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Bridge maintenance activities benefit from digital models, provided in the
interoperable IFC format. Such a model, enriched with up-to-date
information, is an enabler for a wide range of applications. It opens new
perspectives in asset information management. However, the manual creation
of a digital replica, representing the actual state of the asset frompoint cloud data,
is time-consuming. Consequently, process automation is of particular interest.
This paper proposes a systematic, semi-automatic approach for creating IFC
bridge models from point clouds. It introduces new methods for semantic
segmentation and 3D shape modeling. A case study demonstrates the
feasibility of the process in practice. Compared to other solutions, proposed
methods are robust when dealing with incomplete point clouds.

KEYWORDS

BIM, IFC, point clouds, scan-to-BIM, bridges, maintenance, asset management,
interoperability

1 Introduction

Ensuring the structural health of bridges is crucial for an operational infrastructure.
However, the considerable quantity of assets to oversee is a non-negligible challenge for
operators. In Switzerland, the national road network counts approximately 4,000 bridges,
while the railway system includes around 8,000 bridges (ASTRA, 2016).

The mission of responsible entities (operators) is to guarantee user safety and uphold
consistent service standards under all circumstances. In the context of bridge monitoring,
inspection campaigns are carried out regularly to characterize asset conditions. These span
from visual inspections, including photographs and illustrations, to detailed checks, such as
deformation measurements in real-time (Roy et al., 2012; Bertola and Smith, 2019),
dynamic auscultations, load tests, and gamma logging (Andrey et al., 1985). Therefore,
the data collected on bridges, serving as the foundation for estimating repair needs and
planning maintenance operations, may be extensive and diverse in terms of type and source.

Collecting such a substantial amount of data for each bridge involves the risk that some
of the data might not be stored in a meaningful structure for analysis. However, well-
organized information and convenient access to it is a prerequisite for optimizing
maintenance planning and activities.

In this context, a digital twin (DT) consolidating all asset-related data would be
highly valuable. A digital twin is a virtual representation of a physical object that can be
remotely controlled, enabling advanced management for various purposes
(Tekinerdogan, 2022).

Essentially, a digital twin refers to a Building Information Modeling (BIM) model that
accurately represents the physical asset and includes up-to-date information.
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Creating DT from archived construction documentation is
labor-intensive, as not only the as-built situation but also
information about modifications applied during the lifecycle of a
bridge as well as inspection reports must be considered. In addition,
available documents might be incomplete or incorrect and should be
validated with the asset on site.

It is obvious that a DT should be established based on the
current state of the structure. Point Cloud Data (PCD), generated
through laser scanning and photogrammetry, are good candidates.
Point clouds accurately reflect the actual geometrical and topological
conditions of an asset (Vilgertshofer et al., 2023). Consequently,
generating a DT from PCD ensures it has a true geometry (Tang
et al., 2010; Vilgertshofer et al., 2023).

Additionally, PCD can be used to highlight movements and
deformations by comparing point clouds created at different times.
Furthermore, when combined with images, PCD enable automated
detection and analysis of defects (Chan et al., 2015; Rezaie et al.,
2020; Chen and Lin, 2021; Çelik et al., 2024). Such applications offer
the potential to enrich the DT.

The process of generating a BIM model from PCD, also referred
to as “Point cloud-to-BIM” (or “Scan-to-BIM” when laser scans are
used), has gained significant attention (Son et al., 2015). Current
practice consists mainly of manually modeling objects over PCD
using dedicated applications (Tang et al., 2010). However, modeling
existing bridges without intelligent computational support is
considered to be inefficient (Rocha and Mateus, 2021).

Operators could benefit from a more automated generation of
an accurate model in a neutral data format, enabling interoperability
and allowing data generated to be used for a variety of applications.
In the AEC industry, the recently released Industry Foundation
Classes standard (IFC 4.3) (buildingSMART, 2024b) is a promising
candidate for modeling infrastructure assets (Domer and
Bernardello, 2023).

Sacks et al., 2018 introduced SeeBridge, a pioneering,
comprehensive integrated workflow to create digital twins of
bridges. The suggested method includes processes for acquiring
point clouds and reconstructing semantically rich models. However,
standards used like mvdXML and IFC four are now considered to be
outdated (buildingSMART, 2024a).

A recent example is TwinGen (Vilgertshofer et al., 2023),
spanning the entire process from point cloud acquisition to IFC
bridge model creation. High-end solutions, based on advanced
techniques such as deep learning and knowledge graphs, are
proposed. TwinGen establishes the basis for automated Scan-to-
BIM processes but does not provide a process map, detailing
the sequence of operations and their corresponding
requirements. Additionally, the document lacks a discussion
on the real-world applicability of the proposed solutions
(i.e., assessment of implementation effort and adaptability to
different use cases).

The BridgeTwin project (HEPIA, 2022) intended to develop a
systematic process for creating semi-automatically an IFC bridge
model from point clouds to support maintenance activities.

The proposed process employs innovative solutions for the
processing and transformation of point clouds into digital
models. One important objective was that solutions can be easily
reproduced in practical contexts, enabling stakeholders to rapidly
create a BIM model of an existing bridge, structured in the

interoperable format IFC. Authors propose to employ such
models as data integrators to serve maintenance use cases.

BridgeTwin enhances the state-of-the-art in the area of point
cloud-to-BIM by introducing:

1. Clear and structured workflows, expressed in Business Process
Model Notation (ISO, 2013), for point cloud acquisition,
preparation, and semi-automated point cloud-to-BIM.

2. New methods for semantic segmentation and 3D shape
modeling of bridge elements.

This paper focuses on the description of the semi-automated
semantic segmentation process and the creation of IFC bridge
elements within the BridgeTwin framework. Proposed methods
are evaluated regarding their performance as well as practical
applicability and compared to traditional approaches. Integration
of workflows and methods in two bridge maintenance test use cases
(defect tracking and structural analysis) will be briefly presented.

