the outer layer of the concrete freezes first. This freezing causes the

FIGURE 7
Schematic illustration of expansion mechanism of montmorillonite minerals: (A) Intergranular expansion, (B) Lattice expansion. Modified from
(Tuller and Or, 2003).

FIGURE 8
Conceptual model for gypsum precipitation. Source: (Tarragona, 2014).
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liquid water within the concrete to migrate through capillary pores
due to the volume differences between ice and liquid water.
Precisely, ice occupies a greater volume than liquid water,
creating a differential pressure that drives the migration (Valenza
and Scherer, 2007; Dabas et al., 2021; Guo et al., 2022). As the
temperature continues to drop, the volume of ice within the concrete
increases. This increase in ice volume compresses the remaining
liquid water, generating significant compressive stress in the pores of
the concrete. Simultaneously, ice expansion induces tensile stress in
the concrete matrix (Guo et al., 2022) (Figure 9A). If the tensile stress
exceeds the ultimate tensile strength of the concrete, microcracks
begin to generate (Zeng et al., 2010). These microcracks generated
can compromise the structural integrity of the concrete which can
lead to long-term durability issues. In spite of the knowledge
addressed by the hydraulic pressure theory, it does not fully
explain certain phenomena. For instance, it does not account for
the expansion observed in ordinary concrete during freezing or the
behavior of non-expansive liquids when they freeze (Rønning, 2001;
Yu et al., 2017).

Studies have discussed the osmotic pressure theory, which
involves specific salt ions in concrete (Powers, 1949; Powers et al.,
1953; Powers, 1975; Hudec, 1991; Valenza and Scherer, 2007).
According to this theory, the complex pore structure of concrete
results in varied migration rates of ions and water which leads to
the development of osmotic pressure and interior damage. When
unfrozen water transitions to ice, osmotic pressure is generated
because the vapor pressure of liquid water becomes higher than
that of ice (Figure 9B). This pressure is directly related to the
concentration of the solution; as the concentration increases, so
does the osmotic pressure. Conversely, the amount of ice
formation has an inverse relationship with osmotic pressure,
with the pressure value being highest at a specific concentration
of the solution (Washburn, 1921; Guo et al., 2022). Basically,
osmotic pressure theory emphasizes that the migration and
distribution of salt ions and water within the porous structure
of concrete can generate significant internal pressure during
freeze-thaw cycles. This can cause damage such as
microcracks, especially in areas where the solution
concentration is at maximum coupling values (Figure 9B).

To mitigate cracking in concrete due to freeze-thaw cycles, an
effective method will be to reduce hydrostatic pressure by decreasing
the spacing between pores. This may be accomplished through the
use of air-entraining agents, which introduce tiny air bubbles into
the concrete mix. These air bubbles create additional space in the
concrete that can accommodate the expanding ice, thereby reducing
the overall pressure and preventing damage. For instance, in regular
concrete, the pressure exerted by the freezing water causes the
concrete to expand in volume. Nevertheless, in air-entrained
concrete, the presence of micro-pores created by the air-
entraining agents allows the ice to form within these spaces,
leading to a contraction rather than expansion (Sun and
Scherer, 2010).

4.2 Impact of sulfate attack on cemented
structures

Concrete deterioration occurs due to sulfate ions reacting
with hydrated cement composites in pore solution, leading to
expansion and corrosion in geo-infrastructure (Figure 10), and
this reaction forms expansion phases like gypsum and ettringite,
as well as corrosion types such as calcium alumina, magnesium
sulfate complex, and carbon-sulfur calcium silica stone corrosion
(Al-Dulaijan et al., 2003; Mamun and Bindiganavile, 2011; Min
et al., 2019; Othman et al., 2020; Zhang et al., 2021; Tian et al.,
2023). Sulfate attack in concrete is affected by the availability of
sulfate ions, moisture content, temperature fluctuations, and
exposure duration.

