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The dynamic response of a railway bridge depends on several parameters; the
primary parameter is the fundamental natural frequency of vibration of the bridge
itself. It is considered a critical parameter of the bridge as the driving or the forcing
frequencies arising from moving trains may coincide with the fundamental
frequency of the bridge and initiate a resonant response amplifying the bridge
load effects. This condition may adversely affect the stresses experienced on
bridge members and, consequently, the remaining fatigue life of the structure.
Because the train adds additional time-varyingmass to the bridge, this introduces
a time-varying change in the bridge’s fundamental natural frequency of vibration.
As a result, train critical speeds will have a certain range depending on the train
configuration. This article presents a simplified method using a power-law
relationship to predict the frequency characteristics of a bridge as a function
of the train-to-bridge mass ratio. The method is presented in a generalized form,
which enables the frequency characteristics to be determined for any given
combination of trains and simply supported bridges of short to medium span
typically found on the UK rail network. Themethod is then demonstrated in a case
study of a single-span, simply supported plate girder bridge. By considering the
BS-5400 train traffic types, the proposed method is used to calculate bridge
frequency effects, dynamic amplification, and train critical speed bandwidth for
each train type. The simplicity of the proposed method, as it does not require any
complex computational modeling, makes it an ideal and effective tool for the
practicing engineer to carry out a quick and economical assessment of a bridge
for any given train configuration.
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1 Introduction

In the field of structural dynamics, the study of the dynamic response of railway bridges
under a series of moving loads or sprung masses, which typically represent a train set, has
received significant attention. Unlike road bridges, where loading is of a more random
nature, for railway bridges, it is the periodic nature of the train axle loads from the
consecutive passage of train wagons that give rise to unique frequency response spectrums.
Under a resonant response condition, this can influence the magnitude of the bridge’s
dynamic response and can, therefore, adversely affect the fatigue life of a bridge. With the
on-going concern about many aging railway bridges, which is further exacerbated by the
increase in the volume of rail traffic, axle loads, and train-operating speeds, this has become
an area of increased research focus. For the bridge asset owner, the main objectives are to
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maintain the structural integrity and operational performance of the
bridges and prolong their service life. Therefore, understanding the
bridge–train interaction dynamic response and the parameters and
conditions that can initiate a resonant response becomes extremely
important as these can adversely affect fatigue. By knowing this
information, an optimum train-operating and bridge maintenance
regime can be implemented to prolong the life of the bridge.

The collapse of the Chester railway bridge in 1847 (Stokes, 1867)
initiated research into the dynamics of railway bridges. Early
investigations on railway bridge dynamics were performed using
analytical and approximate methods (Yang et al., 2004a). Even
during this early period, the importance of the bridge vibration
frequency coinciding with the frequency of a series of impulse loads
and how this affected the magnitude of the impact load was
becoming clear (Robinson, 1886). Kryloff (1905) first presented
the classical solution for a beam subjected to a moving load.
Thereafter, much of the early assessment of bridge dynamic
effects concentrated on the development of impact equations.
Bridges in these early studies were simply represented as uniform
beams, while the trains were represented as a series of moving loads
that neglected any of the sprung masses. Using both moving load
and moving mass type models on a simple beam, Timoshenko
(1922) produced several studies using a moving load or pulsating
force acting on the beam and proposed approximate solutions to the
problem. Other researchers carried out similar studies during this
period, such as those by Inglis (1934) and Lowan (1935). Inglis’s
theoretical and experimental work paved the way for further
development of the subject area, particularly the effects of impact
on the vibration of railway bridges. Three of the most significant
works in this area were carried out by Looney (1944), who
introduced impact allowance factors into bridge design codes.
These early models provided a means, using both analytical and
numerical methods, by which the key parameters influencing bridge
response could be investigated.

In the last few decades, the most comprehensive treatment of the
subject of railway bridge dynamics has been provided by Frýba
(1999) and Yang et al. (2004a). Yang et al. (2004b) provided a broad
and systematic coverage of the interaction of the train with the
bridge, particularly focusing on the vibration problems encountered
in high-speed railway bridges. With the advent of modern
computing, more complex train–bridge interaction models have
evolved where the dynamics of the train and tracks are now
introduced as a complete coupled system (Kwark et al., 2004;
Yang et al., 2005; Dinh et al., 2009; Liu et al., 2009; Majka et al.,
2009). The main focus of these models was to investigate how track
irregularity and the dynamic interaction of the train affected the
response of the bridge. In current bridge assessment codes, such as
the UK railway bridge assessment code NR/GN/CIV/025 (2006),
bridge dynamic effects are captured by calculating a dynamic
amplification factor (DAF). The DAF is simply the ratio between
the dynamic and static response and is calculated based on train
speed, bridge natural frequency, and span lengths. The DAF
provides a means by which dynamic effects, particularly when
considering fatigue, can be accounted for in a quasi-static
analysis. The methodology by which the DAF is calculated
evolved though empirical means from the results of field tests
and analytical studies. With modern high-speed trains and
heavier train loads, the accuracy of the DAFs suggested in codes

has been the subject of extensive research. Train–bridge interaction
models, including coupled trains, have also been used to investigate
bridge dynamic response to establish more accurate DAF values
(Kwark et al., 2004; Karoumi et al., 2005; Majka and Hartnett, 2009;
Wiberg, 2009; Hamidi and Danshoo, 2010; Imam and Yahya, 2014).
These models are generally complex, requiring advanced finite
element (FE) analysis or numerical models. Some of the latest
works on train–bridge dynamic interaction modeling, involving
the interaction of the moving mass with the bridge, require the
solution of systems of equations involving large numbers of degrees
of freedomwith numerical methods (Koç, 2021; Koç and Esen, 2021;
Koç et al., 2021). Kohl et al. (2023) provide one of the latest
investigations into vehicle–bridge dynamic interaction effects
using a 2D six degrees-of-freedom multi-body model (MBM).

