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The construction sector is traditionally affected by on-site errors that significantly
impact both budget and schedule. To minimize these errors, researchers have
long hypothesized the development of AR-enriched 4D models that can guide
workers on components deployment, assembly procedures, and work progress.
Such systems have recently been referred to as Advanced Building-Assistance
Systems (ABAS). However, despite the clear need to reduce the on-site errors, an
ABAS has not been implemented and tested yet. This is partially due to a limited
comprehension of the current wealth of available sensing technologies in the
construction industry. To bridge the current knowledge gap, this paper evaluates
the capabilities of current use of sensing technologies for objects identification,
location, and orientation. This study employs and illustrates a systematic
methodology to select according to eight criteria and analyzed in three level
the literature on the field to ensure comprehensive coverage of the topic. The
findings highlight both the capabilities and constraints of current sensing
technologies, while also providing insight into potential future opportunities
for integrating advanced tracking and identification systems in the built
environment.
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1 Introduction

Building construction is a vital component of the US economy, representing about 4%
of the national GDP in 2022 (BEA, 2023). Despite its strategic role, the construction
industry is still challenged by a significant incidence of on-site errors and inefficiencies,
which impact construction expenses and timelines (Jaafar et al., 2018). These challenges
encompass, among others, the misplacement or misalignment of components and
prolonged, inefficient searches for objects on-site, which are particularly relevant in
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assembly constructions, which constitute a significant market share
in the US. (García de Soto et al., 2022).

Traditionally, errors and inefficiency in the identification and
placement of components in construction have been considered
unavoidable. However, with recent technological advancements
providing control and support to on-site constructions, this is no
longer the norm. Latest advancements in sensing technologies
(Kumar et al., 2015), Internet of Things (IoT), 4D virtual
representation (Pan et al., 2018) and augmented reality (Yan,
2022) have created the premises for the development of AR-
enriched cyber-physical 4D models to support the workers
during the construction, i.e., indicating the components to be
deployed according to the work plan as well as the location and
mode of assembly using augmented reality, and tracking the
progress of the work to automatically update the Building
Information Modeling (BIM) (Chen et al., 2020; Turkan
et al., 2012).

Such a construction support system has recently been referred to
(Suo et al., 2023) as Advanced Building-Assistance Systems (ABAS),
mutating the well-established concept of Advanced Driving-
Assistance Systems (ADAS) from the automotive industry (Li
et al., 2021). ABAS build on three core sensing capabilities to
constantly map the movements of objects in physical
construction sites; these to identify, track, and orient components
in real-time. Indeed, achieving synchronization of on-site assembly
processes with the 4D model first necessitates the capability to: (i)
locate specific objects, e.g., identifying a particular beam intended for
installation in a specific part of the construction site among
numerous others; (ii) track their movements, i.e., detect when the
beam is moved from its original stack to its designated location in
the construction; and (iii) recognize their orientation upon
placement, e.g., detecting the alignment of the beam on all axes
when laid in place. These sensing capabilities play a vital role in
ensuring a consistent alignment of the physical construction process
with the scheduled activities outlined in a 4D virtual model (Suo
et al., 2023).

Despite the clear need to reduce the on-site errors and the wealth
of sensing technologies to identify, track, and orient objects, recently
become available, an ABAS system has not been implemented and
tested yet. This is partially due to the notorious resistance of the
construction sector to adopt technological advancements
(Hunhevicz and Hall, 2020), which often stems from a limited
comprehension of the existing technological capabilities that
could enhance the construction industry.

To cover this gap, the aim (i.e., the research question) of the
present paper is to address the current lack of understanding of the
state of research on Automated Building Assembly Systems (ABAS).
Establishing a common understanding of the current capabilities in
performing these fundamental tasks on a construction site is
essential for developing a cyber-physical interface capable of
automatically synchronizing the movements of physical
components with their virtual counterparts. With the goal of
promoting the progress of Automated Building Assembly
Systems (ABAS), this paper aims to address the current
knowledge gap through a systematic analysis of how sensing
technologies are currently applied to recognize, locate, and
orient objects.