2 Related work

Prior studies (Sacks et al., 2018; Wang et al., 2020; Vilgertshofer
et al., 2023) outlined the following steps for the automated point
cloud-to-BIM process:

1. Matching and extraction of bridge elements in point clouds
(semantic segmentation).

2. 3D shape modeling of the elements.
3. Integration of inspection-related data into the model.

These have been addressed in various publications (Ma and Liu,
2018; Rashdi et al., 2022).

2.1 Point cloud semantic segmentation

Unlike BIM models, raw point clouds do not have a coherent
structure (Hackel et al., 2016). This means that the points are not
associated with specific objects, as all elements in the scene are
merged. Semantic segmentation aims to allocate points to
predetermined object classes.

Methods proposed for semantic segmentation of bridge point
clouds can be classified as either rule-based or learning-based
(Schatz and Domer, 2023).

2.1.1 Rule-based segmentation
The term “rule-based system” in this context denotes a decision-

making framework that relies on expert knowledge and uses a fixed
set of rules to replicate human decision processes.

Lu et al., 2019 utilized a top-down methodology for identifying
bridge elements within point clouds of concrete bridges. The
proposed approach involves an initial separation of deck and pier
assemblies based on bounding boxes, followed by the detection and
segmentation of pier caps and girders, using density histograms.

Qin et al., 2021 employed a density-based algorithm. Initially,
the point cloud undergoes preprocessing which includes
registration, noise reduction, and sampling. Next, the mean
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density of point clouds and the interval value are computed. Finally,
segmentation is performed based on interval density and point cloud
projection filtering.

Rule-based solutions generally demonstrate high accuracy for
tested bridges, as algorithms are tailored to deal with specific
scenarios. A limitation of this approach is that it can necessitate
numerous input parameters and substantial expert knowledge
(specific to the analyzed bridge type) to perform correctly.
Generalization for other bridge types beyond those described by
the initial rules may be difficult.

2.1.2 Learning-based segmentation
Alternatively to expert systems, machine learning or deep

learning algorithms can be used to segment point clouds. The
most promising solutions are supervised, meaning that they
require labeled data for training. Proposals differ mainly on the
type of input (e.g., points, volumes, images) as well as the features
used (Guo et al., 2019).

A pioneering work is PointNet (Qi et al., 2016). PointNet is a
point-wise multilayer perceptron (MLP) neural network that
directly processes raw PCD without needing manual
preprocessing. PointNet and PointNet++ (Qi et al., 2017)
provided the basis for further improvements, and suggestions
have been made to increase accuracy, in particular when applied
to bridges (Lee et al., 2021). Another point-based segmentation
architecture is RandLA-Net (Hu et al., 2019), which demonstrated
satisfactory results on bridge structures (Mafipour et al., 2023).

Given the significant amount of training data needed, point-
based segmentation is not straightforward. A possible alternative is
to use images instead of PCD, considering their abundant
availability or the ease with which they can be produced
(Vilgertshofer et al., 2023).

Martens et al., 2023 introduced a novel approach combining
image segmentation and geometric reasoning. First, images are
segmented using a convolutional neural network. Next, the point
cloud is segmented by projecting the labeled area of the images onto
it. Finally, geometric knowledge is employed to improve the
accuracy of the detected regions. As a result, training only
requires around a hundred images. However, the boundaries of
detected regions are imprecise and may overlap.

Regardless of the input type, neural network models are
considered to be more flexible and less limited than most
heuristic approaches, which are based on assumptions (Mafipour
et al., 2023). However, the high computational costs, especially when
processing large point clouds, and the lack of available training data,
are significant barriers against broader adoption (Truong-Hong and
Lindenbergh, 2022; Xia et al., 2022; Yang et al., 2022).

2.2 3D shape modeling

In theory, point clouds could be directly exported to IFC format,
as demonstrated by the “Point” and “PointCloud” types available for
the class IfcShapeRepresentation (buildingSMART, 2024b).
However, this would lead to extensive lists of IfcCartesianPoint,
and consequently, huge file sizes. Furthermore, no Model View
Definition (MVD) enabling the import or export of point clouds in
IFC exists at present (buildingSMART, 2024d).

A practical and convenient solution is to convert PCD into
polygon meshes, surface models, or solid models.

BIM authoring tools generally operate with surface or solid
models (Fougerolle et al., 2005; Lafarge et al., 2010; Pătrăucean et al.,
2015; Eastman et al., 2018; Rausch et al., 2020), which are suitable
options for designing new elements or assemblies with an “idealized”
geometry (e.g., truly parallel or perpendicular edges, smooth
surfaces, etc.). On the other hand, polygon meshes are
considered to be more appropriate for accurately capturing as-
built, irregular geometries (Tang et al., 2010; Rausch et al., 2020).
In addition, both point clouds and meshes are non-parametric,
allowing for a seamless transition between the two (Rausch
et al., 2020).

Polygonmeshes, surface models and solid models are all exportable
in IFC, which supports various representation types such as
Constructive Solid Geometry (IfcCSGSolid), Boundary
Representation (IfcFacetedBrep), Non-Uniformal Rational B-Splines
(IfcAdvancedBrep) and Tessellation (IfcTriangulatedFaceSet,
IfcPolygonalFaceSet) (buildingSMART, 2024b).

Two prevalent approaches for creating three-dimensional
shapes of bridge elements from PCD are examined:

1. Applying a surface reconstruction algorithm.
2. Fitting geometrical primitives.

2.2.1 Surface reconstruction
Surface reconstruction algorithms, such as alpha shape

(Edelsbrunner et al., 1983), ball pivoting (Bernardini et al., 1999),
and Poisson surface reconstruction (Kazhdan et al., 2006), can be
used to create a triangle mesh from a set of unorganized
cartesian points.

The alpha shape algorithm is a generalization of the convex
hull algorithm, allowing to capture concave features of the
boundary. The principle is to perform a Delaunay
triangulation (Delaunay, 1934; Berg, 2008) on all points and
retain the outer edges of the triangulation. Then, edges whose
lengths are greater than a threshold value (α) are trimmed
(Fischer, 2000).