The dynamic response of a bridge can be affected by multiple
factors, including the train configuration, train mass, and speed. The
primary flexural modes of vibrations are caused by the “driving
frequencies,”which depend on the time that a train takes to cross the
bridge, and the “dominant frequencies” associated with the
repetitive axle loads (Yang and Lin, 2005; Ribes-Llario et al.,
2016). These two parameters have been studied by various
researchers investigating additional aspects of railway bridge
dynamic response (Paultre et al., 1995; Frýba, 2001; Ju et al.,
2009). Amplification of the bridge response can occur if a train
speed is considered critical. Because the train mass can potentially
affect the bridge’s natural frequency of vibration, the critical speed
can also shift. This can also vary depending on the magnitude and
position of the trainmass on the bridge (Lu et al., 2012).Whether the
bridge response is significantly affected depends on two parameters:
the ratio of the bridge’s natural frequency to the frequency of the
sprung mass of the train and the ratio of the bridge mass to that of
the train (Doménech et al., 2012). These also determine whether a
moving load model (MLM) or a multi-body model (MBM) is
required to accurately capture the bridge dynamic response. For
high values of the frequency ratio (bridge/train), the train–bridge
interaction is not significant as both systems behave as though they
are not dynamically coupled (Doménech et al., 2012). In this case,
the MLM model is sufficient to model the train–bridge interaction.
For lower frequency ratios and where the bridge–train mass ratio is
low, which can be the case for light bridges, an MBM model is
recommended (Doménech et al., 2012).

Much research provides an understanding of the frequency
variation of bridges under moving trains (Li et al., 2003; Auersch,
2005; Ju et al., 2009; Xia et al., 2014; Bisadi et al., 2015). These studies
explain the variation of the bridge’s natural frequency of vibration
considering the train mass. Milne (2017) provides an understanding
of the properties of train load frequencies considering the effects of
vehicle geometry, bogie, and axle spacing. A study of critical train
speeds and resonance cancellation effects is provided byMao and Lu
(2013). The general method introduced by Mao and Lu (2013)
utilizes the classical beam theory to establish a means by which the
reduction in the bridge’s fundamental frequency could be accounted
for as a result of the train mass. Their work introduced a Z-factor
that provides a measure of the severity of the resonance effect. An
effective frequency ratio was also established to account for the
reduction in frequency due to train mass. The study provided a
means of identifying the critical train speeds that could cause the
most serious resonance effects. This could potentially be used to
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control train speeds for existing bridges to minimize or eliminate the
effects of resonance.

More recent studies have helped to identify the primary bridge
frequencies and demonstrate that these are caused by the “driving
frequencies” (Yang and Lin, 2005; Ribes-Llario et al., 2016). Other
frequencies, termed the “dominant frequencies,” were identified as a
result of the repeated loads and the time interval between
consecutive carriages (Paultre et al., 1995; Frýba, 2001; Yang and
Lin, 2005; Ju et al., 2009; Ribes-Llario et al., 2016). While numerous
studies are available on critical train speeds, resonance effects, and
their impact on bridge response, there is a lack of simplified methods
that can provide a quick initial prediction of these effects. For the
practicing engineer, a simplified analytical method by which trains
could be accounted for when assessing bridge dynamic response and
identifying critical train speeds would be beneficial. This would be
particularly useful when considering standard trains, such as those
available in the BS-5400 bridge assessment code, which are typically
used in railway bridge fatigue assessments to quantify dynamic
effects on fatigue damage accumulation rates on bridge members.

The complex models available in the literature, however, do not
provide a closed-form solution and require considerable time and
computational effort to analyze. The fact that MBM models require
considerable computational effort compared to MLMs is
acknowledged by Kohl et al. (2023). Furthermore, the parameters
required for aMBM are generally not available in the public domain.
Therefore, in practice, the MLMs still provide valuable and efficient
means by which bridge dynamic response effects can be investigated.
The MLMs can be used where there are negligible dynamic coupling
effects between the train and bridge. This depends on the ratio of the
natural frequency of vibration of the train suspension to that of the
bridge. In a recent publication by Hora et al. (2023), the validity of
the MLM approach was compared against a moving mass model
(MMM) without considering the suspension system. The authors
showed that both MLMs and MMMs gave the same displacement
time responses for mass ratios less than 1.0. They concluded that the
MMMs should be used when the moving mass becomes greater than
the mass of the structure. In addition, MMMs showed a decrease in
the resonant speeds as the mass ratio increased. In the current work
of this article, the bridge structures analyzed with respect to the BS-
5400 trains have mass ratios of less than 1.0.

MLMs can provide practical benefits for the practicing engineer
who may be more interested in a first-level approximation for an initial
and quick insight into the problem. They can be useful in establishing
critical train speeds, and, most importantly, they could be used to assess
the influence of dynamic effects on bridge fatigue relatively quickly for
given train types, configurations, and speeds. A first-level assessment
could help identify whether a more detailed assessment is needed, such
as using anMBM approach. Researchers continue to study and identify
parameters that can govern bridge dynamic response and resonance
effects using both moving load and moving mass models (Li and Su,
1999; Yau, 2001; Garinei and Risitano, 2008; Martinez-Rodrigo et al.,
2010). The work described in this article provides a general analytical
method utilizing a power-law relationship to determine the reduction in
a bridge’s natural frequency and the reduction in critical train speeds
using a quasi-static-based analysis. This work enables a bridge
frequency adjustment factor to be easily incorporated into the
closed-form solution to the moving load problem provided by Frýba
(1999). The methodology is based on the MLM but could be extended

to include more complex MBMs, as proposed by Koç (2021) and Kohl
et al. (2023), as well as for other types of bridge–train
interaction problems.

2 Bridge model

The dynamic moving load models used in this study are based
on the Euler–Bernoulli beam (EBB) theory as formulated by Frýba
(2001) and a quasi-static moving load model using general beam
deflection equations for a simply supported beam. The
representation of the bridge response under a series of moving
loads and the idealized form of the train loads for the EBB dynamic
and quasi-static models are depicted in Figure 1 for a typical train.
The model is implemented within MATLAB, and the dynamic
response results are compared with the quasi-static moving
load model.

2.1 Euler–Bernoulli beam (EBB) model

The bridge response under a moving load can be solved using
the classical Euler–Bernoulli beam theory, represented by Eq. 1, for a
single moving load, P, traversing a beam (Svedholm, 2017).

∑∞
i�1

EI
∂4ϕi x( )
∂x4

qi t( ) + μ
∂2qi t( )
∂t2

ϕi x( ) + c
∂qi t( )
∂t

ϕi x( )( )
� δ x − vt( )P, (1)

EI Flexural rigidity of the beam with a constant moment
of inertia,

ϕi(x) Linear combination of normal modes,
qi(t) Generalized coordinate of the nth mode,
x Length coordinate from the origin at the right hand of the beam,
t Elapsed time from the instance at which the moving concentrated
load P enters the beam,

μ Mass per unit length of the beam,
c Equivalent coefficient of viscous damping of the beam,
δ Dirac delta function that describes a moving concentrated load,
v Load traveling speed,
P Moving concentrated load.

