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Hyperparameter tuning is crucial for enhancing the accuracy and reliability of
artificial neural networks (ANNs). This study presents an optimization of the
Levenberg–Marquardt backpropagation neural network (LM-BPNN) by
integrating an improved seagull optimization algorithm (ISOA). The proposed
ISOA-LM-BPNN model is designed to forecast earthquakes in the Caribbean
region. The study further explores the impact of data and model parallelism,
revealing that hybrid parallelism effectively mitigates the limitations of both. This
leads to substantial gains in throughput and overall performance. To address
computational demands, this model leverages the compute unified device
architecture (CUDA) framework, enabling hybrid parallelism on graphics
processing units (GPUs). This approach significantly enhances the model’s
computational speed. The experimental results demonstrate that the ISOA-
LM-BPNN model achieves a 20% improvement in accuracy compared to four
baseline algorithms across three diverse datasets. The integration of ISOA with
LM-BPNN refines the neural network’s hyperparameters, leading to more precise
earthquake predictions. Additionally, the model’s computational efficiency is
evidenced by a 56% speed increase when utilizing a single GPU, and an even
greater acceleration with dual GPUs connected via NVLink compared to
traditional CPU-based computations. The findings underscore the potential of
ISOA-LM-BPNN as a robust tool for earthquake forecasting, combining high
accuracy with enhanced computational speed, making it suitable for real-time
applications in seismic monitoring and early warning systems.
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1 Introduction

The unpredictable, sporadic, and erratic nature of seismic activity presents significant
difficulties for earthquake preparedness. The abrupt shifts in tectonic behavior within brief
intervals can lead to catastrophic seismic events. Hence, precisely forecasting seismic
movements is essential for anticipating earthquake magnitudes and ensuring the stability
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and safety of affected regions. Artificial neural networks (ANNs) are
a class of machine learning models inspired by the structure and
function of the human brain. ANNs consist of interconnected layers
of nodes, or “neurons,” which work together to process input data,
learn patterns, and make predictions. These networks are
particularly effective in handling complex, non-linear
relationships within data, making them suitable for a wide range
of applications, including image recognition, natural language
processing, and, notably, earthquake forecasting. The architecture
of an ANN typically includes an input layer, one or more hidden
layers, and an output layer. Each neuron in a layer is connected to
neurons in the subsequent layer through weighted connections.
During the training process, the network adjusts these weights based
on the error of its predictions—a process known as
“backpropagation”. This iterative adjustment allows the network
to learn from the data and improve its accuracy over time. To
forecast an earthquake using an ANN requires efficient precursors
and fine tuning the hyper-parameters of an algorithm.

The process of selecting the right hyperparameters is crucial for
the performance of machine learning (ML) models. A suboptimal
choice can diminish the accuracy of the model (Bergstra and Bengio,
2012). Moreover, the tuning of hyperparameters, involving the
exploration of a wide parameter space, is often computationally
intensive and time-consuming (Jasper et al., 2012). Properly
navigating this trade-off is essential for efficient model
development and deployment.

Furthermore, as artificial intelligence advances, its techniques
demonstrate significant potential in discerning the nonlinear
patterns of seismic activity. Such methods are increasingly pivotal
in earthquake forecasting research. Approaches like ML, ANNs,
support vector machines (SVMs) (Kollam and Joshi, 2020), and
fuzzy logic (FL) methods have been explored for predicting
seismic events.

Xiong et al. (2021) used satellite data for ML in earthquake
forecasting. This suggested approach for earthquake forecasting
employs cross-validation and hyperparametric optimization to
identify the optimal model parameters. Xiong et al. (2021) used
an inverse boosting pruning trees (IBPT) ML approach to study the
physical and dynamic changes in environmental effects occurring in
the short-term using satellite data to anticipate earthquakes of
magnitude 6 or higher.

Gitis and Derendyaev (2019) introduced a ML technique for
forecasting seismic hazards. This considers two kinds of approaches:
spatial forecasting to find the maximum seismic event, and
considering spatio-temporal forecasting for a web-based
earthquake forecasting system to find the location of an earthquake.

Jena et al. (2020) assessed earthquake risk and hazard at Palu,
Indonesia, using ML techniques. They used AHP and weighted
overlay methods to measure vulnerability, and CNN was used to
estimate likelihood. Despite the limitations of that study, the strategy
was valuable for ERA and successful for catastrophe risk reduction.

