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Themechanical characteristics of concrete are crucial factors in structural design
standards especially in concrete technology. Employing reliable prediction
models for concrete’s mechanical properties can reduce the number of
necessary laboratory trials, checks and experiments to obtain valuable
representative design data, thus saving both time and resources. Metakaolin
(MK) is commonly utilized as a supplementary replacement for Portland cement
in sustainable concrete production due to its technical and environmental
benefits towards net-zero goals of the United Nations Sustainable
Development Goals (UNSDGs). In this research work, 204 data entries from
concrete mixes produced with the addition of metakaolin (MK) were collected
and analyzed using eight (8) ensemble machine learning tools and one (1)
symbolic regression technique. The application of multiple machine learning
protocols such as the ensemble group and the symbolic regression techniques
have not been presented in any previous research work on the modeling of
splitting tensile strength of MK mixed concrete. The data was partitioned and
applied according to standard conditions. Lastly, some selected performance
evaluation indices were used to test the models’ accuracy in predicting the
splitting strength (Fsp) of the studied MK-mixed concrete. At the end, results
show that the k-nearest neighbor (KNN) outperformed the other techniques in
the ensemble group with the following indices; SSE of 4% and 1%, MAE of 0.1 and
0.2 MPa, MSE of 0, RMSE of 0.1 and 0.2 MPa, Error of 0.04% and 0.04%, Accuracy
of 0.96 and 0.96 and R2 of 0.98 and 0.98 for the training and validation models,
respectively. This is followed closely by the support vector machine (SVM) with
the following indices; SSE of 7% and 3%, MAE of 0.2 and 0.2 MPa, MSE of 0.0 and
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0.1 MPa, RMSE of 0.2 and 0.3 MPa, Error of 0.05% and 0.06%, Accuracy of 0.95 and
0.94, and R2 of 0.96 and 0.95, for the training and validation models, respectively.
The third model in the superiority rank is the CN2 with the following performance
indices; SSE of 15% and 4%, MAE of 0.2 and 0.2 MPa, MSE of 0.1 and 0.1 MPa, RMSE
of 0.3 and 0.3 MPa, Error of 0.08% and 0.07%, Accuracy of 0.92 and 0.93 and R2 of
0.92 and 0.93, for the training and validation models, respectively. These models
outperformed the models utilized on the MK-mixed concrete found in the
literature, therefore are the better decisive modes for the prediction of the
splitting strength (Fsp) of the studied MK-mixed concrete with 204 mix data
entries. Conversely, the NB and SGD produced unacceptable model
performances, however, this is true for the modeled database collected for the
MK-mixed Fsp. The RSM model also produced superior performance with an
accuracy of over 95% and adequate precision of more than 27. Overall, the
KNN, SVM, CN2 and RSM have shown to possess the potential to predict the
MK-mixed Fsp for structural concrete designs and production.

KEYWORDS

metakaolin concrete, splitting strength, ensemble machine learning, symbolic regression,
sustainable structures

1 Introduction

The splitting tensile strength of concrete, also known as the
splitting strength, is a measure of the tensile strength of concrete
perpendicular to the direction of the applied load (Shah et al.,
2022a). It is an important mechanical property of concrete,
particularly in applications where the concrete is subjected to
tensile stresses, such as in reinforced concrete beams or slabs
(Ray et al., 2023). To determine the splitting tensile strength of
concrete, a cylindrical or prismatic specimen is typically tested (Shah
et al., 2022b). The specimen is subjected to a compressive load along
its longitudinal axis while diametral tensile stresses are induced
perpendicular to the applied load (Ray et al., 2021). This test is
commonly referred to as the “Brazilian test” or “indirect tensile test.”
During the test, the concrete specimen undergoes tensile failure
along a plane perpendicular to the applied load, resulting in a tensile
crack that propagates across the diameter of the specimen (Kannan
and Ganesan, 2014). The splitting tensile strength is calculated by
dividing the maximum tensile load applied to the specimen by the
cross-sectional area perpendicular to the applied load (Guneyisi
et al., 2008).The splitting tensile strength of concrete is influenced by
various factors, including the composition of the concrete mix (such
as the type and proportion of aggregates, cementitious materials,
and admixtures), the curing conditions, the age of the concrete at
testing, and the size and shape of the specimen (Khan and Haq,
2020). Generally, the splitting tensile strength of concrete is lower
than its compressive strength, but it still provides valuable
information about the concrete’s behavior under tensile loading
conditions (Dinakar et al., 2013). Engineers use the splitting tensile
strength of concrete in structural design to assess the cracking
potential and durability of concrete elements subjected to tensile
stresses (Ray et al., 2023). It is also used in quality control and quality
assurance procedures to ensure that concrete mixes meet the
required strength specifications for specific applications (Kannan
and Ganesan, 2014).

The addition of metakaolin to concrete can have a significant
impact on its splitting tensile strength. Metakaolin, as a pozzolanic

mineral admixture, reacts with calcium hydroxide (lime) in the
presence of water to form additional calcium silicate hydrate
(C-S-H) gel (Guneyisi et al., 2008). This reaction contributes to
the densification of the concrete matrix and improves its mechanical
properties, including splitting tensile strength (Al-alaily and Hassan,
2016). Here are some key impacts of metakaolin on the splitting
strength of concrete: Enhanced Microstructure: Metakaolin
contributes to the refinement of the pore structure in concrete,
leading to a denser and more homogeneous microstructure
(Onyelowe K. C. et al., 2022). This improvement in
microstructure enhances the interfacial bond between the
cementitious matrix and aggregates, resulting in increased
resistance to tensile stresses and improved splitting tensile
strength (Onyelowe et al., 2022b). The pozzolanic reaction
between metakaolin and lime leads to the formation of additional
C-S-H gel, which contributes to increased strength and cohesion
within the concrete matrix (Onyelowe KC. et al., 2022). As a result,
concrete containing metakaolin typically exhibits higher splitting
tensile strength compared to plain concrete without metakaolin
(Onyelowe et al., 2022d). The incorporation of metakaolin into
concrete can lead to a reduction in pore size and porosity. This
reduction in porosity improves the concrete’s resistance to tensile
cracking and enhances its splitting tensile strength (Shah et al.,
2022a; Onyelowe et al., 2022e). Metakaolin can improve the
durability of concrete by reducing permeability and increasing
resistance to chemical attack and freeze-thaw cycles (Onyelowe
et al., 2023a). These improvements in durability can contribute to
the long-term performance and strength retention of concrete
elements subjected to tensile stresses (Onyelowe et al., 2023c).
Overall, the addition of metakaolin to concrete can result in
concrete with enhanced splitting tensile strength, improved
microstructure, and increased durability (Onyelowe and Ebid,
2023). However, the extent of improvement in splitting tensile
strength may vary depending on factors such as the dosage of
metakaolin, the quality of other concrete ingredients, curing
conditions, and the specific characteristics of the aggregate and
cementitious materials used (Dinakar et al., 2013). Optimal dosage
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levels and mix proportions should be carefully evaluated through
laboratory testing and trial mixes to achieve the desired
enhancement in splitting tensile strength while maintaining other
performance criteria. The present research flowchart is presented in
Figure 1, which illustrates the main focus of this present
research project.