The shape obtained, known as the “alpha shape,” is highly
variable, depending on the chosen α-value. When increasing α,
the alpha shape is getting similar to a convex hull. If α is too low, the
alpha shape overfits the points, resulting in inconsistencies. Thus,
the difficulty of this method lies in determining the appropriate α-
value, especially if the point cloud is not uniformly sampled (Akdim
et al., 2022).

The ball pivoting algorithm is related to alpha shapes (Open3D,
2018). A virtual sphere (ball) initially moves through the various
points contained within the point cloud. A first triangle is formed
when the ball intersects with three points without passing through
them. Next, the ball is pivoted from the triangle edges to form a new
triangle. The process is repeated until no further triangles can
be created.

Since the Delaunay conditions are satisfied, the resulting
mesh is accurate to the original point cloud (Akdim et al.,
2022). However, an inadequate ball radius value can lead to
inaccuracies such as surface voids (when the radius is too small)
or approximations (when the radius is too large) (Akdim
et al., 2022).
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The Poisson surface reconstruction algorithm is based on
Poisson’s equation (Kazhdan et al., 2006). This algorithm
establishes a continuous vector field in three dimensions and
identifies a scalar function that best matches the gradients of the
vector field. Then, an isosurface is extracted by solving Poisson’s
equation. Poisson surface reconstruction is good at handling noisy
or sparse point clouds but is computationally expensive (Akdim
et al., 2022). Kazhdan and Hoppe (Kazhdan and Hoppe, 2013)
developed a variant known as “screened Poisson surface
reconstruction,” which enables faster and higher-quality surface
reconstructions.

2.2.2 Geometrical primitives fitting
Geometrical primitives fitting aims to decompose a point cloud

into a set of basic geometrical shapes such as a sphere, cube, cylinder,
cone, or pyramid.

The most widely known methods for model fitting are
RANSAC-based (Marchand, 2018). RANSAC (Random sample
consensus) is an iterative algorithm that fits geometric primitives
to a randomly selected set of points until a specified number of
iterations is reached.

In the end, the shape that best approximates the points is
extracted and the process continues with the remaining points
(Bolles and Fischler, 1981; Schnabel et al., 2007). This approach
is robust in the presence of noise and outliers, however,
computational costs are high, and 3D primitives are considered
unsuitable for accurately modeling bridge elements with intricate
geometry (Schnabel et al., 2007; Li et al., 2018; Mafipour et al., 2023).

Mafipour et al., 2023 proposed a new approach to handle
complex elements such as decks and abutments. First, a
“dummy” profile (profile defined by a set of parameters that
determine the location of vertices on a 2-D plane) is defined. The
dummy profile is then fitted to the cloud by minimizing the distance
between points, edges, and vertices of the profile. The main
advantage of this method is that modeled elements are
parametric, meaning they can be adjusted dynamically by
changing parameter values (Qin et al., 2021). However, extensive
work is necessary to create the dummy profiles, making this
approach viable only if there is a need for dynamic model
modification. The relevance of parametrically modeling as-built
assets in the context of Scan-to-BIM is still an open question
(Rausch et al., 2020).

2.3 Integration of inspection-related data

The IFC schema provides multiple mechanisms for integrating
semantics related to the current condition of a bridge, such as linking
property sets to bridge elements (through the objectified relationship
IfcRelDefinesByProperties) or linking external documents/files to
elements (with IfcRelAssociatesDocument) (buildingSMART, 2024b).

Defects observed on the surface of an element can be
instantiated using the IfcSurfaceFeature or IfcVoidingFeature
class. In that case, they are linked to the element by
using the objectified relationship IfcRelAdheresToElement or
IfcRelVoidsElement, respectively (buildingSMART, 2024b).

SeeBridge (Sacks et al., 2018) and TwinGen (Vilgertshofer et al.,
2023) include a methodology for the automated detection and

integration of surface defects into the model. However, no details
are provided on how defects are geometrically modeled.

Artus et al., 2022 have focused primarily on the modeling of
defects in IFC. They proposed to start by creating a dense point
cloud of the defect from inspection images. Then, the point cloud is
triangulated and the obtained surface is extruded to create a volume.
Finally, a boolean difference operation (Glaeser and Stachel, 1999) is
applied between the hosting building element and the volume to
obtain the defect’s three-dimensional shape. After defects have been
modeled, they are enriched with required semantics (identifier,
name, etc.) and mapped to IfcSurfaceFeature or IfcVoidingFeature.

Isailović et al., 2020 provided a similar approach, employing a
surface reconstruction algorithm. Modeled defects are mapped to
IfcSurfaceFeature and include damage-specific semantics inspired
by the bridge management system “KUBA 5” (ASTRA, 2021).

3 Proposed method

BridgeTwin proposes a structured process (Figure 1) from PCD
to maintenance use cases, subdivided into stages for acquiring and
preparing PCD, converting PCD to IFC models, and performing
maintenance-related use cases.

3.1 Acquisition and preparation of PCD

Figure 2 illustrates the procedure for acquiring and preparing PCD,
managed by surveyors or geomatic engineers. It comprises three stages:
preliminary work, data acquisition, and post-processing.

3.1.1 Preliminary work
Preliminary work involves defining the data acquisition

method(s) to be used and initial on-site investigations. Methods
are selected according to different criteria (Ahmed et al., 2011):

• On-site constraints (e.g., accessibility).
• Accuracy and level of detail required.
• Labor hours required for data collection and data processing.
• Cost of equipment.
• Portability.
• Training expertise.

Then, all necessary authorizations such as access to private
property and drone flights are requested.

3.1.2 Data acquisition
The two primary methods for acquiring PCD are 3D laser

scanning and photogrammetry (Wang et al., 2020; Pu et al., 2022).
3D laser scanning, also known as Light Detection And Ranging

(LiDAR), involves measuring the distance to a target by emitting laser
beams and detecting the signals from the target. 3D laser scanners can
be classified into three categories based on their working platforms,
namely, terrestrial laser scanner (TLS), airborne laser scanner (ALS),
and mobile laser scanner (MLS) (Wang et al., 2020).