Eq. 1 describes the motion of a beam with a flexural rigidity, EI,
and a uniformly distributed mass, μ, along which the force, P, moves
at constant velocity, v. The parameters on the right-hand side of Eq.
1 represent the motion of the constant force, which is described by
the Dirac function δ(x) (Yang et al., 2004b). The function of the
vertical deflection of the beam, y(x, t), can be expressed as a product
of two functions, the mode shape function (Eigen-function) ϕi(x),
and the function of the generalized coordinates qi(t). Eq. 1 forms the
basis of the moving loadmodel, which is then extended for a series of
moving loads to the form given by Eq. 2 (Frýba, 1999; Yang
et al., 2004a).

EI
∂4y x, t( )

∂x4
+ μ

∂2y x, t( )
∂t2

+ 2 μωd
∂y x, t( )

∂t
� ∑N

n�1
εn t( ) δ x − xn( )Fn,

(2)
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y(x, t) Vertical deflection of the bridge at position x and time t,
ωd Circular damped frequency of the bridge,
εn(t) Describes the Heaviside unit step function for the arrival

(turning on) and departure (turning off) of the nth

axle force, Fn,
Fn Constant magnitude concentrated axle force,
Xn Position of the nth axle force, Fn, from the first axle,
v Train constant speed,
xn � vt − Xn Position of the nth axle force, Fn, from the

bridge origin.
Eq. 2 is solved using the fundamental relationships of the Fourier

sine integral transformation that presents the problem in the frequency
domain. The Laplace–Carson integral transformation method is then
applied to present the problem in the complex domain. The inversion of
the Laplace–Carson transform presents the problem in real space, and
the Fourier transform is then used to reduce the equation to the time
domain. This method enables an analytical closed-form solution of Eq.
2. This method has been applied by Frýba (1999) to provide the closed-
form solution, enabling the calculation of the vertical deflections of the
bridge at any specific location x along the bridge as a function of time as
given by Eq. 3. The equation expresses the forced vibration of the
bridge due to the moving loads and the free transient damped

vibrations after the train has left the bridge. The acceleration
response of the bridge can be obtained by the double
differentiation of Eq. 3.

y x, t( ) � ∑∞
j�1
∑N
n�1

y0Fnjωω
2
1 f t − tn( )H t − tn( )[

− −1( )jf t − Tn( )H t − Tn( )] sin jπx,

L
(3)

y0 Unit load deflection,
L Bridge span,
j jth modal frequency (j = 1 for first vertical bending mode),
ω Forcing frequency,
ω1 Circular natural frequency of vibration of the bridge (first

vertical bending mode)
The solution is facilitated by introducing an incremental

distance, Linc, which must be a factor of the bridge span and
train axle spacing and coupling distance dimensions. This value
is based on the rightmost non-zero significant figure of any of the
dimensions, and Linc must also be an integer ≥ 1. With the first axle
position on the bridge at time t � 0, the complete train set length
with the first axle as the origin is given byXn�k, which is the position
of the last axle, k, from the first. Dummy axle loads, Fd,1 → Fd,n, are

FIGURE 1
Bridge and train moving loads idealized for the mathematical model.
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introduced between each axle with zero values. These are positioned
using the increment distance Linc to provide a series of equally
spaced loads, F1 → Fk, according to Figure 1. With reference to
Figure 1, the time when the nth axle force, Fn, enters the bridge is
given by Eq. 4, whereas the time when it leaves the bridge is given by
Eq. 5.

tn � Xn

v
, (4)

Tn � L +Xn

v
, (5)

For the closed-form solution, Eq. 6 describes the Heaviside unit
step function, H(t), for the arrival (turning on) and departure
(turning off) of the nth axle force, Fn, and their time shifts t − tn
and t − Tn, respectively.

εn t( ) � H t − tn( ) −H t − Tn( )H t( ) � 0, t< 0
1, t≥ 0.

{ (6)

The parameter f in Eq. 3 is a function of the inverse
Laplace–Carson transformation, as given by Eq. 7. The first
term expresses the response of the bridge due to the moving
loads, and the second term is the transient response. The
subscript j is the jth mode of vibration, where in this case, as
we are only concerned with the bridge’s fundamental vertical
bending mode of vibration, j = 1.

f t( ) � 1

ω′
j D

ω′
j

jω
sin jωt + θ( ) + e−ωd t sin ω′

j t + φ( )⎡⎣ ⎤⎦. (7)

The parameters of Eq. 7 are defined as follows:

ω′
j �

�������
ω2
j − ω2

d

√
, (8)

D �
��������������������
ω2
j − j2ω2( )2 + 4j2ω2ω2

d,

√
(9)

θ � tan−1 −2jωωd

ω2
j − j2ω2,

(10)

φ � tan−1 2ωdω′
j

ω2
d − ω′2j + j2ω2,

(11)

ωd � f 1( )ϑ. (12)

where ϑ is the logarithmic decrement of damping given by Eq. 13
(Frýba, 1999), and f(1) is the bridge’s fundamental vertical bending
mode of vibration.

ϑ � 1
0.3L − 0.0012L2

. (13)

Further details on the parameters and derivation of the
equations can be found in Frýba (1999). The model equations
were implemented and solved within MATLAB.

2.2 Quasi-static model

The mid-span bridge deflections are calculated using classical
beam equations and employing the principle of superposition. Using
this type of analysis, a DAF can be calculated using relevant codes of
practice to account for the dynamic effects on deflections, bending

moments, and stresses. This type of assessment is generally referred
to as a quasi-static (Q-Static) analysis and cannot account for
dynamic effects, such as a resonance response of the bridge, or
the change in frequency of the bridge due to additional mass
imposed on the bridge due to the train. However, as is shown in
this article, the method can be used to obtain a general equation that
can be used to predict the change in the frequency due to the train as
a function of the unladen bridge resonant frequency and the
train–bridge mass ratio. The method is also used to calculate a
frequency reduction factor for each train–bridge configuration,
which is then implemented in the EBB dynamic model to
account for the vertical natural frequency reduction due to the
mass of the train.

The quasi-static solution is facilitated by dividing the
bridge span into equal increments based on the calculated
Linc value, as discussed previously. Starting from position
zero, the total number of bridge increments, Nbr, is given
using Eq. 14.

Nbr � 1 + L

Linc.
(14)

Similarly, the total number of axles, k, including dummy axle
loads, is given by Eq. 15, where XTrain is the length of the train from
the first to the last axle.

k � 1 + XTrain

Linc
. (15)

The deflection influence curve of the bridge at the mid-span,
a � 0.5L, is calculated using Eq 16, where x is the position of the
moving force given by x � 0: Linc: L, and P is a unit load, which in
this case is equal to 1 ton (9806.65 N).