Mousavi and Beroza (2020) suggested an ML method for
calculating earthquake magnitude. In that study, a rapid and
precise method for estimating earthquake magnitude from
beginning to end utilizing unprocessed waveforms gathered at
single stations was described. They detailed a rapid and precise
method for estimating earthquake magnitude from beginning to end
utilizing unprocessed waveforms gathered at single stations. This

method has several potential uses, including routine seismic
monitoring and early warning systems.

Rundle et al. (2021) recommend a novel earthquake nowcasting
using ML on the California earthquake cycle to visualize the
temporally dependent earthquake cycle. The method involves
imaging the earthquake cycle time-dependently to correspond
with stress accumulation and release. This can help identify
periods of increased seismic activity and potential earthquake
clusters. Principal component analysis (PCA) seismic activity of
area is considered to construct time-series. The patterns were
identified as eigenvectors of the cross-correlation matrix of a
collection of seismicity time series utilizing a geographical grid.

Aslam et al. (2021) used a cutting-edge ML approach to predict
earthquake activity in northern Pakistan. They employs
seismological concepts, including seismic quiescence, the inverse
law of Gutenberg–Richter, and the extent of earthquakes to analyze
eight seismic characteristics for the purpose of earthquake
prediction in the Hindu Kush. A classification framework is
proposed that utilizes a support vector regressor (SVR) and a
hybrid neural network (HNN) to predict earthquakes.

Asim et al. (2020) examined the prediction of seismic activity in
Cyprus using short-term forecasting, seismicity analysis, and ML
algorithms. They used the temporal analysis of the earthquake
catalogue and eliminated noisy data. The internal seismic status
of the area was then expressed using 60 seismic characteristics based
on a cleaned earthquake dataset. The related seismic activity was
then modeled alongside these seismic properties using ML
techniques.

Xiong et al. (2020) conducted an analysis of ionospheric
disturbances detected before significant seismic occurrences using
data obtained from the DEMETER satellite. They examined
16 classification methods for this purpose. The LightGBM
technique, which is based on gradient boosting, demonstrated
superior performance over other algorithms in identifying
electromagnetic pre-earthquake disturbances (Xiong et al., 2020).
The strength of its performance was underscored via a thorough
five-fold cross-validation examination using standard datasets. The
choice of geographic area utilized in crafting the training set for non-
seismic data noticeably influences the efficacy of the LightGBM
model, albeit within certain limits.

Cui et al. (2021) introduced a strategy for predicting earthquake
casualties based on stacking. Numerous factors affect the number of
fatalities, making a thorough technique for predicting earthquake
casualties necessary. In this study, an efficient prediction approach
based on an upgraded swarm intelligence algorithm using stacking
ensemble learning was suggested to produce reliable
prediction results.

Deep learning (DL) involves employing artificial neural
networks with several hidden layers to discern patterns in
expansive and often high-dimensional data sets (Khan et al.,
2019). These intricate networks are honed for a diversity of
applications, such as categorizing images (Nibha and Burris,
2019), analyzing text (Chatterjee et al., 2019), and interpreting
speech (Ravanelli et al., 2020). The depth and complexity of
these networks permit a nuanced understanding and
representation of data, making them an essential tool in various
research domains. Deep neural networks (DNNs), when trained on
expansive datasets, necessitate substantial computational resources
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to execute gradient descent and adjust weights effectively. Multiple
efforts have been directed at minimizing their computational burden
and refining their processing efficiency (Singh et al., 2017). The
challenge lies not just in data handling but also in optimizing the
learning process without compromising the integrity of the model’s
performance.

In training ANNs, the use of GPUs has increased
tremendously (Zhang et al., 2018; Nibha and Burris, 2019). To

reduce computing time in training data, the NVIDIA has
introduced a framework called CUDA to execute programs in
parallel using GPU cores (Zukovic et al., 2020; Sanders and
Kandrot, 2010). There are two types of parallelization possible.
The first is data parallelization, where the data is divided into
multiple subsets and given to the different cores in the GPU to
execute the same model (Danielsson et al., 2018). The second is
model parallelization, where the model/algorithm is divided and
given to the different nodes, but the data is not divided (Venkata
Divya and Sai Prasad, 2018).

The DNN training parameter’s mini-batch size is affected by
the data partition size for data parallelism (Florido et al., 2018). If
too big, a mini batch size can boost GPU utilization but decrease
model accuracy. On the other hand, the GPU’s resources are
underutilized when batches are small. When data parallelism is
used, the effective mini batch size equals the number of GPUs

FIGURE 1
Block diagram of proposed methodology.