2 Literature reviews

Shah et al. (2022a) used the M5P model tree algorithm to
forecast the compressive strength (CS) and splitting tensile
strength (STS) of concrete that includes silica fume (SF).
Extensive databases were generated, and the models were
evaluated using statistical metrics and parametric analysis. The
trained models provide a fast and precise tool for designers to
efficiently determine the appropriate proportions of silica fume
concrete, resulting in time and cost savings compared to
conducting laboratory trials and tests. Ray et al. (2023) forecasted
the compressive and splitting tensile strength of concrete produced
with waste Coarse Ceramic aggregate (CCA) and Nylon Fibre by
employing machine learning techniques, specifically Support Vector
Machine (SVM) and Gradient Boosting Machine (GBM). The
models were trained using a comprehensive dataset consisting of
162 test results obtained from nine different mix proportions. The
findings indicated that GBM had superior performance compared to
SVM in terms of coefficient of determination and statistical
accuracy, particularly in predicting the mechanical strength of
concrete. Shah et al. (2022b) developed models that accurately
predict the mechanical properties of concrete containing
metakaolin (MK) using four different machine learning
techniques: gene expression programming (GEP), artificial neural
network (ANN), M5P model tree method, and random forest (RF).
The study collected data from peer-reviewed documents and

determined that RF exhibits superior predictive and
generalization capabilities compared to GEP, ANN, and M5P
model tree method. The study additionally discovered that the
optimal ratios of MK as a partial substitute for cement are 10%
for FS and 15% for both. Also, Ray et al. (2021) examined the
utilization of ceramic waste as a substitute for natural aggregate in
concrete. It assessed engineering characteristics such as bulk density,
water absorption, and workability. An SVM-based prediction model
is presented for forecasting compressive and splitting tensile
strength. The model demonstrated a high accuracy level over
90%, as determined by the coefficient of determination (R2). It
effectively predicted the strength of concrete with varying quantities
of ceramic material. Kannan and Ganesan (2014) assessed the
mechanical characteristics of self-compacting concrete (SCC)
using combinations of metakaolin and fly ash (FA) in binary and
ternary cementitious mixes. The investigation revealed that
augmenting the proportion of MK, FA, and MK+FA had a
substantial positive impact on the mechanical characteristics of
SCC. The ternary mixture of cement with 15% metakaolin and
15% fly exhibited superior workability and mechanical qualities
compared to the standard self-consolidating concrete (SCC) sample
without MK or FA. Güneyisi et al. (2008) investigated the utilization
of metakaolin (MK) as an additional cementitious ingredient to
improve the performance of concrete. The process employs two
alternative MK substitution rates: 10% and 20% based on the weight
of Portland cement. The findings indicated that MK diminishes
drying shrinkage strain while enhancing concrete strengths. The
extent of these effects is contingent upon the replacement level,
water-to-cement ratio, and testing age. At a 20% replacement rate,
Ultrafine MK improves the pore structure of concrete and
increases its impermeability. Another, Khan et al. (2020)
investigated the extended-term robustness and resilience of
concrete blends incorporating rice husk ash (RHA), metakaolin,
and silica fume (SF) as alternatives to cement content. Workability,
compressive strength, splitting tensile strength, and water
absorption were evaluated for seven different types of mixtures.
The findings indicated that the use of supplementary cementitious
materials (SCMs) leads to a reduction in the strength of the matrix
during the initial 28 days of curing. However, they thereafter
contribute to the restoration of strength. A multivariable non-
linear regression model was suggested to estimate the compression
strength, tension strengths, and water absorption capacity.
Dinakar et al. (2013) investigated the influence of metakaolin
(MK) on the mechanical and durability characteristics of high
strength concrete. This study determined that a substitution level
of 10% of MK yielded the highest compressive strength, reaching a
maximum value of 106 MPa. The strong resistance exhibited by
MK concretes suggested that local MK has the capability to
produce concretes with superior performance. Al-alaily et al.
(2016) enhanced the strength and reduce the chloride
permeability of concrete by using metakaolin (MK). The study
conducted an experiment on 53 different concrete mixtures using
the improved response surface method. The experiment took into
account several aspects such as the total amount of binder, the
percentage of MK (a specific type of binder), and the ratio of water
to binder. The findings demonstrated the utility of the proposed
models and design charts in comprehending crucial variables and
forecasting the most advantageous mixture proportions for certain

FIGURE 1
Flowchart of research.
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applications. It is important to note that this present work has
reported the application of multiple machine learning techniques
comprising of the ensemble and symbolic regression groups, which
present nine different techniques. It is significant that future
research project focusing on recent developments in machine
learning application in civil engineering will refer to this article.
It also gives MK mixed concrete designer opportunities to select
the best models out of nine to forecast the concrete optimal
splitting tensile strength.

3 Methodology

3.1 Data collection, sorting and preliminary
statistics

After an extensive literature search, a globally representative database
of two hundred and four (204) records were collected from literature
(Shah et al., 2022a; 2022b) for splitting strength for differentmixing ratios
of meta-kaolin with concrete at different ages. The previous studies had
applied the ANN, M5P, and the RF to predict the mechanical properties
of the studied concrete but the present research paper reports the
application of multiple machine learning techniques. Each record
contains the following data: C-the content of cement (kg/m3), MK-the
content of meta-kaolin (kg/m3),W-the content of water (kg/m3) or (litre/
m3), FAg-the content of fine aggregates (kg/m3), CAg-the content of
coarse aggregates (kg/m3), P-the content of super-plasticizer (kg/m3),
Age-the concrete age at testing (days), and Fsp-Splitting tensile strength
(MPa). The collected records were divided into training set
(164 records≈80%) and validation set (40 records≈ 20%). Table 1
summarizes their statistical characteristics. Finally, Figure 2 shows the
Pearson correlation matrix, histograms, and the relations
between variables.

3.2 Sensitivity analysis

A preliminary sensitivity analysis was carried out on the
collected database to estimate the impact of each input on the
(Y) values. “Single variable per time” technique is used to determine
the “Sensitivity Index” (SI) for each input using the Hoffman and
Gardener (1983) and Handy (1994) formula in Eq. 1 as follows:

SI Xn( ) � Y Xmax( ) − Y Xmin( )
Y Xmax( ) (1)

A sensitivity index of 1.0 indicates complete sensitivity, a
sensitivity index less than 0.01 indicates that the model is
insensitive to changes in the parameter. Figure 3 shows the
sensitivity analysis with respect to Fsp.

TABLE 1 Statistical analysis of collected database.

C MK W FAg CAg P Age Fsp

kg/
m3

kg/
m3

L/
m3

kg/
m3

kg/
m3

kg/
m3

day MPa

Training set

Max. 570.0 256.0 336.2 989.0 1265.0 12.4 120.0 5.9

Min 266.0 0.0 137.5 272.5 175.1 0.0 1.0 1.2

Avg 395.7 45.7 189.0 752.2 854.3 4.3 35.4 3.6

SD 65.8 37.4 35.6 184.2 280.9 3.4 32.7 1.0

Var 0.2 0.8 0.2 0.2 0.3 0.8 0.9 0.3

Validation set

Max. 541.5 204.8 336.2 987.0 1265.0 12.4 120.0 5.7

Min 280.0 0.0 153.6 272.5 177.0 0.0 1.0 1.2

Avg 419.9 36.2 186.2 775.0 909.0 4.0 31.7 3.6

SD 61.2 43.6 30.5 164.6 190.0 3.0 27.0 1.1

Var 0.1 1.2 0.2 0.2 0.2 0.8 0.8 0.3
FIGURE 2
Correlation, distribution and interpreting chart.

FIGURE 3
Sensitivity analysis with respect to Fsp.
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3.3 Research program

Eight different ensemble ML classification techniques and one
symbolic regression technique were used to predict the splitting
tensile strength of concrete mixed with meta-kaolin using the
collected database. These techniques are “Gradient Boosting
(GB),” “CN2 Rule Induction (CN2),” “Naive Bayes (NB),”
“Support vector machine (SVM),” “Stochastic Gradient Descent
(SGD),” “K-Nearest Neighbors (KNN),” “Tree Decision (Tree)”
and “Random Forest (RF)” and the “Response Surface
Methodology (RSM).” The developed models were used to
predict (Fsp) using the concrete mixture component contents
(C, MK, W, FAg, CAg, P) and the concrete age (Age). All the
developed ensemble models were created using “Orange Data
Mining” software version 3.36. The considered data flow diagram
is Supplementary Material.