2 Methodology

In this section, the most cutting-edge works on the use of object
identification, tracking and orientation recognition are analyzed
using a systematic method.

In this work, we have systematically examined the current status
of research on object identification, location, and orientation by
selecting, categorizing, and analyzing relevant scientific publications
in these fields. We chose papers that: (1) were published within the
past 20 years, i.e., since January 2003; (2) addresses objects
identification, tracking, and orientation; and (3) involve
technologies that could be used on a construction site, i.e., that
are used or can be used in outdoor or in a non-sterile environment.
The selection was run using common database for scientific
publications, including Google Scholar and Scopus. Then, the
chosen articles were categorized according to 8 criteria: the year
of publication, the sector of application, the type e and number of
objects treated, the scope of the study, the sensing technology used,
its state of development (i.e., the maturity of the technology) and its
limitation for large scale deployment on a construction site. The
choice of the criteria steams from the research question of the
analysis. Therefore, some of the criteria were chosen to identify
trends in the distribution of works over time, sector and objectives,
and some to clarify the dependency of the applications to the state of
the required technology, i.e., complexity and number of objects
treated, type and maturity of the involved technology and potential
barriers to implementing these solutions on a large scale, particularly
in dynamic and complex environments like construction sites. The
rational for the classification of each of the criteria is reported
in Table 1.

Finally, the categorized papers were analyzed to uncover
patterns, trends, and areas of deficiency in the field of objects
identification, location, and orientation. The analysis has been
designed to delve into the relationships and potential gaps within
the development of the relevant sensing technologies to ABAS. To
this scope the analysis was conducted across three distinct levels:

Level 1 - For each of the eight criteria, a frequency distribution of
the classifications was produced, e.g., the number of publications on
object tracking. The rationale behind this level of investigation was
to identify overarching trends and prevailing themes, for
establishing a fundamental framework upon which more detailed
analyses could be constructed.

Level 2 –A dual interpolation was conducted on themost pivotal
criteria identified in the Level 1 analysis, i.e., these that provided the
most indicative patterns (e.g., if the analysis of a criteria show a
particular concentration of research on a specific aspect over the
others, that underscore a meaningful tendency, that criteria is
retained for further interpolation in level 2), to create a
frequency distribution that compares the classification of one
criterion against another. For example, determining the number
of publications related to tracking of construction elements.

Level 3 – A triple interpolation was conducted on the most
critical criteria identified in the Level 1 analysis to generate a
frequency distribution that compares one classification against
the other two. This resulted in a distribution that represents the
frequency of specific combinations of classification characteristics.
For example, providing insights into the number of works that
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specifically target logistics infrastructure, using tracking technology,
for TRL level.

3 Analysis of sensing technology for
object identification, tracking and
orientation recognition

The selected 72 articles are reported in Tables 2–4 alongside
their specific classification for each of the 8 criteria. The results of the
3 levels analysis are further shown in Figures 1–5 and commented in
the following text2.

3.1 Level 1 analysis

Level 1 analysis (Figure 1) shows how approximately one-third
of the studies selected (37%) have been conducted within the

construction sector and have been done with increasing
consistency since 2019. Papers from this year on constitute 43%
of the total publications in the two-decade span. The dominance of
the construction sectors in the development and testing of solutions
d for objects identification, tracking and orientation reflects the
pressing need for ABAS in this domain characterized by a complex
interplay of moving machinery, materials, and personnel. Moreover,
more than half the studies focus on multiple objects, as a
consequence of the need in many sectors of identify and track
objects among multiple others (e.g., a wooden beam out of a stock).
While, over half of the studies primarily focus on two types of
objects: construction elements (e.g., wooden components for
balloon frame constructions) and living beings (e.g., humans on
industrial or construction sites, typically for safety reasons, or
animals for farming purposes). In terms of technology used,
imaging-based tracking, i.e., systems using computer vision for
image capturing, background subtraction, bodies detection,
bodies tracking and data association (Martani et al., 2017),
emerges as the mode, with Radio Frequency Identification
(RFID) following closely. The preference for these technologies
reflects their affordable scalability - i.e., RFID are relatively
inexpensive compared to other sensing technologies and allow
for affordable large-scale deployments, while imaging-based
tracking is cost invariant to the volume - and
resistance–i.e., RFID are resistant and often reusable tags, while
imaging-based tracking does not require deployment of
sensors–which are valuable attributes in many site deployments.
In terms of technology matureness, over 60% of studies have used