FIGURE 2
Flow chart of SOA.
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times the mini batch size. To overcome the drawbacks of a high
mini batch size, we might divide it among GPUs (López-Martínez
et al., 2023), but this may underutilize GPU resources. Efficient
DNN training using GPUs becomes harder on a selected data size
as GPUs increase.

Pipelined training causes staleness in model parallelism. Since
numerous mini batches are in progress, later ones use stale weights
to generate gradients before updating weights. The staleness issue
causes inconsistent learning and poor model accuracy. Model
accuracy (correct classifications) comparisons between models
and data parallelism shows that the accuracy of the latter rises
with training, whereas model parallelism accuracy varies (Chen
et al., 2019).

Previous studies that have focused on different ML approaches
(e.g., SVMs, CNNs, LSTMs, LightGBM) have often overlooked the
computational efficiency and accuracy of the model; this research
highlights both improvements in accuracy and enhancements in
computational speed.

In this study, we propose an improved seagull optimization
algorithm (ISOA) integrated with LM-BPNN to develop a highly
accurate and computationally efficient model for earthquake
forecasting. By leveraging the compute unified device architecture
(CUDA) framework for parallel processing on graphics processing
units (GPUs), we can further accelerate the training process by
enabling real-time applications in seismic monitoring.

2 Materials and methods

We focused on the ISO-LM-BPNN using CUDA framework.
The Figure 1 block diagram gives an overview of the proposed
methodology.

2.1 Seagull optimization algorithm

In the diverse and evolving landscape of optimization
algorithms, nature-inspired metaheuristics have emerged as
potent tools to tackle complex optimization problems. These
algorithms often draw inspiration from the intricate and adaptive
behaviors exhibited by various organisms, ranging from the
choreographed dances of bees to the synchronized schooling of
fish. Amidst this array of bio-inspired algorithms, the seagull
optimization algorithm (SOA) was modeled after the foraging
behaviors of seagulls (Dhiman and Kumar 2019). Seagulls,
renowned for their extensive foraging range, exhibit a dualistic
search mechanism. They can scour for food on the sea’s surface
or dive beneath to catch prey. This dual strategy, encompassing both
exploration and exploitation, is what the SOA aims to capture and
mathematically model for optimization tasks.

When using SOA, “pop” is the population number of the
seagulls, D, is the dimension of the issue space, and “ai = (a1i ,

FIGURE 3
Structure of neural network with two hidden layers.
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a2i ,.., a
D,

i ), i = 1, 2, pop” is the location of the seagull. The act of
updating each individual’s position is what drives the seagull
movement and attack behavior.

2.1.1 Migration behavior
The global search encompasses migratory behavior. Seagulls

migrate when they travel from one location to another, but there
are three requirements they must meet: avoid collisions, fly in
the direction of the best position, and approach the
ideal location.

2.1.1.1 Avoiding collisions
An extra variable Q is added to prevent collisions between

neighboring seagulls. The program updates the seagull’s location
in the iterative process concurrently using this variable.

ctiter � Q × IPiter (1)
where IPiter is the seagull’s initial position, iter is the current
iteration number, ctiter is the seagull’s new position after
avoiding collisions, and Q is the seagull’s motion pattern inside a
certain search area. Q’s equation is:

Q � f′
g − (iter × f′

g

max iter

⎛⎝ ⎞⎠ (2)

where max iter is the maximum number of iterations, f′
g is reduced

linearly to zero, and the value of Q is modified linearly.

2.1.1.2 Direction of the best position
The seagull will fly in the direction of the best position once it is

confident it will not crash with any other birds. The formula reads
as follows:

miter � R × C best( )iter − IPiter( ) (3)
R � 2 × Q × Q × rn (4)

where C(best)iter denotes the best location in the population, R is a
random integer that balances local and global search, and the value
of rn is a random number of (0,1).

2.1.1.3 Approaching the best position
The seagull flies in the direction of the best position to reach a new

location aftermoving to a placewhere it avoids collidingwith other seagulls.

f best( )iter � C best( )iter +miter

∣∣∣∣ ∣∣∣∣ (5)

where f(best)iter represents the best fit search seagull.

2.2.1 Attack behavior
The attack behavior is local search-related. Using a, b, and c to

describe their movements, seagulls attack their prey by spiraling in
the air. The exercise behavior equation is as per Equations 6–9,

a � sr × cos θ (6)
b � sr × sin θ (7)
c � sr × θ (8)

FIGURE 4
Block diagram of proposed ISO-LMT-BPNN flow.
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sr � φ × eθsc (9)
where sr is the spiral’s radius when the seagull is flying, and sc are the
spiral’s correlation constants. The angle is represented as a random
integer between [0, 2]. Equation 10 describes how seagulls attack:

IPiter � f best( )iter × a × b × c + C best( )iter (10)
where IPiter updates the position of other search seagulls and stores
the best answer.

