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Geologic fractures such as joints, faults, and slip surfaces govern the stability and
performance of many subsurface systems in the built environment. As such, a
variety of approaches have been developed for computational modeling of
geologic fractures. Yet none of them lends itself to a straightforward
utilization with the classical finite element method widely used in practice.
Over the past decade, phase-field modeling has become a popular approach
for simulating fracture, because it can be implemented simply with the standard
finite element method without any surface-tracking algorithms. However, the
standard phase-field formulations do not incorporate several critical features of
geologic fractures, including frictional contact, pressure-dependence, quasi-
brittleness, mode-mixity, and their combined impacts on cracking. This article
provides a brief report of a novel phase-field model that incorporates these
features of geologic fractures in a well-verified and validated manner.
Remarkably, the phase-field model allows one to simulate the combination of
cohesive tensile fracture and frictional shear fracture without any algorithms for
surface tracking and contact constraints. It is also demonstrated how phase-field
modeling enables us to gain insights into geologic fractures that are challenging
to investigate experimentally.
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1 Introduction

Subsurface systems are replete with fractures of various kinds. Examples include joints
and faults, which are tensile and shear fractures, respectively, from the viewpoint of fracture
mechanics (Pollard and Fletcher, 2005; Schultz, 2019). Slip surfaces can also be viewed as
shear discontinuities, of which propagation can be described by fracture mechanics (Palmer
and Rice, 1973; Puzrin and Germanovich, 2005). The deformation and growth of these
fractures govern the stability and performance of a wide range of geotechnical systems from
slopes and earth retaining systems to tunnels and caverns. Also, modern subsurface energy
technologies such as unconventional resource recovery and enhanced geothermal systems
purposely generate fractures in deep underground deposits. Unlike other types of fractures,
the geologic fractures in these problems often involve frictional contact and show significant
pressure dependence. Also, fractures in geomaterials are quasi-brittle instead of purely
brittle, and their critical fracture energies in tensile and shear usually differ by an order of
magnitude. Computational modeling is essential to addressing such complex behavior of
geologic fractures.

A variety of approaches have been developed for computational modeling of geologic
fractures. Following the classical approaches in computational fracture mechanics, earlier
works treated geologic fractures as sharp discontinuities across which displacement and/or
strain fields are discontinuous. These approaches honor the sharpness of crack geometry,
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being consistent with fracture mechanics principles derived from
sharp cracks. However, it is challenging to represent sharp crack
geometry in numerical methods. For example, the standard finite
element method can only model cracks aligned with element
boundaries. To overcome this limitation, embedded finite
elements (e.g., Regueiro and Borja, 1999; Foster et al., 2007) and
extended/generalized finite elements (e.g., Liu and Borja, 2009;
Sanborn and Prévost, 2011) have been proposed for modeling
geologic fractures that pass through inside elements. However,
these non-standard finite element methods require not only
additional shape functions for enrichment but also sophisticated
algorithms (e.g., the level-set method) to track crack surfaces.

Over the past decade, the phase-field method has become a
popular approach for computational modeling of fractures (e.g.,
Bourdin et al., 2008; Miehe et al., 2010b; Borden et al., 2012). The
phase-field method approximates a sharp crack surface as a diffuse
interface and describes its evolution by a partial differential equation
formulated from fracture mechanics concepts. In this way, the
phase-field method can simulate complex cracking processes such
as kinking, branching, and coalescence without any surface-tracking
algorithms, being solvable by the standard finite elements widely
used in practice. While a phase-field model demands a significant
computational cost, it has been increasingly affordable and widely
applied to many kinds of fracture problems in various materials.
Nevertheless, the standard phase-field model of fracture and its
variants do not incorporate several distinct features of geologic
fractures: frictional contact, pressure-dependence, quasi-
brittleness, mode-mixity, and roughness, among others.
Therefore, although these phase-field models have been employed
in many geomechanical applications (e.g., Lee et al., 2016; Zhang
et al., 2017; Choo and Sun, 2018a; b; Ha et al., 2018; Zhou et al.,
2018), there is a need for new phase-field models tailored to
geologic fractures.