TABLE 1 Criteria to classify the selected publications.

Criteria Classified in . . .

Year accordance to the year of publication, to identify any patterns or trends over time

Sector of application (1) building management; (2) transportation infrastructure; (3) construction sites; (4) logistics; (5) industry (which includes yards, mills,
portals, and power plants); and (6) Unspecified (NA - not applicable)

Object type (1) construction elements, such as precast walls, pipe spools, construction hard hats and steel beams; (2) Objects in Motion like trucks,
mobile robots, shopping carts and vehicles; (3) Living beings, including people (e.g., construction workers, hospitals’ patients) and animals;
(4) Parcels, such as packages, delivery boxes, pallets, and crates; and (5) others, including metal objects, LEGO sets, and hospital
equipmentetc.

Number of Objects (1) single objects [S], (2) multiple objects [M]; (3) and unspecified [NA]

Scope tracking [T]; orientation [O]; identification [I] of the object. Or a combination of these, e.g., tracking and orientation [TO], tracking,
orientation and identification [TOI]. Or not specified [NA]

Technology used (1) location sensors, specific to location determination like ultrawide band technology; (2) Imaging-based tracking, any form of image
processing and deep learning methodologies such as R-CNN (Zhao et al., 2022); (3) Identification tags - diverse forms of Radio Frequency
Identification (RFID) technology; (4) Other sensors - all types of sensors apart from location (e.g., Microsoft Kinect sensor, Raspberry Pi 3B+,
Optical beacons, IR channel, Optical AI sensor, Flash LADAR, TOF sensor, TSL cloud point, nanoLOC sensor node)

Maturity of technology The works presented were classified in accordance to the Technology Readiness Level scale (TRL1): TRL1, Basic principles observed and
reported; TRL2, Technology concept and/or application formulated; TRL3, Analytical and experimental critical function and/or
characteristic proof of concept; TRL4, Component and/or breadboard validation in a laboratory environment; TRL5, Component and/or
breadboard validation in a relevant environment; TRL6, System/subsystem model or prototype demonstration in a relevant environment;
TRL7, System/Subsystem model or prototype demonstration in an operational environment; TRL8, Actual system completed and qualified
through test and demonstration; TRL9, Actual system proven through successful mission operations

Limitations (1) technical rigidity, (2) implementation issues, (3) measurement challenges, (4) high cost and the requirement for (5) specialized training,
(6) not elsewhere included [NEI], e.g., the need for custom-built components or proprietary software compatibility in a standardized
industry environment, and (7) not specified [NA]. Technical rigidity encompasses the requirement for an advanced setup, which involves a
higher number of tags, an increased number of GPUs, and a clear line of sight. Implementation issued includes restrictions on object
compatibility, sensitivity to environmental changes, and the need for further research. Measurement challenges comprised of limited sensor
read range, tracking incapability under dynamic conditions or only when the object is static, unaccounted dynamic errors in calculations,
obstacle issues during travel direction and position calculations, occlusion, and large positional errors

1 Source: https://esto.nasa.gov/trl/.

2 Since the years are progressive, the legends for this classification

characteristic is color graduated to facilitate visualizing the progression,

i.e., lighter regions signify more remote years, with values increasing as the

shade darkens. This is trusted to reduces the cognitive load on the reader,

making it easier to focus on the data itself rather than deciphering the

meaning of multiple colors.
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technologies that are TRL 6 or above. This means that among the
publications selected the vast majority used sensing technologies, at
least on a prototype testing. This is not surprising as it confirms a
known tendency in works addressing technology development and
validation to focus on practical testing and deployments over only

theoretical hypothesis, basic principles observation or concept
formulation. Finally, an overarching limitation across various
technologies, especially those involving Image-based tracking, is
the need for training. Closely following this is the challenge of
measurement difficulties, especially pronounced in the context of

TABLE 2 Classification of the selected articles focusing on ABAS (1/3).