2.1.3 The Steps of the SOA
Refer to the steps of SOA in Figure 2.

2.2 Improved seagull optimization algorithm

The ISOA benefits from a strong optimization impact, ease
of use, and minimal parameter settings. SOA exhibits an early
trend and is prone to local optimal behavior. It falls within the
local search stage for Equation 8, which is prone to local
extremes and may not provide the global optimum value
(Ragab et al., 2022). To overcome local extremes, Equation 10
includes a cognitive component. Equation 10 has been
improvised as:

IPiter � f best( )iter × a × b × c + C best( )iter + C best( )iter
− IPiter × If (11)

where If stands for the inertia factor; in this study, its value is 0.95.
If’s function is to increase each seagull’s capacity to find the global
optimization instead of local minima.

We retain the best seagulls and reject the worst to get the best
value. The seagull population is sorted from best to worst as per

FIGURE 5
Neural network split into sub-neural networks (SNNi).

FIGURE 6
Output of each SNNi merging into main neural network.
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fitness values computed for each iteration; the best half of the
seagull population is considered while the second half is
discarded, helping to retain the best fitness value for the
seagulls. The solution accuracy of the seagull optimization
technique is not very great, and it is simple to fall into local
extremes. The enhanced seagull optimization method, however,
incorporates a cognitive component and a natural selection
process to increase the system’s capacity to solve problems
and prevent it from tumbling into local extremes.

Changing parameter R from Equation 4 from a linear to an
exponential function controls the optimal position.

R � eQrn (12)
Introduce ω, a weight parameter.

ω � ωmax − ωmax( )
IPiter best( ) − IPiter avg( )

IPiter best( )
( ) t

T, iter< D, p0.8

ωmax , other

⎧⎪⎪⎨⎪⎪⎩ ,

(13)
IPiter � 1 − ω( )f best( )iter × a × b × c + C best( )iter + C best( )iter

− IPiter × If

(14)

FIGURE 7
GUI application startup.

FIGURE 8
Analysis of various parameters and forecast results.
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Parameter:
Population number of the seagulls, D′
ai � (a1i , a2i , .., aD,

i ), i � 1, 2, pop is the location of the seagull.
Extra variable Q is added to prevent collisions between

neighboring seagulls.
Where IPiter is the seagull’s initial position,
iter is the current iteration number, and
ctiter is the seagull’s new position.

2.3 CUDA-accelerated LM-BPNN

A neural network consists of an input layer, an output layer, and a
number of hidden layers based on the problem. A layer is comprised

of a collection of neurons and associated weights, together with an
activation function. The layers seen in Figure 3 are interconnected
with subsequent levels. Each of these layers comprises several neurons.
A problem’s complexity is determined as the number of hidden layers
used in neural network (Ghorpade-Aher et al., 2012). Matrix
multiplication plays a crucial role in contemporary deep neural
network (DNN) methods, accounting for around 70%–80% of the
computational burden throughout the DNN training process (Rao
and Ramana, 2019). This is mostly due to the frequent repetition of
matrix multiplication operations during DNN training. The effective
implementation of matrix multiplication may be achieved through
data parallelism, particularly by employing CUDA for parallel
execution on a GPU. In our prior research, we employed the
expedited Winograd’s matrix multiplication technique, the

TABLE 1 Comparison of metrics for evaluating the effectiveness of proposed and established methods.

Method ISO-LM-BPNN LM-BPNN LSTM GRU CNN ANN

Accuracy 98 95.25 93.8 90.12 89.77 89.87

Precision 98.84 94.64 92.38 90.58 86.4 84.5

Recall 98.95 97.23 96.58 90.99 90.1 88.52

F-measure 98.57 94.57 91.36 87.58 85.91 84.25

Specificity 95.73 95.73 92.72 90.22 86.4 87

MCC 96.21 96.02 93.78 90.68 86.63 83.99

NPV 93.74 92.56 91.6 90.66 88.69 87.95

FNR 0.04 0.05 0.07 0.07 0.09 0.1

FPR 0.01 0.01 0.05 0.08 0.08 0.09

RMSE 0.25 0.26 5.84 5.9 2.69 3.59

MAE 0.41 0.49 4.87 4.96 3.87 3.95

MAPE 3% 7% 15% 13% 12% 12.5%

FIGURE 9
Comparative analysis of accuracy, precision, recall, F-measure, specificity, MCC, and NPV for proposed and existing approaches.
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accelerated parallel Winograd’s matrix multiplication method, and
the parallel blocked matrix multiplication approach with a collapse
clause to enhance the efficiency of training DNN algorithms (Rao and
Ramana, 2019). The objective of this study is to empirically
demonstrate that matrix multiplication on a GPU using the
CUDA framework represents a significant advancement in
computing compared to other methods such as the standard
(sequential) approach, the CBLAS library subroutine on a central
processing unit (CPU), and the CUBLAS library.