Dbr �
Pa L − x( ) 2Lx − x2 − a2( )

6EIL
〈x≥ a〉

Px L − a( ) L2 − L − a( )2 − x2( )
6EIL

〈x< a〉.
(16)

For the series of axle loads crossing the bridge, the mid-span
displacement is given by Eq. 17 using the principle of superposition.

δQStatic � ∑k
j�1

∑j+Nbr

j+1
FjDbr. (17)

To check the validity of the EBB dynamic and the quasi-static
models, both models were run using two typical trains (S-T1 and
EMU-T2) on two case study bridges (Bridges 1 and 2, respectively,
see Table 1), which represent typical short- to medium-span railway
bridges found on the UK rail network. The speed of the EBB
dynamic model was set to 1 km/h to minimize any dynamic
effects. The displacement response results are presented in
Supplementary Figure S1, which shows that both models produce
the same response results.

3 Case study bridges

To investigate the effect of train mass on the bridge resonant
frequency, a range of plate girder bridges that are common on the
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UK rail network is considered. These bridges represent medium-
and short-span bridges whose fundamental vertical bending mode
resonant frequency varies between 5 Hz and 14 Hz. Table 1 lists the
case study bridges and provides their key design parameters used in
this assessment. Bridges 1 to 5 have been obtained from Gaillard
(2003), while Bridge 6 has been obtained from Gu et al. (2008).
Young’s modulus, E, was assumed to be equal to 210 GPa for
all bridges.

The methodology employed for determining the effect of train
mass on bridge frequency is demonstrated by arbitrarily using
Bridge 2. This bridge is a half-though deck plate girder bridge
with two main girders, as shown in Supplementary Figure S2.
Transverse girders spaced at 508 mm are provided with concrete
in-fill that supports a centrally located single track. For the EBB
model, which is based on a uniform beam and considers the first
bending mode of vibration, only flexural rigidity is required.
Therefore, only Young’s modulus, E, and the second moment of
area, I, are required for the analyses.

3.1 Finite element model of loaded beams

Because the case study bridges can be reasonably represented as
uniform beams for predicting the fundamental vertical bending
mode of vibration, a finite element analysis was performed to predict
the change in frequency as a result of the additional mass imposed
on the beam due to passing trains. Supplementary Figure S3 shows
the FE models of each Bridges 1–6, which were developed using NX
Siemens, represented as simply supported uniform beams with the
flexural stiffness andmass properties as given in Table 1. Nodes were
created to represent the axle spacings of train S-T1 with
concentrated mass (CM) elements to which mass values were
assigned. Train S-T1 represents Steel Train 1 as defined in
BS-5400 (1980). The positions of the nodes were determined
based on the maximum number of axles that could be positioned
on the bridge to give a worst-case loading. Different positions of the
train axles over the bridge simulating the train traveling across the
bridge were considered, and the worst-case scenario was found to be
when placing the train axles symmetrically about the mid-span
of each beam.

The mass values represent axle masses that were incrementally
changed from zero (unloaded beam) to a maximum value of
50,000 kg to study different Mw/Mb ratios. For each bridge
model, eigenvalue analysis was performed to estimate the
fundamental mode of vibration for each case. Table 2 shows the
frequencies for the unloaded bridge and for an axle mass of
25,000 kg. The results in Table 2 are subsequently used to verify
the frequency changes obtained using the generalized equations
presented in this work.

3.2 BS-5400 standard train mixes

For this study, the standard set of trains defined in BS-5400
(1980), shown in Supplementary Figure S4 and Supplementary
Table S1, are included within the model, enabling the selection of
any one type of train for analysis. Supplementary Table S1 also
includes an additional hypothetical train with equally spaced
axles, ESA-10. The train dimensions are as given in
Supplementary Figure S4, and those that are used for the
calculation of the wagon pass frequencies are in accordance
with the train axle spacings as illustrated in Supplementary
Figure S5 and Supplementary Table S2.

4 Bridge frequency analysis considering
train mass

4.1 Bridge frequency and mass
characterization

The assessment of bridge frequency considering train mass is
performed following the steps outlined in the flow chart shown in
Figure 2. The first step uses a quasi-static analysis to determine the
mid-span displacement response for each train–bridge combination.
The displacements are then used to calculate the mean bridge
frequency, which represents the first vertical bending mode of
the loaded bridge. For a simply supported beam, where the
loading is mainly distributed uniformly, and the bridge is
subjected to bending only, the fundament vertical bending mode

TABLE 1 Case study of plate girder bridges (Gaillard, 2003).

Bridge no. Bridge type Bridge
span, L

Bridge
mass, M

Vertical bending
frequency, fn

Second moment of
area, I

[m] [kg] [Hz] [m4]

1 Half-through 8.84 42,400 10.5 0.0062

2 Half-through 18.1 133,200 5.3 0.0428

3 Western box and half-through
deck

9.3 115,000 14 0.0350

4 Western box and half-through
deck

21.33 400,600 6.8 0.3468

5 Half-through 8.1 55,527 12.1 0.0083

6* Half-through 21.26 207,832 5.5 0.1166

*Bridge data taken from Gu et al. (2008).
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natural frequency can be estimated using Eq. 12 (NR/GN/CIV/025,
2006) and EN1992-2, 2003.

fb � 17.75���
δo

√
δo � mid − span deflection due to permanent actions, mm( ).

(18)
In this quasi-static assessment, the time history of mid-span

deflection due to the moving train loads is accounted for by
considering an additional permanent action leading to a total
mid-span deflection of δo + yt. This enables the bridge’s
fundamental vertical resonant frequency change to be obtained as
a function of time. The effective bridge vertical bending mode

resonant frequency is then taken as the mean frequency. Eq. 18
is therefore rewritten as follows:

fb,t � 17.75�������
δo + yt

√
yt � mid − span deflection as afunction of time, mm( ). (19)

It should be noted that using the lowest frequency would lead
to the most undesirable scenario, resulting in the highest
deflection. However, it is deemed that the mean frequency
value is more reasonable to use to avoid overly conservative
scenarios/cases. In a similar study, Mao and Lu (2013) also used a
mean frequency value and specified this as being the effective
natural frequency.

To account for the additional mass of the train on the
bridge, the equivalent mass, Mw,t, is calculated as a function
of mid-span deflection of yt, Eq. 20. This is then used to
calculate the mass ratio, Mw/Mb, for the given bridge–train
configurations.

Mw,t � 48EIyt

gL3

g � Gravitational acceleration
m

s2
( )

yt � mid − span deflection at time t m( ). (20)

The frequency variations for each train type are shown in
Figure 3 and Figure 4. For train MF-T9, which is a mixed freight
train, only wagons that lead to the longest periodic signal are
considered. The results are also shown for a hypothetical train,
Train ESA-10, which has equally spaced axles. The results for the
frequency reduction due to the mass of the trains are given in
Supplementary Table S3.