References Sector Object type Object
number

Technology Scope Limitation TRL

Jaselskis and El-Misalami,
(2003)

Construction Site Construction
Elements

M Identification tag T Measurement
difficulties

6

Esteve-Taboada and Garcıa.
(2003)

NA Others M Imaging-based
tracking

O Training needed 3

Song et al. (2006) Industry Construction
Elements

NA Identification tag T I Measurement
difficulties

9

Goodrum et al. (2006) Construction site Construction
Elements

Living Beings

M Identification tag T I Implementation
difficulties

Measurement
difficulties

7

Ergen et al. (2007) Industry Construction
Elements

S Identification tag
Location sensor

T I Measurement
difficulties

Implementation
difficulties

7

Skibniewski et al. (2007) Construction Site Construction
Elements

NA Other sensors I NEI 3

Teizer et al. (2007) Construction Site Objects in motion
Living Beings

NA Other sensors T O Measurement
difficulties

9

Jang and Skibniewski, (2008) Construction site Construction
Elements

M Other sensors T O Implementation
difficulties

7

Rohrig and Spieker, (2008) Logistics Objects in motion S Other sensors T I Measurement
difficulties

7

Gao and Yuen, (2011) NA Objects in motion NA Identification tag T NA 6

Heißmeyer et al. (2012) Industry Parcels NA Other sensors O Measurement
difficulties

8

Weerasinghe et al. (2012) Construction site Construction
Elements

M Other sensors T I Implementation
difficulties

Measurement
difficulties

6

Escorcia et al. (2012) Building
management

Living Beings M Other sensors T O Training needed 7

Han and Lee, (2013) Construction site Living Beings M Imaging-based
tracking

T O Technical Rigidity 6

Arif et al. (2013) Construction Site Construction
Elements

NA Other sensors T I O Measurement
difficulties

8

Turkan et al. (2014) Construction site Construction
Elements

NA Other sensors T Measurement
difficulties

5

Khosrowpour et al. (2014) Construction site Living Beings M Imaging-based
tracking

T I O Measurement
difficulties

7

Ren et al. (2014) Building
management

Others M Other sensors T I O Training needed 6

Galna et al. (2014) Building
management

Living Beings M Other sensors T Implementation
difficulties

7

Akhavian and Behzadan,
(2015)

Construction site Construction
Elements

S Other sensors T O Measurement
difficulties

6

Huang et al. (2015) Industry Objects in motion NA Other sensors T Technical Rigidity 6
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TABLE 3 Classification of the selected articles focusing on ABAS (2/3).

References Sector Object type Object
number

Technology Scope Limitation TRL

Contigiani et al. (2016) Building
management

Objects in motion NA Location sensor T I NA 7

Lavner et al. (2016) NA Living Beings NA Imaging-based
tracking

NA NA 5

Jeong et al. (2017) Building
management

Living Beings S Other sensors I NA 8

Shaari and Nor, (2017) NA Parcels S Identification tag T I O Technical Rigidity 8

Valente and Neto, (2017) Industry Construction
Elements

S Identification tag
Other sensors

T I O NA 7

Tao et al. (2017) Transport Objects in motion M Imaging-based
tracking

T I Measurement difficulties 7

Hamledari et al. (2017) Construction site construction
Elements

M Imaging-based
tracking

T Implementation difficulties 5

Brownjohn et al. (2017) Transportation Others M Others T Measurement difficulties 6