The primary mechanism for refining the weights and biases
within the neurons of BPNN is the error backpropagation process.

The back-propagation algorithm operates in two distinct
phases: training and testing (Lin et al., 2018). During the
training phase, the algorithm employs a feed-forward pass
wherein an input vector is introduced into the network and is
sequentially processed through the layers to produce an output
(Murata et al., 1994). Following this, in the back-propagation
phase, the resultant output of the network is juxtaposed with
the expected output. Discrepancies between the two leads to the
computation of an error. Subsequently, this error information is
used to adjust the network’s weights, ensuring that the model
refines its predictions in future iterations, as delineated by the error
correction rule (Bandala et al., 2015).

The Levenberg–Marquardt (LM) algorithm, traditionally
utilized in nonlinear least squares problems, has been well
adapted to train feed-forward neural networks. The
amalgamation of the LM method with traditional
backpropagation offers a potent mechanism for neural
network training, providing faster convergence than
conventional gradient descent-based approaches (Zhou et al.,
2018; Amin et al., 2019). The gradient descent method and its
variants have been the cornerstone of these training processes,
guiding the weight adjustments based on the error gradient.
However, gradient descent, although straightforward, often
suffers from slow convergence, especially in regions of the
error surface where the gradient is small. This limitation led
to the exploration of second-order methods, and the LM
algorithm emerged as a leader in this domain.

Gauss–Newton is used to obtain the second derivative
(Hessian matrix), and the gradient descent method is used to
adjust the weights by the first derivative error. Both methods are
combined to create to develop the LM algorithm (M, Sarepaka,
and P 2013).

The principal drawback of using LM-BPNN is memory-
intensive and computational complexity. The LM algorithm
requires the computation and storage of the Jacobian matrix,
which can be memory-intensive for large networks, and inverting
the matrix in the weight update equation can also be
computationally expensive. Combining the seagull optimization
algorithm (SGO) with the CUDA-accelerated LM
backpropagation neural network (LM-BPNN) and hybrid-
parallelization approach helps address this drawback.

Hybrid parallelism was implemented to achieve significant
computational enhancement for the improved seagull
optimization algorithm (ISOA) integrated with LM-BPNN.
Hybrid parallelism combines data parallelism and model

FIGURE 10
MAPE analysis result of ISO-LMT-BPNN with existing methods.

TABLE 2 MAPE values for prediction accuracy.

MAPE value(%) Prediction accuracy

MAPE ≤10 High

0% < MAPE ≤20 Good

20% < MAPE ≤50 Reasonable

MAPE >50 Low
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parallelism, effectively utilizing the computational power of GPUs to
improve both speed and efficiency.

Data parallelism involves splitting the dataset into smaller
chunks and distributing these across multiple GPU cores. Each
core processes its assigned data chunk simultaneously using the
same model, thereby significantly speeding up the data
processing phase. Model parallelism, on the other hand,
divides the neural network model into smaller sub-networks
(SNNs). Each sub-network is processed independently on
different GPU cores, allowing different parts of the model to
be trained concurrently.

For instance, the neural network in our study was divided into
two sub-networks. Sub-network 1 included the input layer and
the first two hidden layers, while sub-network 2 comprised the
third hidden layer and output layer. During the forward pass,
each sub-network processed its respective part of the data in
parallel. The outputs from sub-network 1 were passed to sub-
network 2, maintaining the data flow required for sequential
layers. In the backward pass, gradients were calculated
independently within each sub-network and synchronized
before updating the weights. This approach minimized
computational bottlenecks associated with sequential
processing and maximized GPU utilization.

The CUDA framework was employed to set up the GPU
environment, specifying the number of threads and blocks for
parallel execution. By leveraging CUDA for both data and model
parallelism, the hybrid parallelism approach significantly
reduced computational time. This method allowed for faster
convergence of the neural network training process, as
evidenced by a 56% speed increase when utilizing a single
GPU and even greater improvements with dual GPUs
connected via NVLink. The reduction in training time and the
efficient utilization of GPU resources led to an overall 33%

improvement in throughput compared to traditional CPU-
based computations.