4.2 Power-law approximation of bridge
frequency considering train mass

By plotting the mean bridge frequency for each train as a
function of the train–bridge mass ratio (MW/Mb), it becomes
apparent that a power law of the form Y � AXc (Roman, 2022)
can describe the non-linear frequency–mass ratio relationship, as
shown in Figure 5. To express the power-law relationship in the
general form, as given by Eq. 21, the constant A and exponent c

TABLE 2 FE model frequency analysis for case study bridges (loaded beam).

Bridge no. No. axles Mw/Mb (unloaded) fn Mw/Mb (Mw = 25,000 kg) fn

[Hz] [Hz]

1 3 0.00 10.5 1.77 5.3

2 6 0.00 5.3 1.13 3.3

3 3 0.00 14 0.65 9.6

4 8 0.00 6.8 0.5 5.4

5 3 0.00 12.1 1.35 6.8

6 8 0.00 5.5 0.96 3.8

FIGURE 2
General process for considering frequency reduction for
loaded bridges.
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are determined by considering a range of bridges with different
spans and resonant frequencies. Figure 5 shows that the first term
in the equation represents the resonant frequency of the bridge.
Therefore, the first expression in Eq. 21 is the fundamental
bending frequency of vibration, fn, of the bridge.

fb,w � fn − A
Mw

Mb
( )c

. (21)

The bridge frequency reduction factor, Rf, can also
be obtained from Eq. 21. This is of particular use for the

FIGURE 3
Train–bridge mass ratio and frequency: trains T1–T5.
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EBB model as it allows for the unloaded bridge
fundamental resonant frequency to be adjusted for a
particular bridge–train configuration without the need for

any additional model amendments. The frequency
reduction factor can be represented in the general form
according to Eq. 22.

FIGURE 4
Train–bridge mass ratio and frequency: trains T6–T10.
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Rf � 1 − A

fn

Mw

Mb
( )c

. (22)

The reduced frequency can be implemented in the EBB model,
but this would require significantly more model code adjustment.
This has been calculated separately, which is what is presented in the
article, and the expressions have been simply included in the EBB
model that calculates this reduction. As the EBB model already
contains the databases for the bridges and the different BS-5400
trains, it is believed that this provides a simpler and more efficient
means by which bridge frequency can be adjusted for the train mass.

The power-law constants and exponents for each bridge are
shown in Table 3. The power-law parameters are plotted against the
fundamental bridge vertical bending frequency in Figure 6. Both
curves can be approximated to a linear curve from which the
following expressions for the constant A and exponent c, Eqs 23,
24, respectively, can be derived. For simplicity, the exponent c can be
approximated as equal to the intercept as the curve slope is
effectively zero.

A � 0.3775fn + 0.021. (23)
c � −0.0006fn + 0.6006 ≈ 0.6. (24)

Substituting Eqs 23, 24 into Eqs 21, 22 gives a general equation
for the laden bridge resonant frequency, fb,w, Eq. 25, and the
frequency reduction factor, Rf, Eq. 26, for any given bridge
where the fundamental bending frequency and train masses
are known.

fb,w � fn − 0.3775fn + 0.021( ) Mw

Mb
( )0.6

. (25)

Rf � 1 − 0.3775 + 0.021
fn

( ) Mw

Mb
( )0.6

. (26)

Using Eqs 25, 26, the bridge frequency reduction and frequency
reduction factors versus the train–bridge mass ratio are calculated
for Bridges 1–6. Figure 7 shows that for low mass ratios
(typically <0.3), the average reduction factor, Rf, is
approximately 0.8. This means that a frequency reduction of 20%
can be expected for bridges whose fundamental frequencies fall
within the band 3–14 Hz.

Figure 7B shows the frequency reduction factor does not change
significantly between bridges. As can be seen in Figure 7B, the
change in the reduction factor between the highest and lowest bridge
frequencies is <1%. It can also be seen that the ratio of 0.021fn

does not

FIGURE 5
Frequency variation for train–bridge mass ratio.
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significantly contribute to the frequency reduction for the
considered bridge group. For the lowest bridge frequency of
5.3 Hz (Bridge 2), the ratio is 0.00396, and for the highest bridge
frequency of 14 Hz (Bridge 3), it is 0.0015.

4.3 General equation for bridge frequency
considering train mass

As the bridge span is known, the additional mass on the bridge
would need to be calculated for any given train. Therefore, it would
be convenient to establish a train mass factor, Tmf, for the

BS5400 trains, which would further simplify Eqs 25, 26. For the
BS-5400 trains considered, the equivalent train mass is calculated
using Eq. 14. The variation of the equivalent train mass for each train
as a function of bridge span is shown in Figure 8. The curves allow
the train mass factors, Tmf, to be calculated for each train type as a
function of bridge span. The results are given in Table 4.

The train–bridge mass ratio, Mw/Mb, can be written using the
train mass factors of Table 4, considering any of the BS-5400 trains,
using Eq. 27. The term μ in this equation represents the uniformly
distributed mass of the bridge.

Mw

Mb
� TmfL

μL
� Tmf

μ
. (27)

The method and the frequency equations obtained can now be
generalized in a more convenient form, offering the practicing
engineer an efficient approach to assess bridge frequency under
standard BS-5400 trains without the need for any complex dynamic
modal numerical models. The method presented can also be
extended to include other train types.

Using the general equation for calculating the fundamental
bending frequency of a beam with a uniformly distributed mass,
the frequency and the train–bridge mass terms in Eqs 25, 26 can now
be replaced. Using Frýba (1999)’s definition of circular frequency at
the jth mode of vibration for a simply supported beam, as shown in
Eq. 28, and substituting both Eqs 27, 28 into Eqs 25, 26, the following
general equations for the BS-5400 trains can be derived to calculate
the bridge resonance frequency and the frequency reduction factor

TABLE 3 Power-law constant and exponents.

Bridge no. Bridge frequency, fn A c

[Hz]

1 10.7 3.8473 0.5182

2 5.4 2.0406 0.5658

3 14.2 5.6119 0.6542

4 6.86 2.7384 0.6661

5 12.3 4.5047 0.5569

6 5.6 2.1665 0.6088

FIGURE 6
Constant A and exponent c as a function of frequency fn.

FIGURE 7
Laden bridge frequency reduction and reduction factor vs. mass ratio.
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(Eqs 29, 30, respectively). The equations are easily adaptable for any
train type by establishing other train mass factors, Tmf, for non-BS-
5400 trains.

fn � ωn

2π
� π

2

����
EI

μL4
.