Basically, sulfate attack in concrete involves physical and
chemical reactions (Chen et al., 2020). In the physical reaction,
sulfate ions penetrate concrete pores, causing crystallization-
induced expansion, leading to internal cracking, which can
generate tensile stress and lead to progressive loss of mechanical
strength (Tulliani et al., 2002; Oualit and Jauberthie, 2019; Brekailo
et al., 2023). The deterioration process originates from two main
sources: internal and external attacks. The internal attack results
from sulfate within the concrete itself, while external sources include
various environmental factors like soils, groundwater, transport

FIGURE 9
Hydrostatic pressure and osmotic pressure mode: (A) Hydrostatic pressure principle (Zeng et al., 2010), (B)Osmotic pressure model. Modified after
(Sun et al., 2019; Guo et al., 2022).
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fluids, river water, seawater, coastal areas, and acid rain (Neville,
2004; Zhao et al., 2020).

Water serves as a carrier that allows sulfate ions to infiltrate
the concrete matrix over time. This infiltration is further
heightened by wetting and drying cycles, which can occur
naturally or as a result of environmental conditions such as
temperature and water table fluctuations. At higher
temperatures, water travels at a faster rate along with sulfate
ions, which accelerates the chemical reaction between the sulfate
and the hydration products of the cement (Ikumi and Segura,
2019; Chen et al., 2020; Zhu et al., 2023). This acceleration causes
swellable compounds to form more quickly and increases the
rate of deterioration. This reaction results in the formation of
expansive compounds such as gypsum and ettringite (Ikumi and
Segura, 2019; Chen et al., 2020). These compounds exert
pressure within the concrete matrix, causing internal
cracking, expansion, and ultimately deterioration of the
concrete structure. However, areas with warmer climates may
experience a more rapid progression of sulfate attack than colder
environments where temperatures are lower and reactions
proceed more slowly.

During sulfate attack, particularly assuming sodium sulfate
(Na2SO4) as the sulfate source, the following chemical reactions
(Zuo et al., 2012; Ikumi and Segura, 2019).

Gypsum formation (CSH2): when sulfate intrudes into
concrete, it reacts with the concrete hydration products, such as
calcium hydroxide (CH) and calcium silicate hydrate (CSH) to
form (CSH2) (Zhu et al., 2023). The chemical reaction formula as
shown in Eq. 2 (Al-samawi and Zhu, 2020):

Na2SO4 + CH → CSH2 +Na2SiO4 (2)
Ettringite formation (C6AS3H2): when gypsum reacts with

calcium aluminate phases, such as Monosulfate (C4ASH12),
Tricalcium aluminate (C3A), Hydrogarnetto (C3AH6) etc. in
concrete components, the reaction will result in the formation of
ettringite (Zhu et al., 2023). The chemical reactions formula as
presented in Eq. 3 (Al-samawi et al., 2023):

3CSH2 + C3AH6 + 2OH → C2AS4H32 (3)

The reaction process of these compounds causes concrete
expansion, and microcrack formation, and facilitates the entry of
harmful ions, accelerating concrete damage.

5 Significance and implications of
natural expansive materials in
geotechnical engineering applications

5.1 Significance and implications of frost
heaving in geomaterials

Frost heaving, a critical geotechnical concern in cold regions,
causes structures built on geomaterials to uplift due to freezing
temperatures. It alters soil and rock properties by impacting load-
bearing capacity, weakening their strength integrity. This poses a
serious threat to both surface and underground geo-infrastructures
like tunnels, foundations, pipelines, roads, etc., and, however,
necessitates a profound understanding of accurate design and
mitigation for geotechnical considerations and engineering
practices. Table 3 provides a comprehensive summary of the
freeze-thaw cycle effects on expansion materials, highlighting
their factors and implications in geotechnical engineering.