The integration of hybrid parallelism into the ISOA-LM-BPNN
model thus provided substantial computational enhancements. It
not only improved the speed of training but also ensured that the
model maintained high accuracy levels, making it suitable for real-
time applications in seismic monitoring and other domains
requiring rapid and reliable computation.

For the calculation of grid blocks size,

blocks � ⌈M
t
⌉ (15)

where M is size of the matrix, t is the maximum number of threads
considered for use in the GPU.

threads � ⌊ M

blocks
⌋ (16)

thread block is calculated from Equation 16. The weight update for
NN is

Wij � γ
Wij��������∑n1
i�1Wij

2
√ (17)

2.4 Proposed ISO-LMT-BPNN
prediction model

Step 1: Input data.
Step 2: Split data into data chunks (Di) (i=1,2,3,. . ...,n).
Step 3: Calculate threads and grids (Equations 15, 16).
Step 4: Parameters initialized for algorithm (ISOA).
Step 5: Copy data to the GPU.

FIGURE 11
Convergence rate of models for Iris database.
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Step 6: Map parameters to LM-BPNN and calculate its fitness
evaluation for each SNNi, f(best).

Step 7: For each SNNi,
update weight parameters by Equation 17,
update ctiter by Equation 1,
update miter by Equation 3,
update IPiter by Equation 14.

Step 8: Select best IPiter using LM optimization to refine
weights and biases of each SNNi.

Step 9: Replace the best IPiter with optimized values by LM
optimization in each SNNi.

Step 10: Take average of all c from each SNNi.
Step 11: If stopping criterion is met, go to Step 10; otherwise, go

to Step 6.
Step 12: The best IPiter with fitness values will have the best set

of weights and biases for LM-BPNN.

2.5 Performance metrics

Utilizing performance metrics including accuracy, precision,
recall, F-measure, RMSE, MAE, and MAPE, the suggested
model’s performance is assessed (Kollam and Joshi, 2020).

a) Accuracy

The accuracy rate is calculated by the proportion of
properly predicted instances to all examples. The accuracy is
defined as,

Accuracy � TP + TN

TP + FP + FN + TN
(18)

b) Precision

“Precision” refers to the accurate representation of the total
number of genuine samples that are appropriately considered
throughout the classification process relative to the total number
of samples involved in the classification process.

Precision � TP

TP + FP
(19)

c) Recall

The recall rate is a metric that quantifies the proportion of actual
samples that are correctly identified while categorizing data using all
samples from the training data within the same categories.

Recall � TP

TP + FN
(20)

d) F- score

A single type of data item must be present in each class, and all
data bits must be completely identified. The F-score number
achieves this balance. It is defined as the harmonic mean of
precision and recall rate.

FScore � 2Precision × Recall

Precision + Recall
(21)

e) RMSE

For each data point, obtain the residual (difference between
forecast and reality), the norm of residual, the mean of residuals, and

FIGURE 12
Convergence rate of models for traffic-flow prediction.
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then take the square root of that mean to determine the root mean
standard error (RMSE).

RMSE �
����������
1
N

pi − qi( )2√
(22)

Here pi, qi are the predicted and observed samples, respectively.

f) MAE

The mean absolute error (MAE) is a performance metric used in
regression analysis to quantify difference between the absolute and
predicted value.

MAE � ∑N
j�1 Ai − Fi| |

N
(23)

g) MAPE

Utilizing the MAPE formula, demand is divided by the total
number of distinct absolute errors (each period separately). It
reflects an average of percentage errors.

MAPE � 1
Ni

∑Ni

i�1
Avi − Fvi

Avi

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (24)

Where, Ni is the number of times the summation iteration
occurs, Avi is the actual value, and Fvi is the forecast value.

h) Computation time (CT)

The time it takes to anticipate an earthquake’s magnitude is
known as the CT. where TE is the end time of the algorithm and TS
its start time on CPU and GPU.

CT � TE-TS (25)

2.6 Experiment setup

In this section, we used three different datasets to conduct the
experiment. Datasets are the earthquake database from USGS
(Survey, 2020), IRIS database (150 × 4) (Fisher, 1988), and
traffic-flow prediction (2101 × 47) (Zhao, 2021); they can be
found in the UCI ML repository. The hardware utilized for this
was an Intel Core i7 CPU and NVIDIA GTX 1050Ti with
768 CUDA cores; for comparison, the GPU was RTX2080Ti with
4352 cores coupled with NVLINK.