Recently, the author and his coworkers have developed a class of
novel phase-field models for geologic fractures, which incorporate
frictional contact (Fei and Choo, 2020a), quasi-brittle shear fracture
with friction and pressure effects (Fei and Choo, 2020b), mixed-
mode fracture (Fei and Choo, 2021), roughness effects (Fei et al.,
2022), and inertia effects with rate- and state-dependent friction Fei
et al. (2023). This report reviews these phase-field models with
particular attention to the double-phase-field model (Fei and Choo,
2021) which allows one to simulate the combination of cohesive
tensile fracture and frictional shear fracture without any algorithms
for surface tracking and contact constraints. The double-phase-field
model has not only been well-validated against various experimental
data (Fei et al., 2021) but has also been applied to gain insights into
geologic fractures that are challenging to investigate experimentally
(Choo et al., 2023; Sun et al., 2024). The remainder of this paper
introduces the formulation, validation, and applications of the
phase-field model.

2 Phase-field model

2.1 Geometry approximation

The departure point of the phase-field modeling of fracture is to
diffusely approximate the sharp geometry of a crack (e.g., a line

crack in a 2D domain, and a surface crack in a 3D domain) by a
phase field, d, whose value ranges from 0 to 1. Usually, the phase
field is defined such that d � 0 in an intact (undamaged) region,
d � 1 in a fully cracked region, and 0<d< 1 in a transition region
which can also be viewed as a partially damaged region. The
distribution of the phase-field value is determined by a crack
density functional, Γ(d,∇d). An important parameter of the
crack density functional is the so-called length regularization
parameter, L, which determines the thickness of the diffuse
approximation. By definition, the phase-field approximation
converges to sharp geometry as L approaches zero, and hence L
should be chosen to be sufficiently small to mimic a sharp crack. At
the same time, as L becomes smaller, a finer discretization is
necessary to obtain a sufficiently accurate numerical solution. As
such, one must determine the value of L considering the balance
between solution accuracy and computational efficiency.

Mixed-mode fractures—the combination of tensile and shear
fractures—are common in geomaterials. Standard phase-field
models approximate both tensile and shear fractures with the
same phase-field variable. This approach works well when the
characteristics of tensile and shear fractures are similar, but it is
undesirable when the two types of fractures exhibit contrasting
characteristics. The latter is the case for geologic fractures: Shear
fractures in geomaterials have much higher fracture energies than
tensile fractures and involve frictional effects. Therefore, Fei and
Choo (2021) have proposed a double-phase-field model that
approximates tensile and shear fractures separately by two
distinct phase fields. Figure 1 illustrates the double-phase-field
approximation of mixed-mode fractures.

2.2 Formulation

Phase-field modeling describes the cracking process as the
evolution of the phase-field variable over time. The governing
equation for the phase-field evolution can be derived either from
a variational principle or microforce theory. The latter approach
allows one to easily incorporate complex features such as quasi-
brittleness, contact dependence, and friction effects. From
microforce theory, the governing equations for tensile and shear
fractures, respectively, are derived as.

∇ · ∂ψ , dI,∇dI, dII,∇dII( )
∂∇dI

( ) − ∂ψ , dI,∇dI, dII,∇dII( )
∂dI

� 0, (1)

∇ · ∂ψ , dI,∇dI, dII,∇dII( )
∂∇dII

( ) − ∂ψ , dI,∇dI, dII,∇dII( )
∂dII

� 0, (2)

where dI and dII are the phase fields representing tensile and shear
fractures, respectively,  is the (infinitesimal) strain tensor, and ψ is
the potential energy density function. The potential energy density
function is comprised of three parts as