Photogrammetry is a technique that consists of taking
measurements in a scene, using the parallax obtained between
images acquired from different viewpoints (Schenk, 2005).
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The main advantage of using photogrammetry over 3D
scanning is the price and ability to capture the surface
texture (Wyatt-Spratt, 2018). However, 3D scanning has
higher measurement accuracy and maximum measurement
range (Wang et al., 2020), which is ideal for large-scale
structures.

If needed, the different methods (TLS, ALS, MLS, and
photogrammetry) can be employed complementarily (Morel and
Schatz, 2023).

3.1.3 Post-processing
Post-processing involves performing a series of operations on

PCD to facilitate their use in subsequent stages (in particular, point
cloud-to-BIM). For example:

• Calibrate measurements (if an initial measurement exists).
• Filter and clean data (i.e., remove outliers).
• Subsample the point cloud.
• Convert data into required format(s) (e.g., PLY, XZY, or E57).

FIGURE 1
General process (task numbers relate to paper sections).

FIGURE 2
Process for acquiring and preparing point clouds (task numbers relate to paper sections).
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These operations can be carried out manually or automatically,
using specialized tools such as Leica Cyclone 3DR (Leica Geosystems,
2024) and CloudCompare (Girardeu-Monteau, 2021) (Figure 2).

3.2 Point cloud-to-BIM

The Point cloud-to-BIM process (Figure 3) has three stages:
semantic segmentation, 3D shape modeling, and model
construction Figure 4.

The BridgeTwin project aimed to propose a methodology
applicable in an industrial context. Therefore, the technical solutions
implemented for semantic segmentation, 3D shape modeling, and
model construction had to meet the following specifications:

• Minimal implementation effort.
• Scalability and transparency (avoid “black boxes”).
• Robustness under realistic scenarios, in particular partial
point clouds.

• Whenprocessing data, allow (request) necessary user intervention.

As existing solutions do not satisfy all the above-mentioned
requirements, specific methods for semantic segmentation and 3D
shape modeling have been developed. These are described in the
following sections.

3.2.1 Semantic segmentation
The proposed segmentation method (Schatz and Domer, 2023) is a

hybrid approach designed to overcome the limitations of rule-based
approaches, which are difficult to implement and adapt to other
structures, and those of learning-based approaches, which are
computationally expensive and require large amounts of data to operate.

The underlying idea is to use a template matching algorithm to
match elements within cross-sections of a bridge. The benefit of this
approach is that it simplifies a 3D problem to a 2D one and does not
require users to provide large datasets for segmentation.

Template matching is a high-level machine vision technique
used to find occurrences of a specific pattern (called template) in an
image (called source image) (OpenCV, 2024b). In the present case,
templates are defined manually by the user and represent elements
to be matched. Source images are cross-sections of the bridge,
generated from point cloud longitudinal slices. When a template
matches a region of a cross-section image, points are extracted from
the related slice and labeled. The process continues until all cross-
sections have been analyzed.

3.2.1.1 Creation of templates
A template is a bitmap image (in a format like.jpg or.png) that

represents the expected profile of the element in the bridge cross-
section (Figure 5). It can be created from scratch or derived from
orthophotos or existing plans, provided that the scale is respected.

FIGURE 3
Point cloud-to-BIM process (task numbers relate to paper sections).

FIGURE 4
Semantic segmentation process (task numbers relate to paper sections).
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If an element has different profiles (depending on where it is
located on the bridge), then one template for each profile must be
prepared. Certain large elements such as piers can be matched with a
typical pattern that recurs several times in the profile.

3.2.1.2 Template matching
To create source images, the bridge point cloud is sliced

longitudinally as if using a “virtual knife.” Then, each slice is
voxelized and voxels are “flattened” to obtain an image (pixels)
representing the cross-section of the corresponding bridge slice. The
number of cross-section images to create varies: if the bridge is
curved or if its cross-section changes from one end to the other, then
more images (i.e., more slices) are required.

Obtained cross-section images are then analyzed using a
template matching algorithm to locate elements. Two main types
of algorithms can be used: feature-based and area-based (Swaroop
and Sharma, 2016). Feature-based algorithms aim to match local
features of images such as edges, corners, and endpoints, while area-
based algorithms only compare grey values (Hong and
Zhang, 2007).

The main advantage of the feature-based approach over the
area-based is that it is not sensitive to scale changes, rotations,
translations, and intensity variations (Swaroop and Sharma, 2016).
However, it is not applicable when images have fewer features or
when different objects share the same features.

Regardless of the chosen approach, when amatch is detected, the
expected result is an image called “mapping image”, in which
matched elements are colored in red (Figure 6).

3.2.1.3 Point labeling
The red pixels of mapping pictures are matched with voxels of

corresponding slices by associating the x2d and x2d coordinates of

pixels in two-dimensional space with voxel center coordinates y3d

and z3d in three-dimensional space (Figure 7). Finally, points within
matching voxels are labeled (Figure 7).

3.2.2 3D shape modeling
Existing surface reconstruction and geometric primitive fitting

methods were tested on several point clouds, representing elements
with more or less complex shapes such as piers, supports, or railings.
Point clouds were produced in different quality levels: low (noise,
missing faces and parts), medium (presence of voids), and high
(little noise, few voids).

No method has given complete satisfaction:

• Alpha shape, ball pivoting and screened poisson allow faithful
reconstruction of all geometric shapes, but produce odd results
when one or many faces of the element are missing.

• RANSAC-based geometric primitive fitting performed better
on low and medium-quality point clouds, but is not suitable
for the most complex shapes (poor results and too high
computational cost).

The fitting of pre-defined parametric shapes, as proposed for
TwinGen (Vilgertshofer et al., 2023) was not considered an
appropriate solution. It requires too much preparation, and the
geometry of created shapes is not intended to be dynamically modified.