Kovar et al. (2018) Transportation Living Beings S Imaging-based
tracking

T Technical Rigidity 5

Lee and Marsic, (2018) Building
management

Others M Identification tag T I High cost 6

Fang et al. (2018a) Construction site Construction
Elements

Living Beings

M Imaging-based
tracking

NA Technical Rigidity 8

Fang et al. (2018b) Construction site Living Beings M Imaging-based
tracking

T I Measurement difficulties
Technical Rigidity

6

Liu et al. (2018) NA Living Beings S Imaging-based
tracking

I Training needed 8

M’hand et al. (2019) Logistics Objects in motion S Identification tag T I Implementation difficulties 9

Rashid and Louis, (2019) Construction site Construction
Elements

S Other sensors T NA 7

Li et al. (2019) Logistics Parcels M Imaging-based
tracking

I NA 6

Lee and Park, (2019) Construction site Living Beings M Imaging-based
tracking

T Technical Rigidity 7

Liu and Li, (2019) Transport Others M Imaging-based
tracking

O NEI 5

Huang et al. (2019) Logistics Parcels M Imaging-based
tracking

T I Training needed 6

Guven and Ergen, (2019) Construction site Construction
Elements

M Identification tag T I Technical Rigidity 7

Roddick et al. (2019) Transport Objects in motion NA Imaging-based
tracking

I Training needed 7

Hoang, (2019) Construction site Construction
Elements

NA Imaging-based
tracking

I Implementation difficulties 6

Roberts and
Golparvar-Fard, (2019)

construction site Construction
Elements

NA Imaging-based
tracking

T Implementation difficulties 6

Dror et al. (2019) construction site Construction
Elements

M Identification tag T I O Implementation difficulties 7

Najafi et al. (2019) Building
management

Objects in motion NA Imaging-based
tracking

T I O NEI 6
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TABLE 4 Classification of the selected articles focusing on ABAS (3/3).

References Sector Object type Object
number

Technology Scope Limitation TRL

Zhang et al. (2020) Construction site Construction
Elements

NA Imaging-based
tracking

I Training needed 5

Angah and Chen, (2020) Construction site Living Beings M Imaging-based
tracking

T Training needed 8

Nguyen et al. (2020) Building
management

Living Beings M Other sensors T Measurement difficulties 7

Wang et al. (2020) Building
management

Construction
Elements

S Imaging-based
tracking

T O Technical Rigidity 9

Zhu, (2021) Logistics Parcels S Imaging-based
tracking

I NEI 8

Malburg et al. (2021) Logistics Parcels M Imaging-based
tracking

T I O Training needed 6

Iqbal et al. (2021) Industry Others M Imaging-based
tracking

I Training needed 6

Huang et al. (2021) NA Living Beings NA Other sensors T Training needed 8

Sengupta et al. (2021) Building
management

Living Beings NA Imaging-based
tracking

O Training needed 8

Zhao et al. (2021a) Construction site Living Beings S Location sensor O Measurement difficulties 5

Zhao et al. (2021b) Construction site Construction
Elements

M Others T I O Training needed 5

Yan et al. (2022) Construction site Objects in motion NA Identification tag T I High cost 8

Thiede et al. (2022) Industry Parcels NA Other sensors T NEI 8

Alzahrani and Irshad,
(2022)

Logistics Objects in motion NA Identification tag T Implementation
difficulties

6

Wang et al. (2022) Industry Others M Imaging-based
tracking

NA Training needed 6

Yan, (2022) Construction stie Others M Imaging-based
tracking

I Implementation
difficulties

6

Kim and Kim, (2022) Logistics Parcels M Imaging-based
tracking

I Implementation
difficulties

6

Liang and Seo, (2022) Construction site Construction
Elements

M Imaging-based
tracking

I Technical Rigidity 7

Zhao et al. (2022) Logistics Parcels M Imaging-based
tracking

I O Training needed 5

Mathew and Mahesh,
(2022)