ψ � ψe + ψf + ψd, (3)
where ψe is the elastic strain energy, ψf is the energy dissipation due
to frictional slip, and ψd is the energy dissipation due to crack surface
generation. Substituting the specific expressions for these terms (see
Fei and Choo (2021) for details) into Eqs 1, 2, the governing
equations become.
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−gI′ dI( )HI − GI

πL
2L2∇ · ∇dI − 2 + 2dI( ) � 0, (4)

−gII′ dII( )HII − GII

πL
2L2∇ · ∇dII − 2 + 2dII( ) � 0. (5)

Here, gI′(dI) and gII′ (dII) are the degradation functions, GI and GII

are the fracture energies, andHI andHII are the crack driving forces
for tensile and shear fractures, respectively. Considering that GI and
GII of geomaterials can be significantly different, the crack driving
forces are calculated based on the F -criterion (Shen and
Stephansson, 1994) as

θ � argmaxθ F θ( )[ ]|, where F θ( ) ≔ HI , θ( )
GI

+ HII , θ( )
GII

, (6)

where θ is the angle between the crack normal direction and themajor
principal stress direction on the slip plane. It is noted that the F
criterion lets the mixed-mode fracture develop such that it minimizes
energy dissipation. The specific expressions for HI(, θ) and
HII(, θ) depend on the contact condition of the material point,
and they are adapted from phase-field models for cohesive tensile
fracture (Wu, 2017) and frictional shear fracture (Fei and Choo,
2020b), respectively. See Fei and Choo (2021) for details.

The degradation functions, gI′(dI) and gII′ (dII), play a critical
role in the stress-strain response of the phase-field model. The
degradation functions of the standard phase-field models give rise to
stress-strain responses that are dependent on the length parameter,
L. This is because the standard phase-field models regularize brittle
fracture having stress singularity at the crack tip and the length
parameter controls the degree of the regularization of stress
singularity. In other words, as the length parameter becomes
larger, the “strength” of the crack tip—regularized stress
singularity due to the phase-field approximation—becomes
smaller. However, for cohesive (quasi-brittle) fracture, the stress-
strain response should be independent of the length parameter, L;
otherwise, the fracture energy is dependent on the length parameter,
violating the premise of cohesive fracture.

To make the stress-strain response of a phase-field model
independent of the length parameter, one must employ a
particular degradation function derived to provide a length-
insensitive stress-strain response. The double-phase-field model
employs two such degradation functions, one derived for cohesive
tensile fracture (Wu, 2017) and the other derived for frictional shear
fracture (Fei and Choo, 2020b). In this way, it is possible to directly use
the tensile and shear strength properties measured from experiments,
without concerning the chosen value of L. This feature greatly helps
the calibration of the phase-field model with laboratory data.

Last but not least, it should be emphasized that the double-
phase-field formulation can be solved well with the standard finite
element method. (See Fei and Choo (2021) for the full finite element
formulation.) Specifically, one can use a three-field finite element
discretization in which the displacement field and the two phase
fields are the unknown variables, with a material (integration) point
update algorithm to calculate contact-dependent stresses. The
displacement fields and phase fields can be solved in a staggered
manner for robustness (Miehe et al., 2010a). In doing so, no
algorithm is necessary for tracking the crack geometry or
imposing the contact constraints. This ease of implementation
with the standard finite element method is a distinct advantage
of the phase-field method.

2.3 Material parameters

The material parameters of the double-phase-field model are
summarized as follows.

• Elasticity parameters: Assuming isotropic linear elasticity, the
model takes two elasticity moduli. The elasticity moduli can be
measured through standard laboratory experiments.

• Tensile fracture parameters: For modeling cohesive tensile
fracture, the two parameters of traction–separation law,
namely, the tensile strength and tensile (Mode I) fracture

FIGURE 1
Phase-field approximation of mixed-mode (tensile and shear) fractures. Source: Fei and Choo (2021).
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energy, are required. The fracture energy can be calculated as
the area of the softening region (Wu, 2017).