Therefore, a new, simple surface reconstruction algorithm is
proposed, inspired by the principle of Riemann sums
(Oberbroeckling, 2021). First, the point cloud is partitioned along
�X, �Y, and �Z to obtain similar-sized subsets. Next, the convex hull of
points contained in each subset is computed. Finally, the convex
envelopes are assembled and the vertices inside are removed, leaving
only the outer faces. The result obtained is a closed, watertight mesh.

FIGURE 5
Templates.
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To prevent surface irregularities, the subsets overlap so that they
share common points. The number of partitions along �X, �Y, and �Z
and the overlap distance is determined by the user according to the
shape to be modeled (i.e., straight or curved shape), the density, and
the completeness of the point cloud.

3.2.3 Model construction
At this stage, elements are modeled but remain unstructured.
The expected structure and content of the output model are

defined in an ontology, which describes how the elements
are organized in space, the relationships between them, what
information they should contain, and to which IFC class
they should be exported. Existing data models such as
KUBA 5 (ASTRA, 2021) can be used as a basis to build
the ontology.

The ontology is formalized in a text file using
standardized—OWL2 (W3C, 2012)—or non-standardized syntax
and is consumed by a routine that gathers created elements,

organizes them and adds required semantics according to the
ontology’s specifications.

Finally, the model is exported in IFC 4.3 format.

4 Case study

The proposed methodology has been applied to create digital
models of two reinforced concrete (RC) curved box girder bridges,
located in Switzerland (Figure 8). Tested bridges measure 350 and
380 m in length, 15 and 20 m in width, and 40 and 30 m in height,
respectively.

4.1 Acquisition and preparation of PCD

Point clouds were acquired by terrestrial laser scanning,
using RIEGLVZ-2000i (RIEGL, 2023) scanner. Measurements

FIGURE 6
Mapping image (template matching result).

FIGURE 7
Point labeling.
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have been made during summer, at a maximum distance of
300 m. Due to distance, road traffic and the presence of
vegetation (typical for summer conditions), many elements
(road dividers, pavement, bearing devices, abutments) could
not be captured entirely, resulting in incomplete, noisy
point clouds.

Noise and voids were reduced in the post-processing stage, but
missing parts could not be recovered. Point clouds have been
subsampled (1 point every 5 cm) to reduce file size (.E57) by
over 80% and conserve computing resources.

4.2 Point cloud-to-BIM

4.2.1 Semantic segmentation
GIMP (GIMP, 2023) was used to create templates from point

cloud screenshots (Figure 4). Only one template has been created for
each element type (box girder, drainpipe, pier, road divider, and
road pavement), except for guardrails, which required two templates
(one per deck side).

A comparative analysis between several template matching
algorithms (feature-based and area-based) has been conducted.
Results obtained with feature-based algorithms were
unsatisfactory, regardless of the technique used for feature
detection and extraction (SIFT (Lowe, 1999), SURF (Bay et al.,
2008), or ORB (Rublee et al., 2011)) due to the absence of strong
features in the cross-section images. On the other hand, good
matching results were obtained with area-based algorithms. This
approach is therefore preferred, despite its sensitivity to rotation and
scale variations.

A major weakness of basic area-based matching algorithms is
the increased risk of confusion (wrong matches) when templates
become smaller, as they are less likely to have particular and
distinctive characteristics. To solve this issue, a new variant called
“contextual area-based matching algorithm” was developed (Schatz
and Domer, 2023), which involves automatically adding contextual
information (surroundings) to the template to eliminate wrong
candidates.

OpenCV (OpenCV, 2024a) and Open3D (Open3D, 2023)
Python libraries were used for implementation (Figure 4).

The normalized cross-correlation function is used for
measuring similarity (OpenCV, 2024b), as it is not
sensitive to changes in brightness and contrast (Stachniss,
2021). This function returns a score between 0 (no match)
and one (perfect match) for each candidate match. In
advance of template matching, the user defines two threshold
values t1 and t2, such that t1 > t2. These are used to filter
the results:

• If score > t1, the match is accepted.
• If t2 ≤ score ≤ t1, the match is accepted, however, user
confirmation is needed.

• If score < t2 the match is rejected.

Inviting the user to verify results considered “uncertain”
(i.e., when t2 ≤ score ≤ t1) aims to limit errors. For the case
study, default values t1 = 0.75 and t2 = 0.50 were used.

4.2.2 3D shape modeling
This step employed Rhinoceros 3D v7 (Robert McNeel and

Associates, 2024) and scripts based on the CGAL library (CGAL,
2024) (via Grasshopper) (Figure 3). Rhino’s built-in tool
“ReduceMesh” was used to optimize the resulting meshes
(i.e., reduce the number of vertices and edges). Invisible hollow
parts of elements were modeled manually.

4.2.3 Model construction
The IFC model is constructed in Rhinoceros 3D using

Grasshopper and GeometryGym (ggRhinoIFC) (Mirtschin,
2024) (Figure 3).

The expected spatial structure for each IFC 4.3 (IfcBridge) model
is as follows:

• Site (IfcSite).
• Bridge (IfcBridge) in Site.
• Substructure (IfcBridgePart.SUBSTRUCTURE) in Bridge.

FIGURE 8
Tested bridges.
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• Superstructure (IfcBridgePart.SUPERSTRUCTURE) in Bridge.
• Deck (IfcBridgePart.DECK) in Bridge.
• Abutments (IfcElementAssembly.ABUTMENT), bearing devices
(IfcBearing), and piers (IfcColumn) in Substructure.

• Box girder (IfcElementAssembly.BOXGIRDER) in Superstructure.
• Drainpipes (IfcPipeSegment), guardrails (IfcRailing), road
dividers (IfcWall.ROADDIVIDER), and road pavements
(IfcPavement) in Deck.

Names of spatial/functional assemblies and physical elements
are based on KUBA 5 (ASTRA, 2021). Depending on the use case,
additional information such as materials and properties can be
directly added within Rhinoceros 3D.

