
Intelligent railroad inspection and
monitoring

Yu Qian*

Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC,
United States

Railways are essential to the global transportation infrastructure, providing eco-
friendly and economical solutions for the movement of freight and passengers.
Inspecting and maintaining extensive rail networks timely poses significant
challenges. My group and collaborators have focused on automated railroad
inspection technologies, emphasizing the use of deep learning and computer
vision to overcome the limitations of traditional manual inspections. Our research
introduces groundbreaking real-time inspection methods, leveraging a
specialized dataset of railroad components for enhanced instance
segmentation models, achieving unprecedented accuracy and inference
speeds. The developed computer vision systems efficiently detect track
components and their changes over time, and also quantify rail surface
defects. Additionally, our work extends to improving railroad crossing safety,
utilizing deep learning frameworks for the detection of unusual pedestrian
behaviors and object identification, aimed at reducing crossing incidents and
improving emergency response times. Our future research directions aim to
further refine the cost-effectiveness and autonomy of railroad inspection
systems. Through these innovations, we hope to aid in the inspection and
maintenance of railroads, offering practical solutions for railroad and other
civil engineering applications.
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1 Introduction

Railways are crucial to the worldwide transportation network, fueling economic
development and facilitating efficient travel. However, monitoring these vast rail systems
presents considerable challenges. The extensive railroad networks, traversing varied and
sometimes inaccessible terrains, require timely and comprehensive maintenance efforts.
Factors such as extreme weather conditions, routine wear and tear, and the risks of
vandalism or sabotage continually threaten the integrity of railway tracks. Moreover, the
complexity of conducting track inspections necessitating advanced tools and skilled
professionals. As of 2024, the United States operate an extensive railway infrastructure, with
around 220,000 km allocated for freight and an additional 34,000 km for passenger services
(Robinson et al., 2023). The Federal Railroad Administration (FRA) emphasizes the importance
of regular, comprehensive track inspections to uphold safety and operational efficiency (FRA,
2018a). Key track elements like spikes, bolts, and clips are especially susceptible to damage from
continuous use and environmental changes. Failure to identify such defects can lead to serious
accidents and considerable economic losses. In 2018 alone, track-related defects resulted in
546 incidents, incurring over $97 million in damages, including significant incidents involving
missing or damaged components causing around $10 million in losses (FRA, 2018b). The FRA
mandates frequent inspections to promptly identify and address these issues. However,
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traditional inspection methods remain labor-intensive and costly.
Inspections, particularly for missing components, are often
performed manually, a process that is both expensive and inefficient.

Over the past 2 decades, remarkable progress has been achieved
in automating track inspection systems. Early methods provided
innovative solutions for detecting missing fasteners and rail defects,
though they often faced limitations in terms of resolution,
component variety, and computational demands. The advent of
convolutional neural networks (CNNs) has revolutionized this field,
leveraging vast datasets and increased computing power to enhance
object detection and segmentation capabilities. Yet, despite these
advancements, the challenge of real-time, on-site inspections has
remained, with many systems requiring post-processing of data or
substantial computing resources.

2 Our recent effort in developing
real-time railroad inspection methods

In response to these challenges, our team has focused on advancing
real-time railroad inspection techniques.While various datasets exist for
training computer vision models on general object detection and
segmentation, specific datasets for railroad track images have been
scarce. Guo et al. (2021a) took a significant step by creating the first
publicly available dataset of railroad components, comprising
1,000 images to aid the application of advanced deep learning
models in track inspections. This initiative led to the development of
a pixel-level detection system for track components, utilizing an
enhanced instance segmentation model. This system achieved real-
time instance segmentation with remarkable accuracy, especially
reaching an inference speed over 30 FPS with a single GPU for the
first time in the field of railroad engineering. Guo et al. (2021b) further
accelerated the inspection speed by introducing hybrid activation
functions to better allocate limited computational resources. The
rapid evolution of deep learning and computer vision has unlocked
new possibilities for automated track inspections, addressing the
limitations of earlier systems that relied on data transfer for post-
processing or required substantial computing power. Recent
innovations include a portable system by Tang and Qian, (2024a),
which combines the latest YOLOv8 object detection model with a
custom template matching algorithm. This setup not only identifies
track components like spikes, bolts, and clips but also detects missing
ones with unprecedented speed and efficiency, offering a cost-effective
solution for enhancing rail safety. Tang and Qian, (2024b) further
refined the inspection process by introducing a high-speed model
inference pipeline. This new approach, leveraging parallel processing
and advanced computing techniques, significantly increases the
detection speed, making it suitable for high-speed inspection
requirements.