• Shear fracture parameters: Adopting the Mohr-Coulomb
criterion, the model takes the cohesion strength and peak
friction angle to represent pressure-dependent shear
strength. For simplicity, the residual friction angle is
assumed to be equal to the peak friction angle, while this
assumption can be relaxed for rough fracture involving
shear-induced dilation, as in Fei et al. (2022). Lastly, the
shear (Mode II) fracture energy is necessary to furnish slip-
weakening law. The shear fracture energy can be estimated
from the post-peak response in the ring shear test or
inferred from those in the triaxial compression test
(Choo et al., 2021).

It is noted that when fracture test data are available, the tensile
and shear fracture energies can also be calibrated to match the
fracture data.

2.4 Validation

The double-phase-field model has been validated with several
experimental data on mixed-mode fracture in rock specimens with
preexisting flaws under compression. Fei and Choo (2021) and Fei
et al. (2021) present qualitative and quantitative validations with
data from uniaxial compression tests on rock specimens with
various flaw configurations. These papers have shown that the
double-phase-field model can simulate complex mixed-mode

FIGURE 2
Validation of the double-phase-fieldmodel with experimental data on cracking from two coplanar flaws under true triaxial compression (Zhou et al.,
2021). (A)Cracking patterns from the simulation and experiments. (B) 3Dmixed-mode processes in the simulation (Points A–E correspond to those in the
stress-strain curve below). (C) Difference between the major principal stress (σ1) and (σ2) versus strain from the simulation and experiments. (Note that
the experimental stress-strain curve is redrawn without the initial nonlinear portion related to the closure of preexisting defects.) Source: Sun
et al. (2024).
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cracking patterns and stress-strain responses similar to the
experimental data. Yet these validations were restricted to 2D
(planar) fracture under uniaxial compression. More recently, in
Sun et al. (2024), the double-phase-field model has been validated
with fractures in two types of more general conditions, namely, 1)
2D fracture under true triaxial compression, and 2) 3D fracture
under uniaxial compression. It is noted that although 3D fractures
under true triaxial compression are the most general condition, they
cannot be characterized experimentally through the existing
techniques. In the following, the validation of 2D fractures under
true triaxial compression is reported briefly.

To validate the double-phase-field method for cracking
behavior under true triaxial compression, it was applied to
simulate a true triaxial compression test on a fine sandstone
specimen with two coplanar, fully-penetrating 2D flaws (Zhou
et al., 2021). The width, length, and ligament length of each flaw
were 1 mm wide, 16 mm, and 8 mm, respectively, and the flaw
inclination angle was 45° from the horizontal. More details about
the experimental setup can be found in Zhou et al. (2021). The
material parameters of the double-phase-field model were
adopted directly from Zhou et al. (2021) if they were
measured. Other material parameters that had not been
measured by Zhou et al. (2021) (Young’s modulus and the
tensile and shear fracture energies) were calibrated based on
the stress-strain data in the reference. It is noted that the tensile
and shear fracture energies were calibrated to be GI � 98 J/m2 and
GII � 1500 J/m2, respectively, indicating that the shear fracture
energy was about 15 times greater than the tensile fracture
energy. This ratio of the fracture energies is typical for rocks.
For numerical simulation, the phase-field length parameter was
set as L � 0.3 mm. To ensure the accuracy of the solution, the
elements near the flaw were locally refined such that the element
size h satisfies L/h≥ 2. Then, the loading protocol of the true
triaxial experiment was replicated through a combination of
stress and displacement controls.