4.3 Use cases

4.3.1 Use case 1: defect tracking
The purpose of this use case is to integrate observed defects (e.g.,

concrete efflorescence, rust stains, concrete spalling, cracks, etc.)
into the model and enable users to retrieve quickly all related data
(inspection reports, photos, etc.). The benefit is to guarantee
structured access to relevant information for maintenance work
planning purposes.

The developed workflow is shown in Figure 9. It requires the
participation of several actors with different roles and
responsibilities:

• Planners are specialists in structural repairs and are
responsible for planning maintenance operations.

• Inspectors are specialists in the pathology and diagnosis of
structures. They assess the condition of the structure andmake
the results available to planners via the digital model.

• The database manager is responsible for developing and
maintaining the databases in which inspection data is stored.

4.3.1.1 Inspection
During inspection, defects are identified and analyzed, and data

(photos, reports) are generated.

4.3.1.2 Storage in database
Each defect is referenced in a database with a globally unique

identifier (GUID) and linked to documents produced.

4.3.1.3 Modeling of defects
Defects are modeled in Rhinoceros 3D, and mapped to the

adequate IFC class (IfcSurfaceFeature or IfcVoidingFeature)
using a tool developed with Grasshopper (Figure 9).

FIGURE 9
Workflow for defect tracking (task numbers relate to paper sections).
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Additionally, “database GUIDs” of defects are specified as
properties (IfcPropertySingleValue). Since the objective is
merely to get the position of defects, a high level of geometric
detail is judged unnecessary. For this reason, they are represented
by circles with radii corresponding to their areas of influence and
color-coded to indicate severity (green for low, yellow-orange for
medium, red for high).

The model is then exported in the IFC 4.3 format.

4.3.1.4 Data retrieval
IFC models are opened in Rhinoceros 3D, and all defect-related

data (photos, inspection reports) stored in a database can be retrieved
using a dedicated tool developed with Grasshopper (Figure 9).

When a defect is selected in the model, a request is sent to the
database, which returns all documents linked to the defect based on
its GUID. Each document can be filtered according to type, creation
date, modification date, or version number.

4.3.2 Use case 2: structural analysis
The goal of this use case is to use an IFC model as a basis for

generating an analytical model for structural analysis. The principle
is to directly import the IFC model into the analysis software and
derive the analytical model from the physical model. The main
advantage is to save engineering time by eliminating the need to
create the full analytical model from scratch.

The workflow developed for this use case is shown in Figure 10.
The structural analysis software used is SCIA Engineer v22

(Nemetschek, 2024a) (Figure 10), which accepts IFC 2 × 3 and
IFC four formats, despite not supporting the MVD “structural
analysis view” (buildingSMART, 2024d).

4.3.2.1 Creation of analytical elements
The IFC 4.3 model is first automatically converted to IFC four

using GeometryGym, resulting in semantic changes (e.g., IfcBridge
changed to IfcBuilding, and IfcBridgePart to IfcBuildingStorey).

During import, based on the IFC class of the element and its
geometry type, SCIA converts it into a 1D member, 2D member, or

“general volume” (Nemetschek, 2024b). The “general volume”
elements are manually transformed into 1D/2D members using
the built-in functions in SCIA’s BIM toolbox.

4.3.2.2 Model preparation for calculation
Boundary conditions and load cases are defined.

4.3.2.3 Calculation
The calculation is executed.

5 Results

5.1 Performance of template matching-
based segmentation

Template matching-based segmentation enabled the
classification of points in all classes expected. The segmentation
result for Bridge 1 (the most incomplete point cloud) is illustrated
in Figure 11.

Table 1 shows detailed results. The following matching scenarios
are considered:

• True positive: the right element has been matched.
• True negative: no element has been matched, as expected.
• False positive: the wrong element has been matched.
• False negative: no element has been matched, which was
not expected.

The obtained results are promising, with 99% and 98.5% success
rates for the RC bridges tested (excluding the three matches
manually checked by the user). The area-based template
matching algorithm proved to be effective in matching elements
that had not been completely acquired (Figure 12).

Only a few elements could not be matched due to an insufficient
number of points, hence the 1% and 1.5% failure. A further study
demonstrated that matching remains reliable when the

FIGURE 10
Workflow for structural analysis (task numbers relate to paper sections) (Franciosi et al., 2024).
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incompletion rate does not exceed 60%. Above 60% of incompletion,
the failure rate increases significantly.

5.2 Performance of partitioning-based 3D
shape modeling

The proposed approach facilitated modeling the 3D shape of all
elements, including those with concave and curved parts. For some
elements with complex geometry (e.g., guardrails) or located in areas
with sparse point data, manual refinements were necessary.
Resulting meshes are smooth, closed, and watertight.

To assess the accuracy of 3D shape modeling, original point
clouds have been compared with generated meshes using Cyclone
3DR. The 3D deviation is calculated by projecting all points of the
point cloud onto the mesh. For the bridges tested, an average
deviation of 7.5 cm has been calculated. This level of accuracy is
judged to be adequate for the considered use cases.

Modeling issues mainly affect curved elements, in particular box
girders with corbelled decks and gussets. Elements having only
planar faces (piers, road dividers, bearing devices) are more
accurate (deviation < 1 cm).

5.3 Time required for tasks from PCD
acquisition to the IFC model

Table 2 summarizes the average time observed for each process
step outlined in Figures 2–4. Results are based on data collected for
both tested bridges.

Around 90%of the total timewas dedicated to PCD acquisition and
preparation, and 10% to semi-automated Point cloud-to-BIM (Table 2).
Within the total time spent on PCD acquisition and preparation, the
majority (around 70%) was attributed to on-site data acquisition, while
around 20% was dedicated to post-processing. Post-processing
primarily focused on measurement calibration and the removal of
undesirable points (e.g., bridge surroundings).

However, these durations may vary significantly depending on
factors such as the size and location of the bridge, accessibility

conditions, the method and equipment used, weather
conditions, etc.

Semi-automated point cloud-to-BIM takes an average of 2.5 h to
complete (Table 2) on a workstation equipped with an 8-core CPU
(3.0 GHz clock rate) and 256 GB of RAM. Semantic segmentation,
which involves preparing templates and running template matching,
has taken an average of 40 min, constituting around 30% of the total
duration of the point cloud-to-BIM process.