Further, in cold weather, especially during negative
temperatures, the expansion of ice within fractures acts like a
stabilizing agent that binds the fractured rock mass together and
enhances its stability as well as any structure adjacent to or within it.
This phenomenon is often referred to as frost wedging. In the
context of underground openings such as tunnels or mines, the
presence of ice filling the fractures can provide additional support
and reinforcement to the surrounding rock mass. It helps maintain
the structural integrity of the openings and minimize the risk of
collapses or instability. In frost-susceptible soils, natural rubber latex
(NRL) can significantly improve durability against the adverse
effects of wetting and drying (w-d) cycles in cement-stabilized

FIGURE 10
Sulfate attack in cemented structures: (A) Macro cracking due to sodium sulfate attack leading to boundary movement [modified after (Yin et al.,
2022)], (B) Experimental analysis of sulfate attack [modified after (Liu et al., 2022)].
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soil, particularly when subjected to cyclic tensile loads (Udomchai
et al., 2021; Hoy et al., 2023). The NRL forms films that infiltrate and
fill the pores and microcracks within the soil-cement matrix. This
infiltration not only strengthens the bond between soil particles and
cement but also enhances the overall durability of the geo-
infrastructure. By preventing the propagation of microcracks and
reducing permeability, these NRL films provide a robust barrier
against freeze-thaw cycles (Udomchai et al., 2021; Hoy et al., 2023).
It is important to note that this stability enhancement is particularly
significant during cold seasons when freezing occurs. However,
during warmer seasons or when the ice melts, rock mass
maintenance and monitoring are crucial to ensure
continued stability.

5.2 Significance and implications of
expansive natural geomaterials

Natural expansive geomaterials with high shrink-swell potential
play a crucial role in geotechnical engineering. These materials
exhibit unique properties that can significantly affect
infrastructure stability and environmental concerns. Therefore,
this section discusses the significance and implications of clay
minerals and sulfate minerals in geotechnical engineering,
drawing upon relevant research and findings.

5.2.1 Implications of using clay minerals
Clays have complex structural properties, including their small-

sized expansive surface areas, which control the solid soil fraction’s
reactivity, act as water reservoirs in soils, and maintain plant-
friendly moisture levels in hot and dry environmental conditions
(Villiéras et al., 1997). Clay minerals are widely used in geotechnical
engineering as impermeable barriers and underground seals due to
their low hydraulic conductivity, which effectively retains fluids and
prevents the rapid convective transport of various leachates from
waste disposal sites (Villiéras et al., 1997; Met and Akgun, 2015).
However, swelling clays pose risks in geotechnical engineering
projects due to stability concerns (Villiéras et al., 1997).
Understanding the properties of clay minerals and their
relationship and interaction with water is critical to
characterizing clay material applications. One effective approach
to addressing these issues is the chemical grouting method, which
involves injecting materials such as lime, cement, and silica fume
into the soil. This method has been extensively studied and has been
shown to improve soil stability, reduce permeability, and enhance
load-bearing capacity, making the soil more suitable for supporting
structures (Zhao et al., 2014; Puppala and Pedarla, 2017; Al-
Gharbawi et al., 2022; Dharini et al., 2023).

Al-Gharbawi et al. (2022) investigated the swell and contraction
behavior of expansive soils, primarily composed of montmorillonite,
in response to water content changes. The study focused on using

TABLE 3 Summary of freeze-thaw effects of natural expansive material and their implications in geotechnical engineering.

Category Region/Context Factors/Conditions Implications References

Freeze-thaw effects Northern Hemisphere
(cold regions: America,
Canada, Russia, Nordic
regions)

Temperature variations, presence of
water, soil type

Frost heaving delays engineering
projects; damage to pipelines, subgrades,
foundations, tunnels

Brown et al. (1998), Prince et al.
(2018), Taivainen (1963), Oswell
(2011), Wu et al. (2018)

Permafrost Northern Hemisphere
(e.g., Canada, Russia,
Nordic regions)

Temperatures at or below 0°C for at
least 2 years

Ground remains frozen, impacting
infrastructure stability

Biskaborn et al. (2019),
Christiansen et al. (2010), Gruber
(2012)

Frost penetration China (Tibet, Xinjiang,
Qinghai)

Low temperatures (below 0°C),
extensive frozen soil distribution

Ice in fractured rock mass causes
instability during thawing.