3.4 Theory of the ML techniques

3.4.1 Gradient boosting (GB)
Gradient Boosting is a powerful ensemble learning technique

used for both regression and classification tasks (Ebid, 2020). The
theoretical framework is provided in Supplementary Material.
Here are some advantages of Gradient Boosting over other
machine learning techniques: High Predictive Accuracy:
Gradient Boosting typically achieves high predictive accuracy
compared to other machine learning algorithms. By combining
the predictions of multiple weak learners (typically decision trees),
it can capture complex relationships in the data and achieve strong
generalization performance (Onyelowe et al., 2023b). Handles
Non-linearity and Interactions: Gradient Boosting can capture
non-linear relationships and interactions between features in
the data. It does so by sequentially fitting new models to the
residuals of the previous models, effectively reducing the bias and
variance of the ensemble (Ebid, 2020). Robustness to Overfitting:
Gradient Boosting is less prone to overfitting than individual
decision trees, especially when using techniques such as
regularization (e.g., shrinkage) and early stopping. These
techniques help prevent the model from memorizing noise in
the training data and improve its ability to generalize to unseen
data (Onyelowe et al., 2023b). Gradient Boosting provides an
estimate of feature importance, indicating which features are
most influential in making predictions. This information can
help identify the most relevant features for prediction and
provide insights into the underlying data patterns (Ebid, 2020).
Gradient Boosting can handle missing values in the data without
the need for imputation techniques. It can learn to make
predictions using the available information in the dataset, even
when certain features have missing values (Onyelowe et al., 2023b).
Gradient Boosting can be applied to a wide range of machine
learning tasks, including regression, classification, and ranking. It
supports various loss functions and can be customized by adjusting
hyperparameters such as the learning rate, tree depth, and number
of trees. Gradient Boosting algorithms can be parallelized, allowing
for efficient distributed computing across multiple processors or
computing nodes. This makes it suitable for training large-scale
models on clusters or cloud computing platforms. Overall,

Gradient Boosting is a versatile and effective algorithm that
performs well in a variety of machine learning tasks. Its ability
to handle complex data patterns, robustness to overfitting, and
interpretability make it a popular choice among data scientists and
machine learning practitioners. Hyperparameter tuning is crucial
for optimizing the performance of Gradient Boosting models. Here
are some key hyperparameters to consider tuning for Gradient
Boosting: Number of Trees (n_estimators): This parameter
controls the number of boosting stages (trees) to be built.
Increasing the number of trees may improve model
performance, but it also increases the risk of overfitting and
training time. Learning Rate (learning_rate): The learning rate
controls the contribution of each tree to the final ensemble. Lower
learning rates require more trees to achieve similar performance
but can improve generalization. It is essential to tune this
parameter along with the number of trees to find the right
balance between model complexity and generalization. Tree
Depth (max_depth): This parameter specifies the maximum
depth of each tree in the ensemble. Deeper trees can capture
more complex relationships in the data but may also lead to
overfitting. It is crucial to tune this parameter to prevent
overfitting and improve model generalization. Minimum
Samples Split (min_samples_split): This parameter specifies the
minimum number of samples required to split an internal node.
Increasing this parameter can help prevent overfitting by imposing
a constraint on the tree’s growth. Minimum Samples Leaf (min_
samples_leaf): This parameter specifies the minimum number of
samples required to be at a leaf node. Increasing this parameter can
help prevent overfitting and improve the robustness of the model
to noise in the data. Maximum Features (max_features): This
parameter controls the number of features to consider when
searching for the best split at each node. It can help reduce
overfitting and improve model generalization by limiting the
number of features considered. Subsample Ratio (subsample):
This parameter specifies the fraction of samples to be used for
fitting each tree. It can help reduce overfitting and improve model
generalization by introducing randomness into the training
process. Loss Function: Gradient Boosting supports various loss
functions, such as least squares regression, logistic regression, and
exponential loss. Choosing the appropriate loss function depends
on the specific task and the characteristics of the data. Early
Stopping: Early stopping allows training to stop when
performance on a validation set no longer improves. It can help
prevent overfitting and reduce training time by stopping training
when further iterations are unlikely to improve performance.
Cross-Validation Strategy: Choosing the right cross-validation
strategy, such as k-fold cross-validation or stratified cross-
validation, is essential for reliable hyperparameter tuning
results. It is crucial to use an appropriate cross-validation
strategy to avoid overfitting to the validation set. It is important
to note that the impact of each hyperparameter may vary
depending on the specific dataset and task. Therefore, it is
essential to experiment with different combinations of
hyperparameters and evaluate the model’s performance using
cross-validation to find the optimal configuration for your
Gradient Boosting model. Additionally, techniques like random
search or Bayesian optimization can be used to efficiently search
the hyperparameter space and find the best-performing model.
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3.4.2 CN2 rule induction (CN2)
CN2 Rule Induction is a machine learning algorithm used for

rule-based classification (Ebid, 2020). The theoretical framework is
provided in Supplementary Material. It is an extension of the basic
CN1 algorithm designed to handle noise and continuous-valued
attributes. Here are some advantages of CN2 Rule Induction over
other machine learning techniques: CN2 produces human-readable
rules that describe the decision-making process of the model in a
straightforward manner. This interpretability is valuable in domains
where understanding the reasoning behind predictions is important,
such as healthcare and finance (Onyelowe et al., 2023b). Handling
Continuous and Categorical Features: CN2 can handle both
continuous and categorical features, making it suitable for
datasets with mixed data types. It discretizes continuous features
into intervals and generates rules based on these intervals.
Scalability: CN2 is relatively scalable and can handle datasets
with a large number of instances and features. It is particularly
efficient for datasets where the number of features is small compared
to the number of instances. Robustness to Noise: CN2 is robust to
noisy data and outliers. It uses statistical measures such as
information gain to evaluate the quality of rules and prune
irrelevant attributes, which helps mitigate the impact of noise on
the model’s performance. Incremental Learning: CN2 supports
incremental learning, allowing the model to adapt to new data
without retraining the entire model from scratch (Ebid, 2020). This
is useful in applications where data arrives sequentially over time,
such as online recommendation systems. Feature Selection:
CN2 automatically performs feature selection by generating rules
based on the most informative attributes. This helps reduce the
dimensionality of the data and improve the generalization
performance of the model. Flexible Rule Generation:
CN2 generates rules using a beam search strategy, which explores
different rule hypotheses and selects the most promising ones based
on predefined criteria. This flexibility allows CN2 to discover
complex patterns in the data and create concise and accurate rule
sets. Overall, CN2 Rule Induction is a powerful and versatile
algorithm that offers several advantages, including
interpretability, scalability, robustness to noise, and support for
mixed data types. It is well-suited for rule-based classification
tasks where transparency and comprehensibility are important
considerations (Ebid, 2020). Hyperparameter tuning in CN2 Rule
Induction can help optimize the performance of the model and the
quality of the generated rules. While CN2 Rule Induction does not
have as many hyperparameters as some other machine learning
techniques, there are still some parameters that can be tuned to
improve performance. Here are some key considerations for
hyperparameter tuning in CN2 Rule Induction: Beam Width: The
beam width parameter controls the number of rule hypotheses
considered at each step of the search process. A larger beam
width allows for more diverse rule hypotheses but can increase
computational complexity. Tuning this parameter can help balance
the trade-off between exploration and exploitation in the rule search
space. Minimum Cover Threshold: The minimum cover threshold
specifies the minimum number of instances that a rule must cover to
be considered for expansion. Lower values may lead to more specific
rules, while higher values may result in more general rules. Tuning
this parameter can affect the granularity and interpretability of the
generated rules. Minimum Significance Threshold: The minimum

significance threshold determines the minimum improvement in
predictive accuracy required for a rule to be considered significant.
Lower values may result in more rules being generated, while higher
values may lead to fewer but more accurate rules. Tuning this
parameter can help control the trade-off between rule quality and
rule quantity. Rule Post-Pruning: CN2 Rule Induction typically
generates a large number of candidate rules, which may include
redundant or irrelevant rules. Rule post-pruning techniques, such as
rule covering and rule trimming, can help improve the quality and
interpretability of the final rule set. Experimenting with different
post-pruning strategies can help optimize the performance of the
model. Class Imbalance Handling: If the dataset is imbalanced,
where one class is significantly more prevalent than others,
tuning parameters related to handling class imbalance may be
necessary. For example, adjusting the minimum cover threshold
or incorporating class weights into the rule induction process can
help address class imbalance issues and improve model
performance. Cross-Validation Strategy: Choosing an appropriate
cross-validation strategy is crucial for reliable hyperparameter
tuning results. Techniques such as k-fold cross-validation or
stratified cross-validation can help ensure that the model’s
performance is evaluated effectively across different subsets of the
data. While CN2 Rule Induction may not have as many
hyperparameters as some other machine learning techniques,
careful tuning of these parameters can still significantly impact
the performance and interpretability of the generated rule set.
Experimentation and iterative refinement of hyperparameters are
essential to find the optimal configuration for your specific
dataset and task.