Figure 2 compares the simulation and experimental results of
mixed-mode fracture from two coplanar flaws under true triaxial
compression. One can see that the crack type, crack geometry, and
crack coalescence pattern of the simulation and experimental results
are quite similar. From the outer tips of the flaws, primary and
secondary tensile cracks emerged, and then oblique shear cracks
developed from both the inner and outer tips of the flaws. Also, from
the shear crack fronts, anti-wing cracks grew toward the direction of
the major principal stress. Eventually, the two flaws coalesced into a
shear crack, and coplanar shear cracks nucleated from the outer tips
of the flaws and grew along the flaw planes. Apart from this
qualitative agreement in terms of the cracking pattern, the
simulation and experimental results show good quantitative
agreement in terms of the stress-strain curves. It is noted that the
same conclusion has been reached from other validation studies (Fei
and Choo, 2021; Fei et al., 2022; Sun et al., 2024).

3 Applications of phase-field model

This section introduces two examples of how the phase-field
model has been applied to investigate mixed-mode fracture in rocks
which are extremely challenging to characterize by the existing

experimental methods. The two examples are: 1) size effect on
mixed-mode fracture in rocks with preexisting flaws (Choo et al.,
2023), and 2) intermediate principal stress effect on the 3D cracking
behavior of rocks under true triaxial compression (Sun et al., 2024).

3.1 Size effect on mixed-mode fracture
in rocks

Laboratory specimens with preexisting flaws, such as the
specimen simulated in the validation example, have been
conventionally used as small-scale analogs of rock masses, and
their failure behavior under compression has been extensively
studied through experimental and numerical methods.
However, no study has been concerned with the energetic size
effect—determined by the relative size between the fracture
process zone (FPZ) and the structure size—on the failure
behavior of rock specimens with preexisting flaws. In quasi-
brittle materials like rocks, the size of FPZ is significant in
relatively small structures like laboratory specimens, and it gives
rise to rather ductile failure behavior that deviates from the
description of linear elastic fracture mechanics (LEFM).
However, in large structures like field-scale rock masses, the
size of FPZ is negligible compared with the structural size; in
this case, the structure fails like a purely brittle material described
by LEFM. This energetic size effect was first revealed in Bažant
(1984) in the context of tensile failure in quasi-brittle materials and
has been investigated for various types of quasi-brittle failures.
Nevertheless, the energetic size effect on mixed-mode fracture in
rocks under compression has not been investigated systematically.
One primary reason may be that it is highly challenging to examine
the size effect on mixed-mode fracture in flawed rocks under
compression with the existing experimental methods. For
example, it is extremely difficult to prepare field-scale (meter-
scale) rock specimens with preexisting flaws and characterize the
mixed-mode fracture under compression.

The double-phase-field model can be an ideal tool to investigate
the energetic size effect onmixed-mode fracture in flawed rocks. The
reasons are: 1) it can simulate complex crack patterns without
geometry tracking algorithms, 2) it can distinguish between
tensile and shear cracks naturally, and 3) it combines phase-field
models of cohesive tensile and shear fractures in quasi-brittle
materials. As such, in Choo et al. (2023), the double-phase-field
model is leveraged to perform the first systematic investigation of
mixed-mode fracture in rocks under compression. It should be
noted that unlike tensile fracture where size affects the strength but
not crack morphology, mixed-mode fracture in rocks under
compression may be subjected to two types of size effects in
terms of crack morphology as well as strength. Indeed,
experimental studies have found different cracking patterns in
rocks and rock-like materials with the same specimen and flaw
geometry (e.g., Lee and Jeon, 2011), and the difference may be
attributed to the different brittleness/ductility of the materials. For
this reason, it is intriguing to explore whether structure size also
affects the mixed-mode cracking pattern in flawed rocks under
compression.