In this study, we implemented hybrid parallelism for the ISOA by
segmenting the neural network model into smaller sub-networks. The
neural network layers were divided into manageable groups, forming
sub-networks that could be processed independently and concurrently.
For instance, a neural network comprising an input layer, three hidden
layers, and an output layer was split into two sub-networks: sub-
network 1 containing the input layer and the first two hidden layers,
and sub-network 2 comprising the third hidden layer and the output
layer. Each sub-network was assigned to a different GPU core, enabling
concurrent processing of different parts of the model. The forward and
backward passes were implemented within each sub-network, ensuring
the independent computation of outputs and gradients. Data transfer
mechanisms were established to ensure the smooth flow of data
between sub-networks, with the output of one serving as the input
to the next. The synchronization of weight updates across sub-networks
was achieved by aggregating gradient updates before updating the
weights. This segmentation and parallel processing approach
significantly enhanced computational efficiency, reduced training
time, and improved model accuracy. The implementation was
carried out using the PyTorch framework, leveraging its capabilities
for data andmodel parallelism to optimize performance across multiple
GPUs. This method demonstrates the efficacy of hybrid parallelism in
optimizing the training process of complex neural networks, making it

FIGURE 13
Convergence rate of models for earthquake database.
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suitable for real-time application in seismic monitoring and other
computationally intensive tasks.

In the context of hybrid parallelization training executed on a
single host, data undergoes division into segments, denoted as Di.
The main neural network is also segmented into sub-networks,
termed SNNi. Each Di is provided to SNNi. The operation of SNNi is
carried out on individual nodes using their respective grid and block
thread allocations on GPUs. Initialization of weights for every SNNi

and control parameters of the proposed ISOA algorithm. Figure 4
shows the flow of proposed model ISO-LMT-BPNN. Figures 5 and 6
provide a visualization of GPU core utilization during the training
phase of each SNNi. During this phase, weights, ctiter, miter, IPiter are
reinitialized for each SNNi.

In each SNNi, in the exploration phase, seagulls navigate the
solution space, seeking optimal outcomes. The adjustment of each
seagull’s position is influenced by its current location, the optimal
seagull’s position within the group, and a random factor simulating
the inherent exploration tendencies of seagulls. During the
exploitation phase, seagulls capitalize on the best-identified
solutions to discover improved results. This involves adjusting
their positions around the most promising solution, aiding in the
precise refinement of these solutions. Fitness values are used to
rank seagulls, and for the highest-ranking among them in each
SNNi, the LM optimization technique is applied to hone the neural

network’s weights and biases. This ensures minimization of
training data error. After training each SNNi, the original
solutions are substituted with optimized ones. An average is
calculated across SNNi to determine if the root mean squared
error (RMSE) falls below a specific threshold (10%). Conclusively,
the fittest seagull will possess the optimal set of weights and biases
for the CUDA-accelerated LM-BPNN.

3 Results and discussion

We now present simulated experimental data generated through
a graphical user interface (GUI). The development of this interface
was accomplished using the Python programming language, with
PyCharm IDE serving as the primary development environment. As
depicted in Figure 7, the GUI is structured to facilitate several key
functionalities: it allows for the loading of datasets, provides tools for
model training, and offers the capacity to produce performance
metrics. Additionally, Figures 7 and 8 offer a visual comparison,
illustrating the performance contrasts of the proposed model.

In Table 1, a systematic performance evaluation is presented,
comparing various models against our proposed model, all tested on
an earthquake dataset. From Figure 9, it becomes evident that the
proposed model exhibits superior performance characteristics

TABLE 3 Performance breakdown of data, model, and hybrid parallelism to an earthquake dataset with their computing time in seconds(S).

CPU PyTorch Caffe Proposed

Data-parallelism Model-parallelism Hybrid-parallelism

TB1 TB2 TB1 TB2 TB1 TB2

ISO-LM-BPNN 1253 1098 863 1056 967 1078 721

LM-BPNN 1874 1695 1382 1789 1410 1678 1286

Note: TB1- 1050Ti GPU, and TB2 - 2 RTX, 2080TI, with NVLink.

FIGURE 14
Performance of CPU vs. GPUs for Iris dataset.
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relative to existing models in the context of the dataset under
consideration.

From the analysis presented in Figure 10, the mean absolute
percentage error (MAPE) for the proposed model stands at a mere
3%. Reference to Table 2 establishes a benchmark wherein a MAPE
value less than 10% signifies a superior predictive model. Given that
the LMBNN model also yields a MAPE value below this 10%
threshold, it can be inferred that it possesses commendable
predictive capabilities. While other models evaluated in this study
report MAPE values under 20%—which is still acceptable for certain
applications—it is evident that the ISO-LMBPNN model boasts a
notably higher prediction accuracy.