√
(28)

fn,laden � π

2

���
EI

μL4

√
− 151π

800

���
EI

μL4

√
+ 0.021⎛⎝ ⎞⎠ T,mf

μ
( )0.6

. (29)

Rf � 1 − 0.3775 + 0.021
fn

( ) T,mf

μ
( )0.6

. (30)

In Section 4.2, it was shown that the ratio of 0.021
fn

does not
significantly contribute to the frequency reduction for the
considered bridge group. Therefore, for simplicity, this ratio can
be ignored as it can be taken as zero. In addition, the remaining
coefficient of 0.3775 can be rounded to 0.4, leading to a simplified
equation for the frequency reduction factor, Rf, as given by Eq. 31.

Rf � 1 − 0.4
T,mf

μ
( )0.6

. (31)

4.4 Comparison with finite element modal
analysis of loaded beams

The Siemens NX FE models created in Section 2.1 for each
Bridge 1–6 are used to calculate the frequency change for different
train–bridge mass ratios, as summarized in Table 2. These results are
now compared with those obtained using the methodology
presented in the previous section. Comparisons are made for the
following types of assessment against the FE model results:

- EBB dynamic model
- Frequency reduction equation based on a power-law curve-fit
of the EBB dynamic model results

- Frequency reduction based on the general equation, Eq. 15
- Frequency reduction based on the general equation with train
mass factor, T,mf, Eq. 30

The laden bridge frequencies for each bridge are shown in
Figure 9 for Bridges 1, 3, and 5 and Figure 10 for Bridges 2, 4,
and 6. The results for Bridges 1, 3, and 5, which are considered short-
span bridges (<10 m span), show a good correlation between each of
the assessment methods; however, the results using the general
equation start to diverge for the higher mass ratios. It is
noteworthy that the higher mass ratios do not represent real
train scenarios.

The same is true for Bridges 2, 4, and 6, which are considered
medium-span bridges (10–25 m span), as shown in Figure 10. One
reason for this is that the general equations have been derived based
on the BS-5400 trains and do not extend to the higher mass ratios as
in the case of the FE model assessment, which are hypothetical as
they do not represent real trains.

The general Eq. 27 is also used to calculate the bridge frequency
reduction factor for a given Mw/Mb ratio. The frequency reduction
curves for Bridges 1, 3, and 5 are shown in Figure 11A, and those for
Bridges 2, 4, and 6 are shown in Figure 11B. These provide a
convenient graphical means by which a bridge’s fundamental
vertical bending mode resonant frequency can be approximated

FIGURE 8
Equivalent train mass Mw vs. bridge span L.

TABLE 4 Train mass factors, Tmf.

BS5400 train Tmf × 1000

S-T1 4.69

EMU-T2 1.31

SRS-T3 1.23

SRS-T4 1.13

DHP-T5 1.23

EHP-T6 1.26

HF-T7 3.35

HF-T8 3.47
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for a given mass ratio based on the two bridge groups considered in
this assessment, short span (<10 m) and medium span (10–25 m).

4.5 Comparison with other studies

In this section, the results of the simplified model are compared
with those of similar independent studies. Hora et al. (2023), using a
multiple-moving mass and load model representing a train, show
that for mass ratios < 1.0, both models produced similar bridge
displacement responses. The result between the two started to
diverge for mass ratios greater than 1.0, with the moving mass
model producing higher bridge displacements (on the order of 12%)
when the mass ratio reached 1.5. The authors show that the train’s
critical speeds shift to the left for the moving mass analysis. The
investigations conducted in this study show that the change in
vertical resonant frequency is not greatly affected when the
train–bridge mass ratios are <1.0, as can be seen in Figure 9 and
Figure 10. The same divergence is generally seen when the

train–bridge mass ratios are >1.0. As demonstrated in the
Campbell diagrams in Figure 14 and Figure 15, showing the
dynamic amplification factor against train speed, there is also a
shift in DAF peaks between the unladen and laden cases. The DAF
peaks represent a train’s critical speed, where the wagon pass
frequency, or its multiples, coincides with the bridge’s vertical
natural frequency of vibration.

In a recent publication, Kohl et al. (2023) analyzed a
comprehensive set of trains and bridges using multi-body vehicle
models. The main aim of the work is to establish the additional
damping that could be incorporated into a moving load model to
give the same maximum acceleration at the bridge mid-span
obtained from a multi-body model. The results of the multi-body
interaction model also showed a horizontal left shift and a reduction
of the resonant speed of the ICE 2 and Eurostar trains due to the
unsprung mass of the trains. To account for this reduction in the
MLM model, the authors used an iterative method to determine the
additional mass that could be added to the model to give the same
effect. It is also worth noting that the suspension system frequencies

FIGURE 9
Laden bridge frequencies for BS5400 trains: Bridges 1, 3, and 5.
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are generally lower than the vertical bending mode of the bridge,
which is typically >5 Hz, as is the case for the bridges considered in
this work. This dynamically isolates the train body masses from the
bridge, but as the authors note, this depends on the particular
train–bridge configuration. Although this work is not directly
comparable to the investigations in the current study, the general
idea that an additional mass can be added to theMLM to account for
the reduction in train critical speed is, in principle, the same.

Mao and Lu (2013) use the classical beam equation to
represent a bridge with a moving vehicle to investigate the
resonance phenomenon in the railway bridge response. In
their study, the influence of the moving mass explicitly
incorporates the coupled system dynamic properties. The
study introduces a Z-factor that allows the prediction of the
resonance effect but only if effective natural frequency is used in
the calculation of resonance speeds. In their study, the effective
natural frequency lies between the lowest natural frequency,

when considering train mass, and the bridge’s fundamental
vertical natural frequency of vibration. A similar methodology
is incorporated in this study, where a mean train–bridge mass
ratio and frequencies are used in the formulation of a set of
generalized equations for predicting bridge resonance effects
and train critical speeds. The main difference in this study is that
actual assessment trains from BS-5400 are used as opposed to a
hypothetical lumped mass model used by Mao and Lu (2013).
Both studies present an approach by which bridge resonance
effects and train critical speeds can be approximated. Both
provide a means by which train critical speed bounds,
accounting for train mass, can be approximated. The present
study, which directly incorporates the BS-5400 trains, is
considered to be of more practical relevance in real
train–bridge assessments, particularly when considering fatigue.