To investigate the size effect on the mixed-mode cracking
behavior of rock masses under compression, the double-phase-
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field model is used to simulate a series of uniaxial compression tests
on single- and double-flawed rock specimens of seven different sizes
with geometrical similarity. The sizes of the seven specimens were

determined such that they range frommillimeter-scale specimens to
meter-scale specimens. Specifically, setting a 76.2 mm wide and
152.4 mm tall laboratory specimen as a reference, seven values of the

FIGURE 3
Mixed-mode cracking patterns in double-flawed specimenswith different scaling factors:D=0.25, 0.5, 1, 2, 4, 8, and 16. Also presented are cracking
patterns observed in the laboratory-scale specimens of Carrara marble (Wong, 2008), molded gypsum (Bobet and Einstein, 1998), and PMMA (Ingraffea
and Heuze, 1980). Source: Choo et al. (2023).
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scaling factor (D) were considered: D = 0.25, 0.5, 1, 2, 4, 8, and 16.
(D = 1 corresponds to the reference size.). The material parameters
of the double-phase-field model were assigned from those calibrated
to molded gypsum in Fei and Choo (2021), which have been shown
to reproduce laboratory test data on the mixed-mode cracking
behavior of molded gypsum (Bobet and Einstein, 1998) in both
qualitative and quantitative manners. Therefore, when D is 1, the
simulation result must be analogous to the laboratory test data. It is
of interest how the result would become different when the value of
D is much greater or smaller than 1.

Figure 3 presents the simulated mixed-mode cracking patterns
in double-flawed specimens of seven sizes (D = 0.25, 0.5, 1, 2, 4, 8,
and 16). It can be seen that the cracking patterns in the specimens of
D = 1, 2, and 4 are the same as the cracking pattern observed in the
laboratory-scale specimen made of molded gypsum (Bobet and
Einstein, 1998). This is expected because the material parameters
are calibrated to the molded gypsum. However, when the specimen
size is smaller than the laboratory scale (i.e., whenD = 0.25 and 0.5),
the mixed-mode fracture exhibits a different pattern, and this
pattern resembles the cracking pattern observed in Carrara
marble at the laboratory scale (Wong, 2008). Notably, the FPZ
size of Carrara marble is known to be greater than that of molded
gypsum (Wong and Einstein, 2009), so this transition in the cracking
pattern can be interpreted as the consequence of the fact that the
FPZ size becomes relatively more significant as the specimen size
becomes smaller. Conversely, when the specimen size is significantly
larger than the laboratory scale (i.e., when D = 8 and 16), another
kind of cracking pattern emerges, in which shear fracture is nearly
absent. Remarkably, more or less the same cracking pattern has been
observed in laboratory specimens made of PMMA (Ingraffea and
Heuze, 1980), which is a highly brittle material. This is also
consistent with the energetic size effect: When the structure size
is large, the FPZ size becomes negligible, making the structure highly
brittle. These results thus suggest that the energetic size effect exists
in the failure behavior of rock masses under compression, and they
provide insight into how to bridge laboratory-scale observations and
field-scale processes. For example, for a laboratory-scale
investigation of the failure behavior of a field-scale rock mass, it
would be desirable to use a more brittle material (e.g., PMMA) with
the same structural geometry.

3.2 Intermediate principal stress effect on
the 3D cracking behavior of rocks

So far, mixed-mode fracture in rocks has mostly been
studied under uniaxial compression. However, uniaxial
compression is far from in-situ stress conditions of rocks.
Underground rocks are usually under true triaxial stress
conditions in which all three (major, intermediate, and
minor) principal stresses are compressive and distinct. Even
at surfaces such as excavation boundaries, the stress condition is
biaxial in which only the minor principal stress is zero.
Therefore, the intermediate principal stress, σ2, is usually
significant in in-situ stress states, and hence its effect should
be considered properly.

Besides the stress condition, the 3D geometrical feature of the
preexisting flaw(s) is a critical factor of cracking behavior under

compression. Most existing studies have studied cracks
emanating from 2D (planar, penetrating) preexisting flaws.
However, a few studies have shown that when the preexisting
flaw is 3D (internally embedded), new types of cracking patterns
such as petal cracks and crack wrapping emerge (e.g., Dyskin
et al., 2003; Yin et al., 2014; Lu et al., 2015). Yet such 3D cracking
behavior has only been studied under uniaxial and biaxial
compression regimes. Therefore, the 3D cracking behavior of
flawed rocks under a wide range of true triaxial stress conditions
remains elusive.