3.4.3 Naive Bayes (NB)
Naive Bayes is a simple and effective machine learning algorithm

commonly used for classification tasks (Onyelowe et al., 2023b). The
theoretical framework is provided in Supplementary Material. Here
are some advantages of Naive Bayes over other machine learning
techniques: Efficiency: Naive Bayes is computationally efficient and
scales well to large datasets (Ebid, 2020). It requires minimal training
time and memory, making it suitable for real-time and streaming
applications. Naive Bayes is conceptually simple and easy to
implement. It relies on the assumption of conditional
independence between features given the class label, which
simplifies the model and reduces the risk of overfitting. Naive
Bayes is robust to irrelevant features in the data. Since it assumes
independence between features, irrelevant features are effectively
ignored during the classification process, leading to a more efficient
model (Onyelowe et al., 2023b). Naive Bayes can handle both
numerical and categorical data without the need for feature
scaling or encoding. This makes it versatile and applicable to a
wide range of datasets with different data types. Naive Bayes can
handle high-dimensional data with many features. It performs well
even when the number of features exceeds the number of samples,
making it suitable for text classification and document analysis tasks.
Works well with Small Datasets: Naive Bayes requires relatively
small amounts of training data to estimate the parameters of the
model accurately. It performs well even with limited data, making it
suitable for tasks with small training datasets. Naive Bayes provides
probabilistic predictions, allowing for easy interpretation of the
model’s output. It assigns a probability score to each class,
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indicating the likelihood of the input belonging to that class (Ebid,
2020). Overall, Naive Bayes is a versatile and effective algorithm that
performs well in a variety of classification tasks, especially when
dealing with large datasets, mixed data types, or limited
computational resources. However, it is important to note that
the “naive” assumption of feature independence may not hold
true in all cases, and the performance of Naive Bayes can be
sensitive to violations of this assumption. Therefore, it is essential
to evaluate its performance carefully and consider its limitations
when applying it to real-world problems.

3.4.4 Support vector machine (SVM)
Support Vector Machine (SVM) is a powerful supervised

learning algorithm used for classification, regression, and outlier
detection (Ebid, 2020). The theoretical framework is provided in
Supplementary Material. SVM is effective in high-dimensional
spaces, making it suitable for tasks where the number of features
exceeds the number of samples (Onyelowe et al., 2023b). It can
handle datasets with thousands or even millions of features
efficiently. SVM is less prone to overfitting than many other
machine learning algorithms, especially in high-dimensional
spaces (Ebid, 2020). By maximizing the margin between classes,
SVM seeks a hyperplane that generalizes well to unseen data. SVM
can be applied to both linear and non-linear classification and
regression tasks. By using different kernel functions (e.g., linear,
polynomial, radial basis function), SVM can capture complex
relationships in the data and create non-linear decision
boundaries. SVM uses a subset of training data points called
support vectors to define the decision boundary (Ebid, 2020).
Since the decision function depends only on these support
vectors, SVM is memory efficient and can handle large datasets
with ease. Outlier Robustness: SVM is robust to outliers in the
training data. Since the decision boundary is determined by
support vectors, which are the closest data points to the
decision boundary, outliers have less influence on the final
model compared to other algorithms. Global Optimization:
SVM optimization objective seeks to minimize the
generalization error rather than just fitting the training data.
This leads to a more stable and robust model that performs
well on unseen data. SVM produces a sparse model, with only a
subset of training data points (support vectors) contributing to the
decision boundary (Ebid, 2020). This makes it easier to interpret
and understand the model’s predictions compared to more
complex algorithms like neural networks. Overall, SVM is a
versatile and effective algorithm that performs well in various
machine learning tasks. Its ability to handle high-dimensional
data, robustness to overfitting, and versatility in handling linear
and non-linear relationships make it a popular choice in many
domains, including text classification, image recognition, and
bioinformatics (Onyelowe et al., 2023b). Hyperparameter tuning
is essential for optimizing the performance of Support Vector
Machine (SVM) models. Here are some key hyperparameters to
consider tuning for SVM: Kernel Type: SVM can use different
kernel functions, such as linear, polynomial, radial basis function
(RBF), and sigmoid. The choice of kernel can significantly impact
the model’s performance, and it is essential to experiment with
different kernel types to find the one that works best for your
dataset. Regularization Parameter (C): The regularization

parameter C controls the trade-off between maximizing the
margin and minimizing the classification error. A smaller C
value leads to a softer margin, allowing for more
misclassifications but potentially improving generalization.
Conversely, a larger C value imposes a harder margin, leading
to fewer misclassifications on the training data but potentially
overfitting to noise. Kernel Parameters: If using non-linear kernels
like polynomial or RBF, you’ll need to tune specific parameters
such as the degree for polynomial kernels and the gamma
parameter for RBF kernels. These parameters can significantly
influence the model’s flexibility and generalization ability. Class
Weights (for Imbalanced Data): In cases where the classes are
imbalanced, you may want to assign different weights to each class
to balance their influence on the model’s training. Tuning class
weights can help improve the model’s performance on minority
classes. Tolerance for Stopping Criterion: SVM training algorithms
typically have a tolerance parameter (tol) that determines the
stopping criterion for the optimization process. Tuning this
parameter can affect the convergence speed of the algorithm
and, consequently, the training time. Cross-Validation Strategy:
Choosing the right cross-validation strategy, such as k-fold cross-
validation or stratified cross-validation, can impact the reliability
of hyperparameter tuning results. It is crucial to use an appropriate
cross-validation strategy to avoid overfitting to the validation set.
Grid Search or Random Search: Hyperparameter tuning can be
performed using grid search or random search techniques. Grid
search exhaustively searches through a predefined set of
hyperparameter values, while random search samples
hyperparameter values randomly from predefined distributions.
Both methods have their advantages, and it is essential to
experiment with both to find the best hyperparameter values. It
is important to note that hyperparameter tuning can be
computationally expensive, especially for large datasets and
complex models. Therefore, it is advisable to use techniques like
grid search with a limited set of hyperparameter values or employ
more advanced optimization techniques like Bayesian
optimization to efficiently search the hyperparameter space.
Additionally, it is crucial to evaluate the performance of the
tuned model on a separate test set to ensure its
generalization ability.