Although more accurate and complex train–bridge multi-
body system models are widely presented in the literature, these

FIGURE 10
Laden bridge frequencies for BS5400 trains: Bridges 2, 4, and 6.
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studies tend to look specifically at different areas of the
train–bridge interaction, such as noise, wear, and passenger
comfort. In such cases, modeling the train suspension
systems, track irregularity, effects of sleepers, and even the
ballast are necessary. However, whether this level of
complexity is necessary when considering bridge fatigue
effects is not a subject that has been adequately presented in
the literature. Furthermore, many of the complex models
presented in literature would not be easily understood or
utilized by a practicing engineer, who, in most cases, is
interested in a first approximation to see whether a potential
problem exists for a particular train–bridge configuration. What
this work aims to provide is a more efficient and practical means
by which a practicing engineer can make a relatively simple
assessment without resorting to complex models and assessment
techniques.

5 Train critical speeds considering
train mass

The train speed at which global bridge response reaches the
maximum value is termed the “critical speed.” For a single moving
load, the exciting frequency is given by the following:

Ωn � nπv

L
n � nth mode of vibration

L � bridge length m[ ]
v � train velocity

m

s
[ ]. (32)

A resonant response of the bridge will occur when the ratio of
moving load frequency of the excitation and the bridge natural
frequency approaches 1, that is,

Ωn

ωn
� nπv

ωnL
ωn � bridge natural frequency of vibration

rad

s
[ ].

(33)
Therefore, the critical speed, without considering train mass, is

given by the following equation.

Vcr � 2f1L f1 � bridge fundamental frequency of vibration

L � bridge length m[ ].
(34)

For real trains, however, single moving loads do not exist, as
each train will comprise a bogey with at least two or three axles.
Typically, a train set will comprise a locomotive, or the engine
carriage, and then a series of wagons. The number of wagons can be
a single unit or multiples, and in some cases, mixed trains, as is the

FIGURE 11
Frequency reduction factor for bridges based on BS-5400 trains.
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case for MF-T9 in Supplementary Table S1. In addition, there is a
coupling distance between each connecting wagon, and similar to
the axle spacing, this may vary between different train sets. To
account for this, an equivalent wagon length is established and used
to calculate train critical speeds.

Having established a general equation that gives a method for
calculating the fundamental bending mode of a bridge for different
types of trains, as defined in BS-5400 (1980), the equations can now
be used to calculate train critical speeds for the bridges. The wagon
pass frequency, fwp, for a single train wagon can be calculated by
considering the speed of the train and the length of the wagon,
Lwagon, between the outer axles as follows (Mao and Lu, 2013):

fwp � 5v
18Lwagon

v � train speed in
km

h
. (35)

As mentioned earlier, real trains typically have many wagons,
which are coupled together with a coupling distance, Lwe, between
the adjoining wagons. Therefore, Eq. 35 is modified to account for

the coupling effect; hence, the total length of the train, LT,w, is
given by:

LT,w � Lw + Lwe( )Nw − Lwe. (36)
Normalizing Eq. 36, with respect to Nw, will lead to the

equivalent wagon length, Lw,equivalent, which includes the coupling
length and the contribution from the number of wagons.

Lw,equivalent � Lw + Lwe 1 − 1
Nw

( ). (37)

Substituting Eq. 37 for Lwagon in Eq. 25 yields the wagon pass
frequency, fwp, for any train speed and wagon configurations:

fwp � 5jv
18Lw,equivalent

j � 1, 2, 3, . . . , n integermultiples . (38)

By rearranging Eq. 36 and representing the wagon pass
frequency as a function of the natural bending frequency of the
bridge, fn, the critical train speed,Vc, can be calculated using Eq. 39.

FIGURE 12
Bridge 1 response for trains S-T1, EMU-T2, and DHP-T5.
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Vc,unladen � 3.6Lw,equivalent

j
fn. (39)

To account for the train mass on the bridge, the critical train
speed (in km/h) for the laden bridge, Vc,laden, can be calculated by
replacing unladen bridge frequency, fn, with the laden bridge
frequency fb,laden, given in Eq. 30.

Vc,laden � 3.6Lw,equivalent

j
fn,laden. (40)

Using Eqs 39, 40, the critical train speeds for the BS-5400 trains
on each bridge are calculated for j = 1 (fundamental wagon pass
frequency). Other integer multiples of the wagon pass frequency can
simply be obtained by dividing the critical speed by different values
of j accordingly. The verification of Eq. 32 is shown by the FFT
analysis of the displacement response for Bridge 1 using trains S-T1,

EMU-T2, and DHP-T5 running at the BS-5400 assessment speeds of
80 km/h, 145 km/h, and 160 km/h, respectively. Both modeling
approaches, that is, the quasi-static and the dynamic model
displacement response based on Eq. 3, are utilized here. The FFT
results shown in Figures 12B, D, F identify the fundamental wagon
pass frequency and how this is in agreement with that predicted
by Eq. 33.

The results for the critical train speed that would cause a resonance
response of the bridge for the laden and unladen cases are shown in
Figure 12. As can be seen from the results, the critical speeds for both
cases are well above the typical running speeds of the trains and the
assessment speeds given in the bridge assessment code BS-5400 (1980),
which are shown in Supplementary Table S5. The bar chart for the
critical train speeds shown in Figure 13 presents the expected range of
the variation of the critical speed for the different train types. As shorter
bridge spans typically have higher vertical bending frequencies, the

FIGURE 13
Critical speeds for bridges considering train mass.
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critical speeds are higher for Bridges 1, 3, and 5. Longer span bridges,
spans >15 m, have lower bending frequencies, and these are shown to
have lower critical train speeds for Bridges 2, 4, and 6.

Table 5 presents the critical speeds for trains EMU-T2 andHF-T8
for Bridges 1 and 2, which represent short- andmedium-span bridges,
respectively. These are calculated using Eqs 39, 40 for the unladen and
laden conditions. The primary critical speeds when j � 1 are all above
the assessment speed for the EMU-T2 and HF-T8 trains, which are
145 km/h and 120 km/h, as given in Supplementary Table S5.
However, this type of assessment cannot reveal any information
on dynamic amplification or an indication of which multiples of
the wagon pass frequency, jfwp, will affect it. This information will be
particularly important when considering fatigue damage, which is the
subject of further investigation by the authors. To illustrate the effect
on dynamic amplification, the EBB dynamic model, described in
Section 2.1, is utilized to calculate dynamic amplification against train
speed. This is then compared with the DAFs predicted by the bridge
assessment code NR/GN/CIV/025 (2006). According to Eq. 41,
dynamic amplification is defined in terms of deflection, where the
peak values of y(x,t),dynamic and y(x,t),static displacement responses are
used. The model accounts for the bridge’s fundamental vertical
bending resonant frequency reduction due to the mass of the train
using the method described in this work.