The execution speed of the template matching and point
labeling algorithm mainly depends on the point density and the
length of the bridge (thus, the number of cross-sections to be
processed). Since the bridges have relatively similar lengths
(350 and 380 m) and the point clouds of both bridges have
the same density (1 point every 5 cm), the time required for
template matching and point labeling did not vary significantly
between them. However, the preparation of templates took more
time for the first bridge (25 min) than for the second (15 min), as
some templates created for the first bridge could be reused for
the second.

The 3D shape modeling represents the most time-consuming
step in the point cloud-to-BIM process (60% of the total duration),
as manual work is required to refine the created geometries. Creating
all meshes with the partition-based modeling algorithm took an
average of 20 min. However, more than an hour is required to refine
the created meshes (i.e., correcting certain shapes, removing
overlaps, and modeling non-visible parts).

The time spent on model construction (20 min, around 15%) is
limited. The entire time is dedicated to developing the ontology used
by Grasshopper to instantly structure the model.

FIGURE 11
Segmentation result for Bridge 1.

TABLE 1 Detailed results for semantic segmentation.

Bridge 1 Bridge 2

Cross-section processed 46 34

Matching operations 414 204

Success (true positives + negatives) 410 (99.0%) 201 (98.5%)

Failure (false positives + negatives) 4 (1.0%) 3 (1.5%)
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6 Discussion

6.1 Strengths and weaknesses of proposed
techniques for point cloud-to-BIM

6.1.1 Template matching-based segmentation
Template matching-based segmentation outperforms

methods suggested in the literature (in particular Lu et al.,
2019) when applied to RC bridges. Furthermore, it was
demonstrated that template matching is robust even when
point clouds are incomplete.

Another benefit of template matching-based segmentation
is its versatility. Unlike rule-based methods, the procedure is
not based on static rule sets tailored to a specific bridge
type, but on templates that can be dynamically adapted to fit
the particularities of the bridge being treated. Creating
templates does not require advanced skills, beyond the use of

image-editing software. It is therefore possible to deal with a
wide range of structures as with learning-based methods but
without the need to provide very large training data sets
beforehand.

However, further tests on cantilever and truss bridges show that
this approach performs poorly when the bridge contains elements
that are neither oriented parallelly nor orthogonally to the bridge
axis, or whose cross-section varies. This is a limitation of area-based
algorithms, which are unable to handle differences in scale and
rotation. In this context, manual checks by the user are useful, as
they help to limit wrong matches.

6.1.2 Partitioning-based 3D shape modeling
Partitioning-based 3D shape modeling, in contrast to other

surface reconstruction methods such as Alpha shape, is effective
for creating a closed, watertight mesh in the case where one or many
faces of the element are missing in PCD.

FIGURE 12
Incomplete elements matched.
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Its weaknesses are:

• Sensitivity to noise and outliers, leading to the emergence of
strange, undesired results during the calculation of
convex hulls.

• High dependency on user parameters (number of
discretizations and overlap distance).

• Need for substantial manual work to adjust certain shapes and
complete missing parts.

6.1.3 Practical applicability
In terms of practical applicability, the two proposed methods

(template matching-based segmentation and partitioning-based 3D
shape reconstruction) were evaluated against specific requirements,
establishedwith the assistance of research partners and experienced users.

Requirements were:

• Implemented using open-source tools/libraries.
• Minimal preprocessing of inputs and outputs.
• Support of noisy and incomplete point clouds.
• Adaptable to various RC bridges.
• User-friendly.

The proposed template matching-based segmentation algorithm
effectively meets all these requirements. It has been fully developed as
open source (using Python), proving to be robust enough to require
minimal preprocessing of inputs. It has demonstrated its effectiveness
on noisy/sparse data and can be easily adapted to different reinforced
concrete (RC) bridge structures by modifying the templates. Moreover,
the output data can be directly used for geometric reconstruction.
Improvements such as the utilization of a feature-based template
matching algorithm could enhance detection quality (scale and
rotation invariant), thus enabling the application of this
methodology to other bridge types, e.g., truss and cantilever bridges.

In the case of RC bridges, the template matching-based method
offers an appealing alternative to other solutions proposed in the
literature.

However, partitioning-based 3D shape reconstruction does
not fully meet all criteria. The presence of outliers affects the
quality of results, necessitating pre-processing of point cloud
data to remove them, which can be time-consuming.

Additionally, its implementation is not straightforward, as
users must define discretization and overlap values based
solely on intuition during configuration. One approach is to
arbitrarily choose initial values and iteratively adjust them
based on the obtained results.

Enhancements could involve the automatic calculation of
discretization and overlap parameters, tailored to the object’s
geometry and the density of the point cloud.

At present, partitioning-based template matching remains
highly valuable, especially in cases where element faces are
missing in the point cloud data.

6.2 Benefits of semi-automated point cloud-
to-BIM over manual modeling

To evaluate the efficiency of the proposed method for bridge
modeling, Bridge 1 has been modeled applying two
different methods:

1. Manually, using point clouds.
2. Manually, without using point clouds.

Methods have then been compared to the proposed semi-
automatic approach, based on PCD. The hypothesis of this test
is, that all necessary documents for modeling the structure (plans,
etc.) are available and up-to-date. Additionally, it is assumed that the
modeler has already analyzed these documents.

The software employed is Revit 2024, a widely used BIM
authoring tool suitable for modeling bridges and capable of
exporting data in IFC 4.3 format.

The targeted model accuracy corresponds to that achieved with
the semi-automated. Given that the time required to create the IFC
model using the semi-automated method is 2.5 h (Table 2), manual
approaches are evaluated based on the results obtained within
the same time.

For manual modeling using point clouds, PCD were
imported into Revit, and elements were redrawn on top
using custom parametric families. After 2.5 h, all piers and
bearing devices have been modeled. Modeling of the
superstructure and deck had only just started. The estimated
time to complete the modeling is a minimum of 3 h, resulting in
a total modeling time of 5.5 h (+120% compared to semi-
automatic modeling).