Liu et al. (2017), Wang et al.
(2016b)

Frost depth
variation

Finland Regional temperature differences,
glacial soil types

Frost reaches different depths in
southern and northern regions, causing
boundary marker to shift from their
original position.

Taivainen (1963)

Soil deformation Various regions with
seasonal freezing

Temperature variation, soil moisture
content, clay content

Soil deformation due to freeze-thaw
cycles affecting the strength.

Lin et al. (2018), Niu et al. (2017),
Niu et al. (2020), Huixin et al.
(2012), Liu et al. (2017)

Frost Heave in rock
mass

Cold regions Freezing temperature, rock frost
susceptibility, water supply conditions

Increased frost-heaving pressure can
result in surface cracking and jointed
rock mass fracturing, which increases the
risk of rock falls and landslides.

De Gennes (1985), Huang et al.
(2020), Rempel et al. (2001), Wang
and Zhou (2018), Luo et al. (2015)

Hydraulic and
osmotic pressure
theories

Cemented structures Low temperatures, capillary pore water
migration, ice formation

Concrete deterioration due to freeze-
thaw cycles

Powers (1949), Powers (1975),
Dabas et al. (2021), Guo et al.
(2022), Hudec (1991)

Mitigation strategies Cemented structures Use of low water-to-cement ratio mixes
and air-entraining agents to introduce
tiny air bubbles, applying melamine-
formaldehyde coatings to concrete
reduces water absorption and protects
against freeze-thaw damage, using
high-quality aggregates that are durable
and resistant to frost action.

Reduction of hydrostatic pressure and
cracking in concrete

Sun and Scherer (2010), Yeon and
Kim (2018), Liu et al. (2024)
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5%, 7%, and 9% lime, cement, and silica fume to stabilize soils. The
results showed that stabilization reduced free swell and swelling
pressure by about 65% and 76%, respectively. Additionally, grouting
with silica fume improved the bearing capacity of footings by 64%–
82% for soils treated with 5% and 9% silica fume, respectively.
Dharini et al. (2023) investigated the treatment of expansive clay
soils using hydrated lime powder and sodium silicate. The study
identified 10% lime as the optimal content based on standard
proctor and unconfined compressive strength tests. Different
proportions of sodium silicate (2%, 4%, 6%, 8%, 10%) were
examined while maintaining the optimal lime content. The
results from California Bearing Ratio (CBR) tests indicated that
soil treated with lime exhibited a CBR value 5.2 times higher than
untreated soil, and soil treated with both lime and sodium silicate
showed a CBR value of 7.86 times higher than untreated soil. While
undisturbed clay barriers have historically shown higher
performance in containing chemical waste, identifying thick
natural barriers is not always feasible (Met and Akgun, 2015). As
a result, compacted clay liners have become essential in municipal
and hazardous waste landfill lining systems (Met and Akgun, 2015).

In addition to the use of clays as soil barriers, several clay
minerals have useful applications in geo-infrastructure. Bentonite is
particularly known for its low permeability, which makes it ideal for
certain geotechnical applications. For instance, it is used for its high
cation-exchange ability, allowing effective binding and retaining
ions making it useful for soil stabilization and geo-infrastructure
projects (Klik et al., 2022). When bentonite absorbs water, it
hydrates and swells, forming a stable gel structure that enhances

its adsorption capacity. The resulting swelling pressure creates a
dense structure that fills capillary pores and effectively seals
fractures, cracks, and void spaces, thus preventing the migration
of radioactive materials over long periods (Komine, 2004; Liu et al.,
2019; Klik et al., 2022). Bentonite enhances grout waterproofing and
strength, prevents bleeding, and forms a low-permeability hardened
material purposely for sealing groundwater inflow and reinforcing
fractured rock (Peila et al., 2011; Jinpeng et al., 2018; Benyounes,
2019; Zhou et al., 2020; Abdalqader et al., 2023). Aside from these
traditional applications, bentonite have been used as buffer materials
in high-level nuclear waste repositories to prevent radioactive waste
from leaching into groundwater, and potential escape into the
environment (Swedish Nuclear Fuel and Waste Management,
1992; Johnson et al., 1994; JNCDI, 1999; Ito, 2006; Sellin and
Leupin, 2013; Tripathy et al., 2015; Liu et al., 2019).