3.4.5 Stochastic gradient descent (SGD)
Stochastic Gradient Descent (SGD) is an optimization algorithm

commonly used in training machine learning models, particularly in
scenarios where datasets are large and computational resources are
limited (Ebid, 2020). The theoretical framework is provided in
Supplementary Material. Here are some advantages of SGD over
other optimization techniques: Efficiency with Large Datasets: SGD
is computationally efficient and can handle large datasets with
millions of samples and features. Instead of computing gradients
on the entire dataset, SGD updates the model parameters using only
a single sample (or a small subset), making it scalable to big data
scenarios (Ebid, 2020). SGD often converges faster than traditional
batch gradient descent, especially when dealing with large datasets
(Onyelowe et al., 2023b). By updating model parameters more
frequently, SGD can quickly adapt to the underlying data
distribution and find an optimal solution. SGD supports online
learning, where the model is updated continuously as new data
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becomes available. This is particularly useful in real-time
applications such as streaming data analysis, where the model
needs to adapt to changing conditions over time (Onyelowe
et al., 2023b). SGD naturally incorporates regularization
techniques such as L1 and L2 regularization, which help prevent
overfitting and improve the generalization performance of the
model. SGD is highly parallelizable, allowing for efficient
distributed computing across multiple processors or computing
nodes (Ebid, 2020). This makes it suitable for training large-scale
models on clusters or cloud computing platforms. Robustness to
Noise: SGD is robust to noisy gradients and outliers in the data.
Since it updates model parameters based on individual samples or
small batches, the influence of noisy data points is mitigated, leading
to more stable optimization. Memory Efficiency: Unlike batch
gradient descent, which requires storing the entire dataset in
memory, SGD operates on a single sample or mini-batch at a
time, requiring much less memory. This makes it feasible to train
models on devices with limited memory resources, such as mobile
phones or IoT devices (Ebid, 2020). Overall, SGD is a versatile and
efficient optimization algorithm that is widely used in training
various machine learning models, including neural networks,
linear models, and support vector machines. Its scalability, speed,
and robustness make it particularly well-suited for handling large-
scale and real-time learning tasks. Stochastic Gradient Descent
(SGD) is not necessarily advantageous over other machine
learning techniques in all scenarios, but it does offer several
advantages in certain contexts: Efficiency with Large Datasets:
SGD is particularly useful when dealing with large datasets, as it
updates model parameters using only a single data point (or a small
subset) at a time (Onyelowe et al., 2023b). This allows it to scale
efficiently to datasets with millions or even billions of samples,
where other techniques may struggle due to memory or
computational constraints. Online Learning: SGD supports online
learning, where the model is continuously updated as new data
becomes available (Onyelowe et al., 2023b). This is beneficial in
scenarios where data arrives sequentially over time, such as in
streaming applications or online recommendation systems. Speed
of Convergence: SGD often converges faster than traditional batch
gradient descent, especially when dealing with noisy or high-
dimensional data (Ebid, 2020). By updating model parameters
more frequently, SGD can quickly adapt to the underlying data
distribution and find an optimal solution. Parallelization: SGD is
highly parallelizable, allowing for efficient distributed computing
across multiple processors or computing nodes. This makes it
suitable for training large-scale models on clusters or cloud
computing platforms, where distributed computing resources are
available. Memory Efficiency: Unlike batch gradient descent, which
requires storing the entire dataset in memory, SGD operates on a
single data point (or mini-batch) at a time, requiring much less
memory (Ebid, 2020). This makes it feasible to train models on
devices with limited memory resources, such as mobile phones or
IoT devices. While SGD offers these advantages, it also has
limitations, such as sensitivity to learning rate tuning, potential
oscillations during training, and the need for careful regularization
to prevent overfitting. Additionally, SGD may not always converge
to the global optimum and can get stuck in local minima, especially
in highly non-convex optimization problems. Therefore, it is
essential to carefully consider the characteristics of the dataset

and the requirements of the problem when choosing an
optimization technique.

3.4.6 K-nearest neighbors (KNN)
K-Nearest Neighbors (KNN) is a simple and versatile machine

learning algorithm used for both classification and regression tasks
(Ebid, 2020). The theoretical framework is provided in
Supplementary Material. Here are some advantages of KNN over
other machine learning techniques: Simplicity: KNN is conceptually
straightforward and easy to understand. It does not involve complex
mathematical formulations or assumptions about the underlying
data distribution. Non-Parametric: KNN is a non-parametric
algorithm, meaning it does not make assumptions about the
shape of the data distribution. It can capture complex
relationships between features and target variables without
imposing constraints (Ebid, 2020). No Training Phase: Unlike
many other machine learning algorithms that require a training
phase, KNN does not explicitly train a model. Instead, it stores all the
training data and makes predictions based on the similarity between
new instances and existing data points (Ebid et al., 2020).
Adaptability to New Data: KNN can quickly adapt to new data
points without retraining the model. This makes it suitable for
applications where the data distribution is non-stationary or evolves
over time. Versatility: KNN can be applied to both classification and
regression tasks. It can handle datasets with numerical, categorical,
or mixed data types, making it versatile across various domains and
applications (Ebid et al., 2020). Robust to Outliers: KNN is robust to
outliers in the training data, as it considers multiple neighbors to
make predictions. Outliers are less likely to significantly affect the
final prediction compared to other algorithms that rely on global
model fitting. No Assumptions about Data Distribution: KNN does
not assume any specific data distribution, making it suitable for
datasets with complex or unknown underlying distributions
(Onyelowe et al., 2023b). Despite its advantages, KNN also has
some limitations, such as computational inefficiency with large
datasets and sensitivity to the choice of the distance metric and
the number of neighbors (K). However, with careful parameter
tuning and preprocessing, KNN can be a powerful tool for various
machine learning tasks (Ebid, 2020). While K-Nearest Neighbors
(KNN) has its strengths, it is important to note that it is not
inherently superior to other machine learning techniques.
However, it does offer some unique advantages that make it
suitable for certain scenarios: Simple Implementation: KNN is
straightforward to implement and understand, making it a good
choice for beginners and for quick prototyping of machine learning
models (Onyelowe et al., 2023b). Unlike many other machine
learning algorithms, KNN does not require a training phase. It
simply stores the training data and makes predictions based on the
similarity between new instances and existing data points. KNN is
non-parametric, meaning it does not make assumptions about the
underlying data distribution (Ebid, 2020). This makes it flexible and
adaptable to various types of data and problem domains. KNN can
be applied to both classification and regression tasks. It can handle
datasets with numerical, categorical, or mixed data types, making it
versatile across different types of data (Onyelowe et al., 2023b). KNN
can quickly adapt to new data points without retraining the model.
This makes it suitable for applications where the data distribution is
non-stationary or evolves over time. KNN is robust to outliers in the
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training data, as it considers multiple neighbors to make predictions.
Outliers are less likely to significantly affect the final prediction
compared to other algorithms that rely on global model fitting.
Localized Decision Boundaries: KNN’s decision boundaries are
localized around the data points, allowing it to capture complex
and non-linear relationships in the data without assuming any
specific functional form. While KNN has these advantages, it also
has limitations, such as computational inefficiency with large
datasets, sensitivity to the choice of distance metric and number
of neighbors (K), and the need for careful preprocessing of data.
Depending on the specific requirements of the problem and the
characteristics of the dataset, other machine learning techniques
may be more suitable. Therefore, it is essential to carefully consider
the trade-offs and select the most appropriate algorithm for the
task at hand.

3.4.7 Tree decision (tree)
Decision Tree is a versatile and interpretable machine learning

algorithm used for both classification and regression tasks (Ebid,
2020). The theoretical framework is provided in Supplementary
Material. Here are some key advantages: Decision Trees provide a
clear and intuitive representation of decision-making processes
(Ebid, 2020). The tree structure is easy to understand, making it
useful for explaining the logic behind predictions to stakeholders.
No Data Preprocessing: Decision Trees do not require extensive data
preprocessing such as normalization or scaling. They can handle
both numerical and categorical data without much preprocessing
effort (Onyelowe et al., 2023b). Handles Non-linear Relationships:
Decision Trees can capture non-linear relationships between
features and the target variable. They partition the feature space
into regions based on simple decision rules, allowing them to model
complex decision boundaries (Ebid, 2020). Feature Importance:
Decision Trees provide a measure of feature importance,
indicating which features are most influential in making
predictions. This information can be valuable for feature
selection and understanding the underlying data patterns. Robust
to Outliers: Decision Trees are robust to outliers and noise in the
data. Since they make decisions based on majority voting within
each partition, individual outliers are less likely to have a significant
impact on the overall model (Onyelowe et al., 2023b). Handles
Missing Values: Decision Trees can handle missing values in the
dataset by using surrogate splits or treating missing values as a
separate category. This eliminates the need for imputation
techniques. Scalability: Decision Trees can be trained efficiently
on large datasets with millions of observations and thousands of
features. They are also parallelizable, allowing for distributed
training on multiple processors or nodes (Ebid, 2020). Overall,
Decision Trees are a powerful and versatile algorithm suitable for
a wide range of applications. Their simplicity, interpretability, and
ability to handle complex data make them a popular choice in both
academic research and industry settings. Decision trees offer several
advantages over other machine learning processes: Interpretability:
Decision trees provide a transparent and interpretable model
(Onyelowe et al., 2023b). The logic of decision-making is
represented as a tree structure, which can be easily understood
and interpreted by humans. This is particularly useful in domains
where interpretability is important, such as healthcare and finance.
No Assumptions about Data Distribution: Decision trees do not