DAF � y x,t( ),dynamic

y x,t,( ),static
. (41)

A useful way of looking at vibration excitation at various train
speeds is the Campbell diagram. This gives a bird’s eye view across the
range of train speed and can help to identify where dynamic
amplification increases due to the conditions of resonance. Therefore,
the Campbell diagram is plotted using the displacement response results
for Bridges 1 and 2 subjected to trains EMU-T2 and HF-T8. The
results show that dynamic amplification that exceeds those based on
the design/assessment codes can occur at other integer multiples of j.
The Campbell diagram plots the multiples of the wagon pass frequency
for each speed increment, 10 km/h in this case, and where the diagonal
lines cross the bridge’s natural frequency of vibration line, indicating a
possible critical speed at thatmultiple. Using the Campbell diagram plot,
the multiples of j at which dynamic amplification will occur become
evident. These can then be compared with results given in Table 5, and
those multiples of the wagon pass frequency, jfwp, which affect
dynamic amplification are thus highlighted in Table 5.

In Figure 14A (unladen), Bridge 1 with train EMU-T2, dynamic
amplification occurs at a speed of approximately 110 km/h for the
unladen case with a DAF of 1.24. There is also a minor peak at
50 km/h with a DAF of 1.16. The DAF at 110 km/h, which is within
the operating speed of the train, represents an 11% increase from the
code-based DAF. According to the calculated critical speed, 107 km/
h, provided in Table 5, this occurs for j � 7 or at 7fwp. For the laden
condition, due to the reduction in the bridge resonant frequency, the
critical speed drops to 90 km/h with no change in the magnitude of
the DAF, Figure 14A (Laden).

TABLE 5 Critical train speeds for Bridges 1 and 2.

BS5400 train Bridge 1
Train critical speed [km/h]

Bridge 2
Train critical speed [km/h]

Unladen Laden Unladen Laden

EMU-T2

j = 1 746 616 377 326

j = 2 373 308 189 163

j = 3 249 205 126 109

j = 4 187 154 94 82

j = 5 149 123 75 65

j = 6 124 103 63 54

j = 7 107 88 54 47

j = 8 93 77 47 41

HF-T8

j = 1 333 229 168 127

j = 2 167 115 84 64

j = 3 111 76 56 42

j = 4 83 57 42 32

j = 5 67 46 34 25

j = 6 56 38 28 21

j = 7 48 33 24 18

j = 8 42 29 21 16
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For train HF-T8 on Bridge 1, the response does not show any
signs of a significant critical speed within the operating speed range
of the train, Figure 14B. There is only a minor peak between 80 km/h
and 85 km/h with a DAF of 1.14. However, for the laden case, a

critical speed is shown to occur at a speed of 115 km/h with a DAF of
1.41, representing a 26% increase from the DAF from the assessment
code. There is also a second minor peak between 55 km/h and
60 km/h with a DAF of 1.13, representing a 6% increase. Based on

FIGURE 14
Dynamic amplification for Bridge 1 with trains EMU-T2 and HF-T8.
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the calculated critical speed given in Table 5, these occur for j � 2, 4
or at 2fwp and 4fwp.

Figure 15 shows the dynamic amplification for Bridge 2 with
train EMU-T2. In Figure 15A (unladen), two minor peaks are

evident at 55 km/h and between 125 km/h and 130 km/h for the
unladen case, with DAF values of 1.1 and 1.14, respectively. These
represent an increase of 6% and 3% from the DAF calculated based
on the assessment code. For the laden case in Figure 15A (Laden),

FIGURE 15
Dynamic amplification for Bridge 2 with trains EMU-T2 and HF-T.
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the critical speeds drop to 50 km/h and 110 km/h. According to
Table 5, these minor critical speeds occur at 3 fwp and 7 fwp.

As shown in Figure 15B, two significant critical speeds are
identified for train HF-T8 on Bridge 2. For the unladen case,
only a single critical speed is apparent within the speed range at
85 km/h with a DAF of 1.23, representing a 15% increase from the
code-based DAF, Figure 15B (unladen). For the laden case, the most
significant critical speed occurs at 130 km/h with a DAF of 1.53,
representing a 38% increase from the assessment codeDAF, Figure 15B
(Laden). The critical speed at 85 km/h for the unladen case has now
dropped to 65 km/h with a DAF of 1.25, representing a 19% increase.
These critical speeds are shown to occur at 1 fwp and 2 fwp, with the
most significant at the primary wagon pass frequency, 1 fwp.

6 Conclusion

This article has presented a simplified general method by which
a bridge’s effective fundamental frequency can be calculated
considering train mass. The assessment was made using the BS-
5400 trains, but the methodology could be applied to other train
types and bridges because the equations are also presented in a
generalized form where only the train-to-bridge mass ratio needs to
be known. The method was used to calculate a frequency reduction
factor, which was then applied to the EBB dynamic model to assess
the effect on critical speeds and dynamic amplification.

• For short-span bridges, typically with spans <10 m, the general
equations presented show a reasonable correlation with those
obtained from FE analysis.

• For longer spans, >15 m, the results also show a reasonable
correlation for mass ratios <1.0. For higher mass ratios,
typically for longer spans with more wagons on the bridge,
results start to diverge between those predicted by the equation
and the FE model. Therefore, care needs to be taken when
considering longer-span bridges or higher Mw/Mb

ratios than 1.0.
• The unladen and laden critical speeds have been calculated for
each train and bridge combination. By using the Campbell
diagram, the effects on dynamic amplification for the two
cases have been demonstrated on Bridges 1 and 2, representing
short- and medium-span bridges, respectively. The results
show that dynamic amplification can increase at other
specific integer multiples of the wagon pass frequency, and
these can fall within the operating speed range of the train.
With the laden case, the amplitude of the dynamic
amplification does not change, but as the vertical frequency
of the bridge is reduced, the critical speeds are also reduced.

• The dynamic amplification plots using the Campbell diagram
show that train HF-T8, which only has two axles as opposed to
six for train EMU-T2, produces significantly higher DAFs.
When compared with the DAF calculated with the bridge
assessment code, this is 26% and 38% for Bridges 1 and 2,
respectively.

• By showing the dynamic amplification variation with train
speed, the Campbell diagram can be effective for the selection

of optimum train speeds for a particular train/bridge
combination.

The analysis mythology presented in this article has shown that
simplified methods of assessment are able to provide valuable
information, in particular, bridge dynamic amplification for
different train–bridge configurations. As the method does not
require complex computations or the use of finite element
methods, the method is well-suited to give an initial indication of
the performance of a bridge and help optimize train-operating
speeds to minimize the effects of fatigue.
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