Ensuring consistent quality of bentonite clay is critical, but
challenging due to natural variations in its composition.
Variations in mineral content, particle size and moisture content
can affect its swelling characteristics and performance. This requires
strict quality control measures, including periodic testing and
characterization of bentonite batches, to ensure consistency and
reliability in engineering applications (Kiviranta and Kumpulainen,
2011; Svensson et al., 2017; Magnus et al., 2020). Under changing
environmental conditions, bentonite buffer can undergo physical
and chemical changes over an extended period that can affect its
performance as a sealant or barrier material, especially in geological
repositories. Factors such as chemical interactions with surrounding
materials, changes in temperature (high temperatures) and

TABLE 4 Summary of bentonite applications in geotechnical engineering.

Category Conditions Significance References

Bentonite clay
minerals

Small particle size, low hydraulic conductivity,
stability under certain temperatures, and
moisture interaction

Bentonites particularly serve critical roles in
geotechnical applications, primarily as impermeable
barriers and sealing materials. They control soil
reactivity, act as water reservoirs, and stabilize ground
conditions.

Villiéras et al. (1997), Met and Akgun
(2015), Klik et al. (2022)

Applications of
Bentonite

High cation exchange capacity and swelling
pressure, and long-term durability

Bentonite is used for its low permeability and high
cation exchange capacity in geo-infrastructure
projects such as soil stabilization, landfill liners, and
nuclear waste repositories.

Komine (2004), Klik et al. (2022), Liu et al.
(2019), Abdalqader et al. (2023), Svensson
et al. (2017)

Challenges and
Considerations

Quality control measures, environmental factors
(temperature, pH, salinity, microbial activity),
long-term durability

Ensuring consistent quality of bentonite is crucial for
reliable performance in engineering applications,
especially under changing environmental conditions
and long-term use in nuclear waste containment.

Magnus et al. (2020), Kolstad et al. (2004),
Mazzieri et al. (2017), Laine and Karttunen
(2010)

TABLE 5 Summary of natural expansive materials and expansion behavior in geo-infrastructure.

Category Conditions Implications References

Clay mineral expansion Moisture content, volume increase, swelling
pressure, mineral composition, and pore
morphology influence shrink-swell behavior.

Expansive clay minerals are heterogeneous and
cause damage like cracked foundations,
pavements, and floor heaving.

Jones and Jefferson (2012), Holtz et al.
(2011), Zhang et al. (2018), Shan et al. (2021)

Sulfate mineral
expansion

Formation of ettringite, gypsum precipitation
through evaporation or aqueous solutions, and
solubility dynamics influence expansion.

Sulfate minerals (e.g., gypsum, anhydrite) expand
due to ettringite formation, causing structural
heave in tunnels and bridges.

Blatt et al. (1980), Marchand et al. (2001),
Alonso (2012), Kaiser (1975), Barnhoorn
et al. (2005), Tarragona (2014)

Impact of Sulfate attack
in cemented structures

Sulfate ion availability, moisture content,
temperature fluctuations, and exposure
duration influence concrete degradation.

Sulfate attack on concrete causes expansion and
deterioration through reactions with hydration
products (e.g., gypsum, ettringite).

Al-Dulaijan et al. (2003), Oualit and
Jauberthie (2019), Ikumi and Segura (2019),
Zhu et al. (2023)
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humidity, specific pH and salinity conditions, and microbial activity
can reduce its performance. In nuclear and geotechnical
engineering, long-term durability is an important issue,
specifically for applications such as nuclear waste containment,
where materials need to maintain their integrity for thousands of
years (Kolstad et al., 2004; Laine and Karttunen, 2010; Mazzieri et al.,
2017). Table 4 summarizes the geotechnical applications of
bentonite, highlighting its high cation exchange capacity and low
permeability which make it effective for soil stabilization and geo-
infrastructure projects.