Indeed, it is virtually impossible to experimentally characterize
3D cracking processes in rocks under true triaxial stress conditions.
This is because while a high-speed imaging system is necessary to
identify a mixed-mode fracture process faithfully, it cannot be
applied to a rock specimen under a true triaxial cell.
Alternatively, high-fidelity numerical simulations based on sound
physical principles can be employed to investigate 3D cracking
processes under true triaxial compression. To this end, the
double-phase-field method can again serve as an ideal tool

FIGURE 4
3D cracking patterns in a double-flawed specimen (inclination
angle: 45°. (A) The intermediate principal stress (σ2) is parallel to the
flaw plane. (B) The minor principal stress (σ3) is parallel to the flaw
plane. (C) The major principal stress (σ1) is parallel to the flaw
plane. Source: Sun et al. (2024).
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because of its ability to simulate complex 3D tensile and shear
fractures individually.

In Sun et al. (2024), a series of numerical true triaxial compression
tests were performed on single-flawed and double-flawed cubic
specimens. The flaws were internally embedded such that fully 3D
cracking patterns could develop. The test protocol was designed to
investigate how the orientation of σ2 with respect to the flaw and the
magnitude of σ2 affect the cracking pattern and the peak stress.
Amongmany simulation data in Sun et al. (2024), cracking patterns in
the double-flawed specimen (flaw inclination angle = 45°) under
different orientations of σ2 are shown in Figure 4. When σ2 was
parallel to the flaw plane, tensile wing cracks developed from the flaw
tips, and planar shear cracks grew in the flaw direction. When σ3 was
parallel to the flaw plane, tensile wing cracks grew from the flaw edge.
Also the so-called fish-fin cracks and several conjugate pairs of shear
cracks developed. In these two cases, the two preexisting flaws
coalesced. However, when σ1 is parallel to the flaw plane, the two
flaws did not coalesce. These differences indicate that the orientation
of σ2 has a profound effect on the mixed-mode cracking behavior of
rocks. Apart from this, there are several new observations and findings
about the control of σ2 on the 3D mixed-mode cracking behavior of
rocks—see Sun et al. (2024) for details.

Remarkably, based on the observations made from the
numerical true triaxial compression tests, three mechanisms of
the cracking behavior of 3D flawed rocks under true triaxial
conditions were proposed. First, the normal stress on the flaw
controls the tensile fracture. Second, the Coulomb stress on the
flaw controls the shear fracture. Third, the Coulomb-to-normal
stress ratio affects the mixed-mode cracking pattern which controls
the peak stress. These mechanisms would not have been uncovered
without the use of the double-phase-field model.

4 Closure

This paper has introduced a novel phase-field approach for
computational modeling of geologic fractures and its application to
investigating the mechanics of complex rock fractures. Particular
emphasis has been placed on the double-phase-field model
developed for mixed-mode fracture in rocks and similar quasi-
brittle materials. The double-phase-field model has two standout
features: 1) it can simulate complex fractures without sophisticated
algorithms for crack geometry tracking and contact constraints, and
2) it can naturally distinguish between tensile and shear fractures.
The combination of these two features makes the model an ideal tool
for studying the mechanics of complex mixed-mode fractures that
cannot be well characterized by the existing experimental methods.
The model is however not without drawbacks. The most critical
drawback is that phase-field modeling entails a significant
computational cost because an extremely fine discretization is

necessary around the crack. Another drawback is that it is less
straightforward to extract discrete quantities (e.g., aperture) from
phase-field approximated fractures. Work is underway to overcome
these drawbacks through the combined use of novel formulations,
efficient algorithms, machine learning methods, and modern
computing platforms.
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