Industry Others M Imaging-based
tracking

T I NA 7

Jung et al. (2023) Construction site Construction
Elements

M Imaging-based
tracking

I Technical Rigidity 6

Han et al. (2023) NA Living Beings M Imaging-based
tracking

T I O Training needed 7

Edwards et al. (2023) Industry Others NA Imaging-based
tracking

T NA 7

Holmström et al. (2023) Logistics Parcels NA Imaging-based
tracking

T I O Training needed 6

Al Jaberi et al. (2023) NA Objects in motion NA Imaging-based
tracking

T I Training needed 6

Vu et al. (2023) Logistics Parcels S Imaging-based
tracking

O Technical Rigidity 8
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construction and work sites, where the dynamic and complex
environment poses unique challenges to accurate measurement
and tracking.

3.2 Level 2 analysis

Level 2 analysis involved a comprehensive evaluation of each
criterion against all others. Among these, the most insightful results
emerged from the interplay of the TRL and Scope, against the other
criteria, which offer a comprehensive understanding of dynamics
between technologies chosen in terms of maturity and purpose over
time, sectors and objects, as well as the associated limitations.

In particular, the interpolation of the TRL with years of
publication and sectors show how the maturity of the
technologies chosen have remained stable over time and across
fields of application. The results reported in Figure 2 clearly points
that TRL 6, to 9 are consistently dominant among the works
analyzed across time, without significant variations, i.e., no
obvious tendency seems traceable of a progressive orientation
toward either more mature or more experimental technologies in
recent years. This is not surprising considering the tendency
highlighted in the level 1 analysis to focus mostly on prototypes
or large deployment testing over theoretical hypothesis. In
particular, it is noticeable that the limited use of more
experimental technologies (i.e., TRL 3, 4, and 5) is restricted to

FIGURE 1
Level 1 analysis of the eight classification characteristics.
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works developed for construction sites, logistics or theoretical
studies. For example, a sensor-based material tracking system for
construction components has recently been presented (Jung et al.,
2023), that has so far only undergone lab-based testing of its
individual components to validate their functionality (i.e., TRL 4).

The Scope has been interpolated with: type of objects,
technology used, limitations and sector of application. Results in
Figure 3 show how the works that have objects identification as a
scope are predominantly applied on construction elements, logistic
parcels and living beings; using largely imaging-based tracking as a
technology; and deployed mostly on construction sites for
construction components identification. For instance, in a Dubai
construction project, imaging-based tracking was utilized to
monitor the placement and orientation of pre-fabricated

components. Cameras strategically positioned around the site,
linked to AI algorithms, ensured that each component was
correctly aligned according to architectural plans, thus enhancing
accuracy and efficiency in the construction process (Guven and
Ergen, 2019). Notably, the preference for imaging-based tracking
can be attributed to its adaptability and proficiency in managing the
dynamic and complex nature of construction and logistics
environments. Given the multitude of objects and the non-
delicate handling often observed on construction sites, the
utilization of fragile sensors poses inherent risks. In this context,
the robustness of imaging-based tracking systems offers a safer and
more reliable alternative. In terms of limitations, a slight prevalence
of training needs and implementation difficulties emerges. The
works focusing on objects orientation are predominantly applied

FIGURE 2
Level 2 analysis of the extrapolation between two classification characteristics, TRL and year (left), TRL and sector (right).

FIGURE 3
Level 2 analysis of the interpolation between scope and other four classification characteristics. (Abbreviation: tracking [T]; orientation [O];
identification [I] of the object; not specified [NA]; all combination of previously listed letters correspond the combined abbreviations).
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on logistic parcels and living beings (human specifically in this case
to detect hazardous movement, such as falling from height); using
almost exclusively Imaging-based tracking as a technology (11/
13 times); and deployed mostly on industrial sites. In terms of
limitations, the main concerns come from the training needs of the
imaging-based tracking. The works that have objects tracking as a
scope are predominantly applied on construction elements, logistic
parcels and living beings; using a mix of imaging-based technology,
Identification tags and others (e.g., programmable logic control,
LADAR and optical sensors); and are deployed predominantly on
construction sites (18/45 times) with a large spectrum of limitations.
When considering works with multiple scopes it is interesting to

notice how logistics grows in importance being the only sector
involved in identification and orientation combined, and
significantly present - along with building management and
construction sites - both in works concerning identification and
tracking and identification, orientation and tracking together.