make any assumptions about the distribution of the data or the
relationship between variables. They are non-parametric and can
handle both linear and non-linear relationships, making them
versatile and applicable to a wide range of datasets. Handling
Non-Numeric Data: Decision trees can handle both numerical
and categorical data without the need for preprocessing (Ebid,
2020). Other machine learning algorithms often require encoding
categorical variables into numeric format, which can be
cumbersome and may lead to information loss. Feature Selection:
Decision trees naturally perform feature selection by selecting the
most discriminative features at each split. This can help in
identifying the most important variables for prediction and
simplifying the model by focusing on the most relevant features.
Robustness to Irrelevant Features: Decision trees are robust to
irrelevant features and noise in the data. They can effectively
filter out irrelevant variables during the training process, leading
to simpler and more interpretable models. Scalability: Decision trees
can handle large datasets with millions of observations and
thousands of features. They are also parallelizable, allowing for
efficient training on multi-core processors or distributed
computing frameworks. Handling Missing Data: Decision trees
can handle missing values in the data without the need for
imputation techniques. They can treat missing values as a
separate category or use surrogate splits to make decisions in the
presence of missing data. Overall, the interpretability, versatility, and
robustness of decision trees make them a popular choice for various
machine learning tasks, especially when transparency and ease of
understanding are important considerations.

3.4.8 Random forest (RF)
Random Forest is a popular ensemble learning technique used

in machine learning for both classification and regression tasks
(Ebid, 2020). The theoretical framework is provided in
Supplementary Material. Here are some of its key advantages:
High Accuracy: Random Forest typically yields high accuracy
compared to traditional single decision trees. By aggregating
predictions from multiple decision trees, it reduces overfitting
and generalizes well to unseen data (Onyelowe et al., 2023b).
Robustness to Overfitting: Random Forest is less prone to
overfitting than individual decision trees, thanks to the
randomness introduced during the training process. Random
selection of feature subsets and bootstrapping helps in
decorrelating the trees and improving the overall performance
(Onyelowe et al., 2023b). Handles Large Datasets: It can efficiently
handle large datasets with many features and observations. The
algorithm is parallelizable, making it suitable for distributed
computing frameworks. Implicit Feature Selection: Random
Forest provides an estimate of feature importance based on how
much each feature contributes to decreasing impurity (e.g., Gini
impurity or entropy) (Ebid, 2020). This can help in identifying the
most relevant features for prediction. Robustness to Noise and
Outliers: Random Forest is robust to noisy data and outliers due to
its ensemble nature (Onyelowe et al., 2023b). Outliers are less likely
to affect the overall model performance significantly. No Need for
Feature Scaling: Random Forest does not require feature scaling or
normalization, as it works by comparing features at each split
independently (Ebid, 2020). Tolerant to Missing Data: It can
handle missing values in the dataset by using surrogate splits,
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which enable the algorithm to make decisions even when certain
features have missing values. Overall, Random Forest is a powerful
and versatile algorithm that is widely used in various domains for
its robustness, accuracy, and ability to handle complex datasets.
Random Forest offers several advantages over other machine
learning techniques: High Accuracy: Random Forest typically
provides higher accuracy compared to single decision trees and
many other traditional machine learning algorithms (Onyelowe
et al., 2023b). By aggregating predictions from multiple decision
trees, it reduces overfitting and generalizes well to unseen data.
Robustness to Overfitting: Random Forest is less prone to
overfitting than individual decision trees. The randomness
introduced during the training process, such as bootstrapping
and random feature selection, helps in decorrelating the trees
and improving the overall model’s robustness (Ebid, 2020).
Handles Large Datasets: Random Forest can efficiently handle
large datasets with many features and observations. The algorithm
is parallelizable, making it suitable for distributed computing

frameworks and capable of processing large volumes of data
effectively. Implicit Feature Selection: Random Forest provides
an estimate of feature importance based on how much each feature
contributes to decreasing impurity (e.g., Gini impurity or entropy).
This can help in identifying the most relevant features for
prediction and simplifying the model. Robustness to Noise and
Outliers: Random Forest is robust to noisy data and outliers due to
its ensemble nature (Onyelowe et al., 2023b). Outliers are less likely
to significantly affect the overall model performance since the
aggregation of multiple trees mitigates their impact. No Need for
Feature Scaling: Random Forest does not require feature scaling or
normalization, as it works by comparing features at each split
independently. This simplifies the preprocessing steps and makes
it easier to apply to different types of data. Handles Both
Regression and Classification Tasks: Random Forest can be
applied to both regression and classification tasks, providing a
versatile solution for a wide range of predictive modeling
problems. Overall, Random Forest is a powerful and versatile

TABLE 2 Performance measurements of developed ensemble models for (Fsp).

Model Dataset SSE MAE MSE RMSE Error Accuracy R2

% MPa MPa MPa % — —

GB Training 41 0.3 0.2 0.4 0.13 0.87 0.78

Validation 15 0.4 0.4 0.6 0.15 0.85 0.74

CN2 Training 15 0.2 0.1 0.3 0.08 0.92 0.92

Validation 4 0.2 0.1 0.3 0.07 0.93 0.93

NB Training 307 1.0 1.5 1.2 0.34 0.66 0.36

Validation 65 0.9 1.6 1.3 0.31 0.01 0.47

SVM Training 7 0.2 0.0 0.2 0.05 0.95 0.96

Validation 3 0.2 0.1 0.3 0.06 0.94 0.95

SGD Training 133 0.6 0.6 0.8 0.23 0.77 0.11

Validation 36 0.7 0.1 0.9 0.23 0.77 0.08

KNN Training 4 0.1 0.0 0.1 0.04 0.96 0.98

Validation 1 0.2 0.0 0.2 0.04 0.96 0.98

Tree Training 36 0.3 0.2 0.4 0.12 0.88 0.80

Validation 12 0.4 0.3 0.5 0.13 0.87 0.79

RF Training 45 0.3 0.2 0.5 0.13 0.87 0.70

Validation 23 0.5 0.6 0.8 0.19 0.81 0.31

GP Training — — — 0.38 — — 0.86

Shah et al. (2022a) Validation — — — 0.34 — — 0.90

ANN (Shah et al., 2022a) Training Validation — — — 0.28 — — 0.92

— — — 0.20 — — 0.96

M5P (Shah et al., 2022a) Training Validation — — — 0.35 — — 0.88

— — — 0.41 — — 0.86

RF (Shah et al., 2022a) Training Validation — — — 0.13 — — 0.98

— — — 0.12 — — 0.98
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algorithm that is widely used in various domains for its high
accuracy, robustness, and ability to handle complex datasets.