Analyzing Figure 11, it is apparent that the convergence rates of
all evaluated models are strikingly similar. This close alignment can
be attributed to the modest size of the dataset, leading to rapid
convergence across all models. However, as the size of the dataset
and its inherent complexity escalate, the convergence dynamics of
the algorithms shift. In contexts such as traffic flow prediction and
an earthquake database, a discernible distinction emerges. The
proposed ISO-LMBPNN model demonstrates superior
performance, as can be further evidenced by Figures 12 and 13,
relative to the other models under consideration.

In this study, we assess and compare the throughput across three
types of parallelism: data, model, and hybrid. “Throughput” is

FIGURE 15
Performance of model with various CPU and GPUs approach for traffic-flow database.

FIGURE 16
Performance of model with various CPU and GPUs approach for earthquake database.
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defined as the number of training samples processed every second.
To ensure the integrity and consistency of our findings, the
throughput metrics were gathered during a specific window of
training, from the initial (0th) to the 160th iterations. These values
were derived from evaluations on distinct platforms: a single CPU,
TB1, and TB2. For implementing data parallelism, we utilized the
PyTorch framework; model parallelism was achieved using Caffe;
for hybrid parallelism, a custom CUDA kernel was crafted
and employed.

Note: TB1- 1050Ti GPU and TB2 - 2 RTX 2080TI with NVLink.
Reference to Table 3 reveals that the throughput for the ISO-

LMBPNN on a CPU exhibits a marked 33% improvement over
the existing LMBNN. A closer examination of parallelism
strategies suggests that data parallelism outpaces model
parallelism; this is because of staleness mitigation (C.-C. Chen,
Yang, and Cheng, 2019). However, the introduction of hybrid
parallelism addresses this limitation. Indeed, the proposed
model’s throughput surpasses both data and model parallelism
by a notable margin of 10%.

An evaluation of the performance dynamics between ISO-LM-
BPNN and LM-BPNN across three diverse datasets underscores the
pivotal role that both the size and intricacy of a database play in
influencing computational speed.

Figure 14 describes the performance dynamics of the
proposed model in comparison with LM-BPNN, specifically
when applied to the Iris database. A careful examination of
Figure 14 reveals a parity in computational speeds between
CPU and GPU for both ISO-LMT-BPNN and LM-BPNN
across all tested scenarios. This observed uniformity can be
attributed to the modest size of the dataset, characterized by a
limited number of instances. Consequently, the anticipated
advantages of GPU utilization were not realized. The processes
of dataset loading, offloading, and the allocation of grids and
threads collectively contributed to equivalent execution times
across all GPU platforms.

Upon analyzing Figure 15, it becomes evident that the proposed
model exhibits a substantial 72% performance differential. In
contrast, the existing LMBNN model demonstrates a 50%
disparity when comparing computational results from a CPU
against those from a configuration of two RTX 2080Ti GPUs
interconnected via NVLink.

Figure 16 illustrates a direct relationship between the intricacy
and magnitude of the database and the model’s performance
metrics. Specifically, when juxtaposing results from a CPU with
those from a singular 1050Ti GPU, a performance uptick of 15% is
observed. In a parallel comparison against a configuration of two
RTX 2080Ti GPUs interconnected via NVLink, the performance
surge reaches 54%. This pattern underscores the efficacy of
employing robust GPU configurations in amplifying
computational processes. From these observations, one can infer
that the model not only scales efficiently but is also adeptly tailored
for GPU-oriented operations.

4 Conclusions

In this study, we devised the ISO algorithm with the aim of
refining the precision of the Levenberg–Marquardt

backpropagation neural network, particularly in the realm of
earthquake forecasting. The model’s accuracy fundamentally
hinges on the apt identification of neural network parameters.
Given the extensive computational demands associated with
training deep neural networks, leveraging GPU acceleration
has emerged as an effective strategy for augmenting
computational velocity. Evaluations of the ISO-CUDA-
accelerated LM-BPPNN were conducted across three distinct
datasets and juxtaposed against four pre-existing algorithms.
The findings indicate a remarkable 98% model accuracy
achieved through the proposed approach. Furthermore, a
computational enhancement of 40% was realized by embracing
hybrid parallelism, thereby sidestepping the inherent obstacles
present in both data and model parallelism. BPNN across all
tested scenarios. This observed uniformity can be attributed to
the modest size of the dataset, characterized by a limited number
of instances. Consequently, the anticipated advantages of GPU.
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