3.3 Level 3 analysis

Also in the level 3 analysis, the most informative findings were
uncovered by exploring the interaction between TRL and Scope with
the other criteria (illustrated in Figures 4, 5 respectively). Figure 4

FIGURE 4
Level 3 analysis of the interpolation between TRL, scope and limitations (left), TRL, sector and year (right) (Abbreviation: tracking [T]; orientation [O];
identification [I] of the object; not specified [NA]; all combination of previously listed letters correspond the combined abbreviations)2.

FIGURE 5
Level 3 analysis of the interpolation between scope, sector and limitations (left), scope, sector and year (right) (Abbreviation: tracking [T]; orientation
[O]; identification [I] of the object; not specified [NA]; all combination of previously listed letters correspond the combined abbreviations)2.
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indicates a prevalence of technologies within TRL 6-8 across various
scopes, with a relatively limited presence of more mature
technologies at TRL 9. Several limitations could account for this
trend. Works centered on identification, tracking, and their
combination are significantly impacted by implementation
challenges, technical rigidity, and measurement difficulties, while,
works related to orientation often face challenges due to high costs.
The need for extra training is ubiquitous across sectors, being a
prevalent constraint in systems integrating Imaging-based tracking.
These limitations frequently hinder these technologies from
reaching the level of successful commercial systems, i.e., TRL 9.
Additionally, it is noteworthy, as depicted in Figure 4 (right), that
research endeavors spanning different sectors and TRLs have
notably intensified over the past 7 years. While this trend is
expected, the substantial acceleration in research activities within
this field in recent years is striking. This trend is particularly evident
in logistics, where only 1 out of 11 studies took place before 2016.

Figure 5 indicates that the construction research dominates,
along with logistic, in works related to identification, tracking and a
mix of the two. However, these applications face two main
challenges: implementation complexities and technical rigidity.
As an example, construction sites contend with issues such as
dust, vibrations, and ever-changing environments, all of which
can disrupt sensitive tracking devices. Another example details a
residential building in New York that uses a cloud-based security
system, allowing for remote monitoring and management, which
enhances tenant security and operational efficiency (Sengupta et al.,
2021). These implementation challenges are crucial as they can
result in significant consequences. Construction projects often
operate within tight budgets and schedules, where errors or
inefficiencies can lead to substantial financial and time losses. For
instance, misplacing a component due to tracking or identification
errors can cause delays lasting several days. In terms of year of
publication, also in Figure 5 (right) it is possible to appreciate the
steep increase in works across various sectors and scopes in recent
years. In this case the phenomenon is particularly evident in the
construction sector, where 16 out of 23 studies, primarily focusing
on Identification, tracking, or a combination of both, were
conducted after 2016.

3.4 Contribute to the research question

In line with the research question presented in the introduction,
this study contributed in covering the current gap in understanding
the state of research on ABAS through a systematic literature review.
The findings over the three levels analysis helped identifying the
current trends, capabilities and limitations in the use of sensing
technologies for recognizing, locating, and orienting objects that
could be used for the development of in ABAS systems. Detailed
conclusions from the results are provided in the next sections.

4 Conclusion

This study addresses the current lack of understanding of the
state of research on ABAS by providing a comprehensive analysis of
existing technologies, their applications, and the challenges they

face. By identifying critical areas for improvement and potential
future research directions, this paper contributes to the development
of more effective and efficient ABAS solutions, ultimately promoting
progress in the field. Specifically, based on all three levels of analysis,
several notable conclusions can be drawn.