The complexity of rail inspections lies not only in identifying
present components but also in detecting absent ones to facilitate
maintenance planning. The variability in baseplate types and fastening
systems, along with their installation patterns, necessitates a flexible
approach to detection. Tang et al. (2024c) introduced a Cascade
R-CNN model with Predefined Proposal Templates representing a
significant advancement in adapting to new track configurations not
previously included in training datasets, enhancing the versatility and
applicability of the proposed system. Rail surface defect (RSD) is

another major concern for railway safety, contributing to a significant
portion of rough vehicle-track interaction and even derailments. To
address RSD, Guo et al. (2021c) quantified RSD areas automatically
based on Mask-RCNN. Later, Wu et al. (2022) developed a hybrid
deep learning architecture for detecting RSDs with a novel rail
boundary guidance network. This approach, along with other
advancements such as the implementation of advanced models like
RailFormer (Guo et al., 2024), demonstrates a significant
improvement in detecting RSDs at various scales. The introduction
of an all-in-one YOLO framework for multi-task track component
inspection byWu et al. (2023)marks a further step towards enhancing
inspection efficiency, offering a comprehensive solution that
encompasses both track components and adjacent areas through
UAV imagery. Figure 1 gives an example of processing a raw
image to identify different track components and quantify rail
surface defects, respectively.

These innovations represent a leap forward in railroad inspection
technology, offeringmore efficient, accurate, and cost-effective solutions
for maintaining rail safety. By leveraging the latest in computer vision
and deep learning, researchers are setting new standards in the field,
with potential applications extending beyond railroad inspections to
other areas of civil engineering and maintenance.

3 Our recent effort in railroad crossing
safety and connected community

The FRA report to congress “National Strategy to Prevent
Trespassing on Railroad Property” highlights that trespassing is
the leading cause of railway-related fatalities in the United States
(FRA 2018c). Surpassing even vehicle-train collisions, the toll
includes over 1,230 pedestrian rail trespass incidents (both
fatalities and injuries) in 2022, with 675 deaths and 555 injuries
reported. This issue, alongside the staggering $43 billion financial
impact from 2012 to 2016, underscores the urgent need for
innovative solutions (FRA, 2024).

Addressing pedestrian behavior at railway crossings presents
significant challenges due to the nuanced differences between normal
and potentially hazardous actions. The pioneering work by Jiang et al.
(2022) introduced a deep learning framework capable of detecting
unusual pedestrian behaviors through video analysis and skeleton
tracking. This method marks a key step towards understanding and
mitigating risks at crossings. Further advancements came from Song
et al. (2023), who developed a GAN-based framework for analyzing
pedestrian behavior without the need of location-specific adjustments,
enhancing its applicability across various settings.

However, dangers at railway crossings are not limited to intentional
or unintentional pedestrian actions. A notable incident on 27 June 2022,
involved an Amtrak train colliding with a dump truck in Missouri,
causing four deaths and injuring about 150 passengers (Jonathan, 2022).
Tang et al. (2023) responded to the need for broader detection
capabilities with the RC-SAFE Network, a system designed to
identify any foreign object at crossings, extending beyond just
pedestrian monitoring. Figure 2 provides an example of
continuously monitoring of a crossing and the pedestrian and
vehicle can be detected and segmented in real time.

Congestion at railway crossings not only causes delays but can
also impede emergency response times. Research conducted in
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Columbia, SC, revealed that all surveyed first responders had faced
delays at crossings, sometimes up to 40 min. Early attempts to
predict crossing clearance times used computer vision to estimate
vehicle queues (Jiang et al., 2021; Guo et al., 2022a), while Guo et al.
(2022b) refined this approach with the DTDNet, a CNN designed to
count vehicles accurately under various conditions.

To further aid emergency response, Wu et al. (2024) introduced
a vehicle dispatching algorithm that dynamically updates optimal
routes based on train movements and responder locations,
potentially reducing response times by up to 61.6%. This
innovation promises significant benefits for community safety
and emergency dispatch efficiency.

FIGURE 1
Example of track component and rail surface defect detection. (A) Raw Track Image, (B) Track Component Detection, and (C) Rail Surface
Defect Detection.

FIGURE 2
Example of continuously object detection at a railroad grade crossing.
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4 Our future research

Railways play a crucial role in the transportation ecosystem,
and our research is dedicated to enhancing railroad safety
through the development of advanced, efficient inspection and
monitoring systems. Given the increasing demands of track
inspection, fueled by a vast network and the growing need for
secure and timely freight and passenger transport, our future
efforts will pivot towards two primary objectives: cost-
effectiveness and autonomy.

Firstly, we aim to pioneer lightweight yet precise computer
vision models that can be integrated into cost-effective edge-
computing platforms. Despite the availability of numerous
inspection systems in the market, their adoption is often limited
by high costs. Our objective is to create systems that are both
affordable and user-friendly, thereby improving their accessibility
and utility for railroad operators.

Secondly, we are committed to exploring autonomous systems
capable of conducting inspections and monitoring tasks with
minimal human intervention. Track inspection is a labor-
intensive activity, requiring inspectors to juggle multiple tasks
and process diverse data streams simultaneously. By developing
systems that can autonomously handle specific inspection tasks, we
aspire to alleviate the workload of human inspectors, enabling them
to concentrate on other critical aspects of their role.

This approach not only promises to revolutionize how railroads
maintain safety and efficiency but also aligns with the broader goal
of advancing transportation technology to meet the challenges of
the future.
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