5.2.2 Implications of using sulfate minerals
Gypsum is extensively used in geotechnical engineering for

diverse purposes such as embankment and subgrade backfill
material, cement additive, building material, treatment agent for
expansive soils, and soft soil reinforcement (Shen et al., 2012;
Rashad, 2017; Jiang et al., 2018; Rosales et al., 2020; Pu et al.,
2021). Gypsum plays a crucial role in cement manufacturing by
preventing or slowing down the rapid setting of cement particles, a
phenomenon known as flash setting (Aakriti et al., 2023). Its
application as an additive material to stabilize expansive soils
(clay soils) has gained significant attention due to its widespread
availability, cost-effectiveness, minimal carbon emissions, and its
ability to improve water resistance (Toksöz Hozatlıoğlu Yılmaz,
2021; Ma et al., 2022).

Relatively, recycled gypsum’s positive impact on soil
stabilization is evident through its influence on various
engineering and environmental factors, including compaction
characteristics, consistency, strength, deformation, compression,
shear, expansion properties, and long-term durability in the past
decades (Pu et al., 2021). However, the number of comprehensive
studies exploring the efficiency of gypsum in soil stabilization
remains relatively limited, with notable contributions from
researchers (Yilmaz and Civelekoglu, 2009; Kiliç et al., 2015).
In contrast, combining gypsum with other materials offers a wide
range of applications in the construction industry. For instance,
fly ash-lime-gypsum bricks are used as a substitute for traditional
clay bricks in construction, and their application contributes to
soil conservation, pollution reduction, and an increase in the
consumption of fly ash and gypsum (Jayasudha and
Niranjan, 2014).

Table 5 provides a summary of various natural expansive
materials, highlighting how their expansion behavior can affect
geo-infrastructure. The analysis indicates that clay mineral
expansion, influenced by factors such as moisture content and
volume increase, leads to shrink-swell behavior and can cause
significant damage to foundations. Sulfate mineral expansion
results in structural heave in tunnels and bridges. Additionally,
sulfate attack in cemented structures causes concrete expansion and
deterioration through reactions with hydration products like
gypsum and ettringite.

6 Conclusion

This paper reviews the intrinsic and extrinsic contributing
factors and significance of natural expansive materials and their
impact on geo-infrastructures. Additionally, this work

emphasizes the critical role these materials play in engineering
practices, with a particular focus on their involvement in
geotechnical-related hazards, such as freeze-thaw cycles,
damage, and sulfate attack in underground cemented
structures, as well as their applications in geotechnical
engineering. The following deductions were made:

i. Frost heaving is prevalent in the Northern Hemisphere, Arctic
regions, temperate zones, and high-altitude areas. In these
geographical locations, when a significant amount of water
within the geomaterials and concrete structures freezes, they
can expand by approximately 10% of their original volume.
This expansion can enlarge fractures and void spaces in
geomaterials and concrete structures during the thawing
process, which can contribute to structural instability in
these regions.

ii. The freeze-thaw cycle is influenced by variations in
temperature and pressure. In rock mechanics, prolonged
exposure of rocks to low temperatures (≤0°C) and high
temperatures (>0°C) can lead to significant changes in the
deformation and strength characteristics of fractured rock
masses. Additionally, when pressure decreases, soil tends to
expand, while increasing pressure causes soil to shrink.
Therefore, it is recognized that freeze-thaw cycles make it
difficult to control settlement in geo-infrastructure and rock
heave in underground space engineering.

iii. Expansive clay minerals (notably montmorillonite) are
widespread in both humid and arid regions which pose
significant geotechnical hazards, surpassing damages caused
by natural disasters. The expansion mechanism of clay
minerals, driven by hydration energy and water absorption
into interlayer spaces and crystal lattices is complex which
makes it difficult to control water movement in underground
excavation and foundation engineering.