- Research in this domain has accelerated vigorously in recent
years. Since 2019, there has been a discernible surge in
identification and orientation research, not limited to the
construction sector but also in building management,
logistics and manufacturing industry. This growing trend
highlights the urgent demand for innovative solutions
across these sectors, emphasizing safety, productivity, and
operational efficiency. The inherent challenges of each
sector, like the complex nature of construction sites or the
dynamic environment of logistics, are driving a shift towards
the use of Imaging-based tracking techniques that are greatly
adaptable to multifaceted environments.

- The construction sector stands out as one of the dominant
areas among the research sectors involved. This prevalence is
logically justified by the dynamic nature of construction
environments, which involve intricate interactions among
moving machinery, materials, and personnel. The research
emphasis in this sector is unsurprising considering the
significant advantages that integrating a proficient ABAS
can offer, such as enhancing safety protocols, streamlining
operations, and improving overall cost efficiency.

- The technologies utilized are characterized by a high level of
maturity across various sectors. TRL 6 or above consistently
dominates over time, showing no clear trend indicating a shift
towards either more mature or experimental technologies. In
particular, there is a consistent prevalence of TRL 5-
7 overtime, albeit coupled with a modest presence of TRL
8 and 9. Current limitations in the use of highly impactful
technologies, particularly visual technology across sectors,
appears to possibly be responsible for the limited amount of
TRL 9 applications.

- Five main limitations emerge to be recurrent across all
applications and all sectors: works focused on identification,
tracking, and their combination encounter significant
obstacles related to implementation challenges, technical
rigidity and measurement difficulties, while, initiatives
involving orientation often encounter challenges due to
high costs. In the aspect of technical rigidity, key challenges
involve the need for multiple high-frequency RFID tags for
precise tracking in warehouse automation systems, and the
necessity for numerous GPUs for efficient real-time data
processing in complex simulations. Regarding
implementation issues, difficulties arise in machine vision
systems that fail to recognize objects with diverse surface
textures or colors, environmental monitoring systems
providing inaccurate readings under extreme weather
conditions. Measurement challenges are exemplified by GPS
systems with limited range and accuracy in densely built urban
areas. The necessity for additional training seems to be
widespread. This is a common limitation of systems
incorporating visual technologies, impacting projects across
various scopes and sectors.
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The practical challenges of implementing sensing technologies
on construction sites are particularly noteworthy. Construction sites
present unique challenges such as harsh environmental conditions,
dynamic and cluttered workspaces, and the need for integration with
existing workflows and safety protocols. These factors can
significantly impact the performance and reliability of sensing
technologies. Additionally, the high costs associated with the
deployment and maintenance of these technologies pose a barrier
to widespread adoption. Further exploration of these practical
implications is crucial for advancing the field.

Future research should focus on overcoming the identified
limitations, particularly in improving the technical robustness
and implementation feasibility of sensing technologies.
Addressing the current challenges and tailoring solutions to
specific industry needs could yield significant breakthroughs in
the coming years. Recent advancements in AI-related Imaging-
based tracking (Hamledari et al., 2017; Nguyen et al., 2020) are
poised to overcome many of these limitations. It is foreseeable that
upon overcoming the existing training challenges linked to Imaging-
based tracking, the possibilities for identification, tracking, and
orientation in the construction sector will greatly broaden.
Combined with the advancement of augmented reality-enriched
4D models, this could facilitate the creation of Advanced Building-
Assistance Systems (ABAS) capable of guiding workers in
component deployment, assembly procedures, and work progress.
Future research on several key areas would be needed, including.

- Enhancing the robustness of sensing technologies to ensure reliable
performance across diverse and challenging environments.

- Evaluating and reducing the costs associated with these
technologies to make their implementation more
economically viable. This includes a thorough cost-benefit
analysis to determine the financial feasibility and identify
potential cost-saving measures.

- Developing strategies to make the implementation of these
technologies more feasible and cost-effective.

- Creating user-friendly interfaces and systems that minimize
the need for extensive training.
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