3.4.9 Response surface methodology (RSM)
Response Surface Methodology (RSM) is a statistical and

mathematical technique used for optimizing processes,
formulations, or systems (de Oliveira et al., 2019). The
theoretical framework is provided in Supplementary Material. It
involves designing experiments to explore the relationship
between multiple input variables (factors) and one or more
response variables (outputs). By systematically varying the levels
of the input variables and measuring the corresponding responses,
RSM constructs a mathematical model that approximates the
relationship between inputs and outputs (de Oliveira et al.,
2019). This model enables researchers to predict the optimal
settings of input variables that result in desired outcomes of the
response variables. RSM is widely applied in various fields such as
engineering, chemistry, agriculture, and manufacturing for process
optimization, product development, and quality improvement.
However, Response Surface Methodology (RSM) and machine
learning are two distinct approaches used for modeling and
optimization, each with its own advantages and limitations.
Here’s how they compare: Advantages of Response Surface
Methodology (RSM): Simplicity: RSM typically involves fitting
polynomial equations to experimental data, which can be more
straightforward and interpretable compared to complex machine
learning algorithms (Barton, 2013). Limited Data Requirement:
RSM often requires fewer data points to build models compared to

machine learning techniques, making it suitable for situations
where data collection is expensive or limited. Physical
Interpretability: RSM models are often based on fundamental
scientific principles, making it easier to interpret the
relationships between input variables and responses in physical
terms (Ofuyatan et al., 2022). Well-established Theory: RSM has a
long history and is backed by robust statistical theory, with
established guidelines for experimental design and model
validation. Advantages of Machine Learning: Flexibility:
Machine learning algorithms can handle a wide range of data
types and complexities, including high-dimensional data and non-
linear relationships, which may be challenging for traditional RSM
approaches. Scalability: Machine learning techniques can be
applied to large datasets with millions of observations, allowing
for more comprehensive analysis and modeling in big data
scenarios (Barton, 2013). Automation: Machine learning
algorithms can automatically learn patterns and relationships
from data, reducing the need for manual experimentation and
model building. Generalization: Machine learning models can
generalize well to unseen data, making them suitable for
prediction and classification tasks beyond the specific
experimental conditions used to train the model (Ofuyatan
et al., 2022).In summary, while Response Surface Methodology
offers simplicity, interpretability, and suitability for small datasets,
machine learning provides flexibility, scalability, and automation
capabilities for handling large and complex datasets (de Oliveira
et al., 2019) The choice between the two approaches depends on
the specific requirements and constraints of the problem at hand.

FIGURE 4
(A) Relation between predicted and calculated splitting tensile strength using (GB) and (B) Reduction in Error % with increasing the number of trees
and levels.
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FIGURE 5
(A) Sample of the developed CN2 “If condition,” (B) Relation between predicted and calculated splitting tensile strength using (CN2) and (C)
Reduction in Error % with increasing the rule length.

FIGURE 6
Relation between predicted and calculated splitting tensile strength using (NB).
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FIGURE 7
(A) Relation between predicted and calculated splitting tensile strength using (SVM) and (B) Reduction in Error % with increasing the
polynomial degree.

FIGURE 8
(A) Relation between predicted and calculated splitting tensile strength using (SGD) and (B) Reduction in Error % with reducing the learning rate.
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FIGURE 10
(A) The layout of the developed (Tree), (B) Relation between predicted and calculated splitting tensile strength using (Tree), and (C) Reduction in
Error % with increasing the No. of layers.

FIGURE 9
Relation between predicted and calculated splitting tensile strength using (KNN).
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3.5 Performance analysis

The performance of the developed models was evaluated by
comparing SSE, MAE, MSE, RMSE, Error %, Accuracy % and R2

between predicted and calculated splitting strength values. The
definition of each used measurement is presented in Eqs 2–7.
The results of all developed models are summarized in Table 2.

MAE � 1
N

∑
N

i�1
yi − ŷ
∣∣∣∣

∣∣∣∣ (2)

MSE � 1
N

∑
N

i�1
yi − ŷ( )2 (3)

RMSE � �����
MSE

√
(4)

Error% � RMSE

ŷ
(5)

Accurcy% � 1 − Error% (6)

R2 � 1 − ∑ yi − ŷ( )2

∑ yi − �y( )2
(7)

4 Results presentation and discussion

4.1 GB model

The developed (GB) model was based on (Scikit-learn)
method with learning rate of 0.1 and minimum splitting
subset of 2. Nine trials were conducted for each model started
with two trees and two tree levels and increased gradually to four
trees and four tree levels. The reduction of the prediction error
(%) for each trail is presented in Figure 4. Accordingly, the
models with four trees and four tree levels are considered the
optimum ones. This shows that the iterations based on the
number of trees and levels below and above four did not
produce desirable performance in terms errors and optimal
concrete strength. Performance metrics of the developed
model for both training and validation dataset are also
presented. The average achieved accuracy was (86%). The
relations between calculated and predicted values are shown
in Figure 4.

FIGURE 11
(A) Pythagorean Forest diagram for the developed (RF) models, (B) Relation between predicted and calculated splitting tensile strength using (RF)
and (C) Reduction in Error % with increasing the No. of Tress and layers.
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FIGURE 13
(A) RSM plot of the residuals, (B) residuals versus predicted values, and (C) residuals versus entry runs.

FIGURE 12
Comparing the accuracies of the developed models for (Fsp) using Taylor charts; (A) Training dataset, (B) Validation dataset.
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4.2 CN2 model

Similarly, five (CN2) models were developed considering
“Laplace accuracy” as evaluation measurement with beam width
of 1.0 and minimum rule coverage of 1.0. The maximum rule length
was started by 1.0 and increased up to 9.0. Figure 5 shows the
reduction in Error % with increasing the rule length. Accordingly,
rule length of 7.0 is considered. The developed models contain
115 “IF condition” rules, Figure 5 presents some of these rules.
Performance metrics of the developed model for both training and
validation dataset are also presented. The average achieved accuracy
was (93%). The relations between calculated and predicted values
are shown in Figure 5.

4.3 NB model

Traditional Naive Bayes classifier technique considering the
concept of “Maximum likelihood” were used to develop the nine
models. Although this type of classifier is highly scalable and are
used in many applications, but it showed a very low
performance as shown. The relations between calculated and
predicted values are shown in Figure 6. The achieved average
accuracies was33%.

4.4 SVM model

The developed (SVM) model was based on “polynomial”
kernel with cost value of 100, regression loss of 0.10 and
numerical tolerance of 1.0. The kernel started with one-degree
polynomial (linear) and increased up to three-degree polynomial
(cubic). The reduction in the error % with increasing the
polynomial degree is illustrated in Figure 7. Accordingly,
(cubic) kernel is considered. Performance metrics of the three
developed models for both training and validation dataset are also
illustrated. The average achieved accuracy was (94%). The

relations between calculated and predicted values are shown
in Figure 7.

4.5 SGD model

These three models were developed considering modified Huber
classification function and “Elastic net” re-generalization technique
with mixing factor of 0.01 and strength factor of 0.001. The learning
rate, which is a crucial hyperparameter that controls the step size at
each iteration of the optimization process starts with 0.01, then
gradually decreased to 0.001. The reduction in error% with reducing
the learning rate is presented in Figure 8. Performance metrics of the
three developed models for both training and validation dataset are
equally presented. The average achieved accuracy was (77%). The
relations between calculated and predicted values are shown
in Figure 8.

4.6 KNN model

Considering number of neighbors of 1.0, Euclidian metric
method and weights were evaluated by distances, the developed
(KNN) models showed the best accuracy. (KNN) model showed the
best performance where the average error (%) was (96%). The
relations between calculated and predicted values are shown
in Figure 9.

4.7 Tree model

These five models were developed considering minimum
number of instants in leaves of 2.0 and minimum split subset
of 5.0. The models began with only two tree levels and gradually
increased to six levels. Figure 10 illustrates the reduction in Error
% with increasing the number of layers. The layouts of the
generated models are presented in Figure 10. Performance

FIGURE 14
Plot of the (A) Cook’s distance and (B) Box-Cox for power transforms.
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metrics of the last developed model for both training and
validation dataset are also presented. The average achieved
accuracy was (88%). The relations between calculated and
predicted values are shown in Figure 10.

4.8 RF model

Finally, nine (RF) models were generated. The models began
with only two trees and two levels and increased up to four trees and
four levels. Figure 11 shows the reduction in error (%) with
increasing number of Tress and layers. Accordingly, the models
with four trees and four layers are considered. The developed models

are graphically presented using Pythagorean Forest in Figure 11.
These arrangements leaded to a good average accuracy of (84%). The
relations between calculated and predicted values are shown
in Figure 11.

