Skip to main content

REVIEW article

Front. Built Environ.
Sec. Geotechnical Engineering
Volume 10 - 2024 | doi: 10.3389/fbuil.2024.1396542

Reassessment of Natural Expansive Materials and Their Impact on Freeze-Thaw Cycles in Geotechnical Engineering: A Review

Provisionally accepted
  • New Jersey Institute of Technology, Newark, New Jersey, United States

The final, formatted version of the article will be published soon.

    The stabilization and application of expansive geomaterials are critical in geotechnical engineering. These naturally expansive materials exhibit complex hydro-chemo-mechanical properties because they undergo volumetric changes in response to variations in moisture content and/or temperature. The characteristic shrink-swell behavior of these materials makes their use problematic and plays a substantial role in influencing the stability of geo-infrastructure applications. However, there is a lack of comprehensive knowledge of the mechanisms and factors impacting their behavior to ensure mechanical integrity in natural and built infrastructure and geo-engineering projects. This work provides a comprehensive review of the intrinsic and extrinsic factors contributing to the shrink-swell behavior and expansion mechanisms of frost-heaving and natural-expansive geomaterials, such as expansive clays and sulfate minerals. We reviewed and synthesized peer-reviewed published works in various databases and academic repositories in the last 100 years. The influence of shrink-swell behavior of these geomaterials and the critical role they play in engineering infrastructure were highlighted, explicitly focusing on their involvement in geotechnical-related hazards, such as the freeze-thaw cycle, and the damage and sulfate-attack of geo-infrastructure. We analyzed the interactions between clay minerals, especially how bentonite enhances grout stability and acts as a buffer material in high-level nuclear waste repositories. The findings indicate that water interaction with geomaterials and concrete can cause about a 10% volume expansion when frozen. Also, the exposure of fractured rocks to low (≤ 0°C) and high (> 0°C) temperatures can greatly change rock deformation and strength. Finally, gypsum interacting with water can theoretically increase in volume by 62% to form ice crystals. This forward-leading review presents the advantages, disadvantages, and unresolved issues of expansive natural geotechnical materials that improve the resiliency and sustainability of geological infrastructure.

    Keywords: Geomaterials, Expansive clay, Frost-Heaving, sulfate minerals, soil improvement, Geotechnical engineering

    Received: 05 Mar 2024; Accepted: 04 Jul 2024.

    Copyright: © 2024 Oppong and Kolawole. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Oladoyin Kolawole, New Jersey Institute of Technology, Newark, 07102, New Jersey, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.