For manual modeling without using point clouds, plans are
imported into Revit to facilitate the positioning of elements, and
photos are used to verify whether the model corresponds to reality.
After 2.5 h, only 80% of the piers have been modeled. The bearing
devices are missing, as well as the superstructure and the deck. The
estimated time to complete the modeling is a minimum of 6 h,
resulting in a total modeling time of 8.5 h (+240% compared to
semi-automatic modeling).

Results confirm that semi-automated point cloud-to-BIM
significantly saves time compared to manual modeling, whether
it is based on point clouds or not. Therefore, considering the large
number of existing bridges, for which no digital model exists, the
choice of an efficient modeling method is a significant support for
maintenance activities.

TABLE 2 Average time of tasks from PCD acquisition to IFC model.

Step Average time

Acquisition and preparation of PCD (Figure 2) 18 h

Preliminary work 2 h

Data acquisition 12 h

Post-processing 4 h

Point cloud-to-BIM (Figures 3, 4) 2.5 h

Semantic segmentation 40 min

3D shape modeling 90 min

Model construction 20 min

Total 20.5 h
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It has been observed, that PCD facilitates a clearer
understanding of the geometry and positioning of an element in
space, thereby enhancing efficiency. However, plans and photos play
a crucial role in completing specific details and modeling invisible
parts. Hence, semi-automated point cloud-to-BIM should not be
contrasted with manual modeling from plans and photos; rather,
both approaches complement each other.

The time spent on acquiring and preparing PCD (average of
18 h—see Table 2) is not an issue if the PCD are also used for other
use cases, such as automatic defect detection, which completes the
DT. Fully integrated workflows, integrating this aspect, have been
suggested (Vilgertshofer et al., 2023).

6.3 Impact of digital models onmaintenance
activities

Two experimental use cases simulated the integration of created
models in maintenance and structural analysis activities. The
primary focus was on establishing a continuous digital workflow
from PCD toward the objectives of the two use cases.

The first use case (defects tracking) aimed to enable an operator
to localize structural defects (by visualizing the 3D model) and
access all related available information.

Practice showed that the integration of defects into the model,
using a simple color code to identify their severity (Figure 13), led to
a better appreciation of the overall bridge condition. Furthermore,
operators are relieved from the manual task of retrieving and
filtering information regarding the defects or bridge part of interest.

The second use case (structural analysis) aimed to import the
IFCmodel into structural analysis software and perform calculations
based on the analytical model generated from the IFC model.

The time required to implement the analytical model from the
IFC model (using the “BIM toolbox” of SCIA) was compared to the
scenario where the model is created from scratch.

The use of the IFC model reduced the implementation time of
the analytical model by approximately 20%. Generating analytical

elements from IFC objects is instantaneous, but substantial work is
needed to adjust them and complete the analytical model, as the IFC
model lacks detail, particularly regarding structural elements like
rebars. This nullifies the time benefits.

Time savings can be primarily attributed to the automatic definition
of model data (self-weight, materials, etc.), as this is automatically done
during IFCmodel import. The outcome could be improved if the created
models were more detailed, and if the MVD designed for exchanging
structural analysis models would be supported by software vendors.

Implementing the “Structural Analysis View” MVD
(buildingSMART, 2024c) would reduce information losses when
importing an IFC model into a structural analysis software, and thus
minimize correction and completion efforts required before
calculation. Unfortunately, the authors are not aware of software
that is certified for the import and/or export of this MVD.

7 Conclusion and future work

The objective of BridgeTwin was to define a systematic process for
creating semi-automatically an IFC bridge model from point clouds.
The expected outcome was a clear, structured process map, specifying
the actors involved, the tasks to be performed, and the deliverables.
Implementing this workflow should enable stakeholders to create and
exploit IFC bridge models to support maintenance activities.

The resulting process map details the procedures for acquiring
and preparing PCD, creating IFC models from PCD (point cloud-
to-BIM), and implementing the use case “database querying based
on IFC models for maintenance planning”.

Automated point cloud-to-BIM is a critical part of the process,
as it involves performing complex tasks using advanced solutions
that are still largely unproven in practice. Novel methods have been
proposed for semantic segmentation (template matching-based
segmentation) and 3D shape modeling (partitioning-based
modeling), allowing partial point clouds to be processed.

A case study demonstrated that the proposed solutions performed
well for the tested RC bridges. Template matching-based segmentation

FIGURE 13
Created model for Bridge 1, integrating defects.
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success rate reached 98.5%–99.0%, and elements were efficiently
detected even with a small number of points. In terms of accuracy,
this approach surpasses those suggested in the literature for similar RC
bridges, however, it performs poorly on more complex bridges such as
cantilever and truss bridges. It is planned to improve this method in
future work, using a more efficient template matching algorithm.

Partitioning-based modeling enabled the creation of smooth,
closed, and watertight meshes from incomplete point sets. An
average deviation of 7.5 cm between the obtained models and the
original point clouds was calculated. This deviation is judged
acceptable for visualization, but unsatisfactory for more complex
applications such as strain analysis. In cases where high accuracy is
required, and provided the point clouds are complete, other
modeling methods should be considered.

A comparative analysis between semi-automated and manual
modeling revealed time savings ranging from 120% to 240%. The use
of PCD streamlines the modeling process and ensures geometric
accuracy to the existing asset. However, manual modeling from
plans is still necessary to complete the model (i.e., modeling non-
visible or partially visible elements like foundations, abutments, etc.)
and to detail the model according to specific use case needs, like
rebars for structural analysis.

Integrating automatic modeling of non-visible elements from
2D documents into the workflow, as discussed by Zhang et al., 2021,
could be a valuable enhancement.

The two tested use cases (defect tracking and structural analysis),
although very simple, have demonstrated that IFC bridge models
could facilitate the work of operators in the context of bridge
operation and maintenance.

This marks an initial step toward fully integrated asset
management, based on digital twins.
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