4.9 Ensemble models discussion

Overall, the performance measurements of developed
ensemble models for the MK-mixed splitting tensile strength
(Fsp) are presented in Table 2. It can be seen that the KNN
outperformed the other techniques in the ensemble group with
the following indices; SSE of 4% and 1%, MAE of 0.1 and 0.2 MPa,

FIGURE 15
Plots of (A) predicted versus actual values, (B) residuals versus cement addition, (C) leverage versus run, (D) DFFITS versus run, and (E) DFBETAS for
intercept versus run.
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MSE of 0, RMSE of 0.1 and 0.2 MPa, Error of 0.04% and 0.04%,
Accuracy of 0.96 and 0.96 and R2 of 0.98 and 0.98 for the training
and validation models, respectively. This is followed closely by the
SVMwith the following indices; SSE of 7% and 3%, MAE of 0.2 and
0.2 MPa, MSE of 0.0 and 0.1 MPa, RMSE of 0.2 and 0.3 MPa, Error
of 0.05% and 0.06%, Accuracy of 0.95 and 0.94, and R2 of 0.96 and

0.95, for the training and validation models, respectively. The third
model in the superiority rank is the CN2 with the following
performance indices; SSE of 15% and 4%, MAE of 0.2 and
0.2 MPa, MSE of 0.1 and 0.1 MPa, RMSE of 0.3 and 0.3 MPa,
Error of 0.08% and 0.07%, Accuracy of 0.92 and 0.93 and R2 of
0.92 and 0.93, for the training and validation models, respectively.

FIGURE 16
Plots of the Fsp 3D surface for (A)MK-C combination, (B)W-C combination, (C) FAg-C combination, (D) CAg-C combination, (E) P-C combination,
and (F) Age-C combination in the concrete mixes.
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These models outperformed the GP, ANN, and M5P models
utilized on the MK-mixed concrete found in the literature
(Shah et al., 2022b), therefore are the better decisive modes for
the prediction of the splitting strength (Fsp) of the studied MK-
mixed concrete with 204 d mix data entries. However, the ANN
used in the previous work performed with equal R2 of 0.98 of the
present research work but the present work’s performance is better
by comparing the RMSE values. Conversely, the NB and SGD
produced unacceptable model performances, however, this is true
for the modeled database collected for the MK-mixed
Fsp. Figure 12 presents the comparison of the accuracies of the
developed models for Fsp prediction using Taylor charts for the
ensemble machine learning techniques. The performance of the
models in this present research paper presents superior models
compared to previous research papers, that presented model
research results from genetic programming (GP), artificial
neural networks (ANN), random forest (RF) and M5P tree
models (Shah et al., 2022a; 2022b).

4.10 RSM

The Model F-value of 41.67 implies the MK-mixed concrete
Fsp model is significant. There is only a 0.01% chance that an
F-value this large could occur due to noise. p-values less than
0.0500 indicate model terms are significant. In this case A, C, D,
E, F, G, AC, AD, AE, AF, BC, BD, BE, BF, CD, CE, CG, DE, EF,
FG, A2, B2, C2, D2, E2, G2 are significant model terms. Values

greater than 0.1000 indicate the model terms are not significant.
If there are many insignificant model terms (not counting those
required to support hierarchy), model reduction may improve
your model. The predicted R2 of 0.9332 is in reasonable
agreement with the Adjusted R2 of 0.9752; i.e., the difference
is less than 0.2. Adeq precision measures the signal to noise ratio.
A ratio greater than four is desirable. Your ratio of
27.417 indicates an adequate signal. This performance
corroborates with the results deposited in the literature
(Ofuyatan et al., 2022). These presented results are
summarized in the tables in the Supplementary Material. This
model can be used to navigate the design space. Eq. 8 in terms of
actual factors can be used to make predictions about the
response for given levels of each factor. Here, the levels
should be specified in the original units for each factor. This
equation should not be used to determine the relative impact of
each factor because the coefficients are scaled to accommodate
the units of each factor and the intercept is not at the center of
the design space. The RSM model simulation of the Fsp of the
MK mixed concrete produced optimized scatter plots of
residuals, runs, Cook’s distance, Box-Cox plots for power
transforms, predicted and actual values of the Fsp, DFFITS
and DFBETAS for the intercept to run configurations, and 3D
surface configurations in Figures 13–18. In Figure 13, the RSM
plot of the residuals, residuals versus predicted values, and
residuals versus entry runs is illustrated. In Figure 14, the
plot of the (a) Cook’s distance and (b) Box-Cox for power
transforms is presented. In Figure 15, the plots of (a)

FIGURE 17
The desirability of the optimized Fsp based on the best outcome from multiple iterations.
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predicted versus actual values, (b) residuals versus cement
addition, (c) leverage versus run, (d) DFFITS versus run, and
(e) DFBETAS for intercept versus run are presented. In
Figure 16, the plots of the Fsp 3D surface for (a) MK-C
combination, (b) W-C combination, (c) FAg-C combination,

(d) CAg-C combination, (e) P-C combination, and (f) Age-C
combination in the concrete mixes and presented. In Figure 17,
the desirability of the optimized Fsp based on the best outcome
from multiple iterations is illustrated. And finally, in Figure 18,
the RSM Fsp behavioral scatter pattern with the single impacts of

FIGURE 18
RSM Fsp behavioral scatter pattern with the single impacts of (A) C, (B) MK, (C) W, (D) FAg, (E) CAg, (F) P, and (G) Age.
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(a) C, (b) MK, (c) W, (d) FAg, (e) CAg, (f) P, and (g) Age. These
plots represent the structural behavioral patter of the MK-mixed
concrete splitting tensile strength (Fsp) with the introduction of
the selected concrete components especially the supplementary
cementitious activity of the MK.

Fsp � −228.37737 + 0.344850C + 0.356382MK + 0.677729W

+0.171709FAg + 0.072973CAg − 0.385967P

+0.036778Age − 0.000059C*MK − 0.000764C*W

−0.000068C*FAg − 0.000088C*CAg − 0.000973C*P

+0.000049C*Age − 0.000677MK*W − 0.000081MK*FAg

−0.000146MK*CAg − 0.001589MK*P + 0.000098MK*Age

−0.000211W*FAg − 0.000142W*CAg − 0.002061W*P

−0.000105W*Age − 0.000034FAg*CAg − 0.000242FAg*P

+2.32722E − 06FAg*Age + 0.001651CAg*P

−0.000011CAg*Age − 0.001260P*Age − 0.000088C2

−0.000057MK2 − 0.000163W2 − 0.000050FAg2

+6.93384E − 06CAg2 − 0.001011P2 − 0.000121Age2 (8)

5 Conclusion

This research presents a comparative study between eight ML
classification techniques, namely, GB, CN2, NB, SVM, SGD, KNN,
Tree and RF to estimate the impact of adding meta-kaolin to
concrete on its splitting strength considering mixture
components contents and concrete age. The outcomes of this
study could be concluded as follows:

- (CN2, SVM, KNN) models showed an excellent accuracy of
about 93%–96%, while (GB, Tree, RF) models showed very
good accuracies of about (84%–88%), (SGD) models showed
fair accuracy level of about 77% and finally (NB) presented
unacceptable accuracy (less than 50%).

- Both of correlation matrix and sensitivity analysis indicated
that all considered inputs have almost the same level of
impact on the splitting strength except the aggregate
contents (CAg, FAg) which has almost neglected impact
on the concrete splitting strength, this observation makes
perfect sense since splitting strength is a kind of tensile
strength which is mainly resisted by the binder and
increased with time.

- The RSM model produced R2 of above 95% in addition to a
closed-form equation, which allows the RSM model to be
applied manually in addition. It also performed with an
adequate precision of 27.4172, which outperforms the
standard established for RSM models.

- All the developed models are too complicated to be used
manually, which may be considered as the main
disadvantage of the ML classification techniques compared
with other symbolic regression ML techniques such as the
RSM utilized in this work and GP and EPR presented in the
literature.

- The developed models are valid within the considered range of
parameter values, beyond this range; the prediction accuracy
should be verified.
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