iv. Bentonite is being explored as a buffer material in high-level
nuclear waste repositories for storage due to its unique
swelling and sealing properties to provide a safer
containment and isolation of radioactive wastes over
extended periods in deep underground environments. Also,
bentonite provides a reliable substitute for cementitious
materials in geo-infrastructure and can enhance grouted
rock stability, waterproofing, and rock strength, in addition
to contributing to soil stabilization.

v. Sulfate minerals, particularly gypsum, interact with water,
resulting in a theoretical 62% volume increase while
transforming into ice crystals. This transformation
process can fill rock discontinuities. Moreover, the
formation of these ice crystals exerts pressure on the
surrounding rock, causing heaving and potentially
leading to geo-infrastructural damage.

vi. Sulfate attack in concrete structures and geo-infrastructure
involves a chemical reaction between sulfate ions and
hydrated compounds, leading to expansion, corrosion, and
the formation of gypsum and ettringite phases. The expansion
of sulfate minerals is influenced by evaporation-based
precipitation and anhydrite-aqueous solution mechanisms,
making it crucial to assess risks and implement mitigation
strategies for geological and engineered structures.
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7 Future research directions

This review highlights several key areas for future research,
particularly in understanding the frost-heaving behavior in rocks,
clay minerals, sulfate minerals, and concrete structures, as well as the
shrink-swell behavior and expansive mechanisms in geomaterials
within geotechnical engineering. Extensive studies have explored
frost-heaving mechanisms, considering factors such as ice lens
growth, stress-strain behavior, temperature, pressure, and load
conditions. Critical elements in this complex process include
moisture content, temperature variations, and cyclic freezing-
thawing patterns. However, to achieve effective engineering
design practices, key research gaps related to expansive materials
should be prioritized in future studies:

i. Frost heaving in tunneling and rock engineering is a
significant concern due to its impact on rock mechanical
integrity, driven by pressure changes during freezing and
thawing. However, the mechanisms of frost heaving in
deep underground rock openings remain poorly
understood and warrant further investigation.

ii. There is a knowledge gap regarding how the expansion,
shrinkage, and chemical reactions of sulfate minerals in
geomaterials and cemented infrastructures can induce
significant reinforcements under varied loading and
environmental conditions. The influence of expansive
natural materials on geo-infrastructures can be profound,
often resulting in foundation cracks, structural tilting, and
compromised integrity. Repairing damage caused by
expansive natural materials can be costly and time-
consuming, necessitating proper site assessment and
engineering solutions.

iii. Expansive soils also impact the environment, causing soil erosion,
sedimentation in water bodies, and altered groundwater flow
patterns. To mitigate these effects, geotechnical engineers should
implement strategies such as moisture control, proper drainage,
moisture barriers, and foundation designs that accommodate soil
movement by using experimental, numerical modeling, and field
investigations.

iv. Ongoing research using emerging technologies to better
understand natural expansive materials and their
interactions with water, which cause shrink/swell behavior
should be investigated through advanced soil and rock testing

methods, predictive models, numerical modeling, and
microstructural characterization. These approaches will
enable geotechnical engineers to predict material behavior,
identify internal mechanisms, and develop strategies to
minimize the impact on geo-infrastructure, resulting in
safer and more resilient construction.

v. Strict measures must be tailored to ensure that building codes
and regulations, which include comprehensive guidelines for
construction in regions susceptible to expansive soils and
freeze-thaw cycles, are strictly adhered to. These measures
are crucial for safeguarding the safety and structural stability
of buildings and infrastructure.
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Nomenclature

CaSO4*2H2O Gypsum

CaSO4 Anhydrite

Na2SO4 sodium sulfate

Na2SiO3 sodium metasilicate

CSH2 gypsum formation

CH calcium hydroxide

CSH calcium silicate hydrate

C6AS3H2 ettringite formation

C3A tricalcium aluminate

C4ASH12 monosulfate

C3AH6 hydrogarnetto

η the frost heaving ratio

ΔV volume increment of the frost heave

V volume of the original rock
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