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Predicting slope stability is important for preventing and mitigating landslide
disasters. This paper examines the existing approaches for analyzing slope
stability. There are several established conventional approaches for slope
stability analysis that can be applied in this context. However, in recent
decades, soft computing methods has been extensively developed and
employed in stochastic slope stability analysis, notably as surrogate models to
improve computing efficiency in contrast to traditional approaches. Soft
computing methods can deal with uncertainty and imprecision, which may be
quantified using performance indices like coefficient of determination, in
regression and accuracy in classification. This review study focuses on
conventional methods such as the Bishop’s method and Janbu’s method, as
well as soft computing models such as support vector machine, artificial neural
network, Gaussian process regression, decision tree, etc. The advantages and
limitations of soft computing techniques in relation to conventional methods
have also been thoroughly covered in this paper. The achievements of soft
computing methods are summarized from two aspects—predicting factor of
safety and classification of slope stability. Key potential research challenges and
future prospects are also given.
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Abbreviations: AACC, abstraction ant colony clustering; ANFIS, adaptive neuro-fuzzy inference system;
ANN, artificial neural network; DT, decision tree; FoS, factor of safety; FA, firefly algorithm; FN, functional
network; GB, gradient boosting; GPR, Gaussian process regression; GBM, gradient boosting machine;
GP, genetic programming; GSA, gravitational search algorithm; k-NN, k-nearest neighbor; LDC, linear
discriminant classifier; LE limit equilibrium; MARS, multivariate adaptive regression splines; MLR,
multilinear regression; NB, Naïve bayes; PSO, particle swarm optimization; R2, coefficient of
determination; RF, random forest; SVM, support vector machine; ru, Pore pressure ratio; β, Slope
angle; Gf , failure gravity; Gi, real-world gravity; H, Slope height; c or c′, Cohesion; ϕ or ϕ′, angle of
internal friction; γ, Unit weight.
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1 Introduction

Slope instability, a major natural hazard, is one of the most
complex problems in geotechnical engineering. Accurately
estimating the stability of a rock or soil slope is a difficult task
owing to the slope’s dependency on numerous factors and the
difficulty to determine these parameters (Sakellariou and
Ferentinou, 2005). Several contributing factors such as pore-water
pressure generation; erosion; earthquakes; geological characteristics;
and external loading have contributed to several failures caused by
slope instability issues in the past. Therefore, it is difficult to
accurately predict the stability of a slope due to the fact that it is
dependent on a number of geotechnical and physical factors.
Furthermore, the interactions between these factors are complex
and “often difficult to describe mathematically” (Xue, 2017; Lu and
Rosenbaum, 2003).

Several methods have been proposed to analyze or predict slope
stability, among which are Limit Equilibrium Methods (LEMs)
(Thiebes et al., 2014; Verma et al., 2013) and numerical methods
[e.g., finite element method (FEM)] (Cai and Ugai, 2004; Dawson et al.,
1999; Griffiths and Lane, 1999) are the most widely employed methods
(Xue, 2017; Liu et al., 2014). Empirical equations (Bye and Bell, 2001;
Taheri and Tani, 2010) and limit analysis approaches based on lower
and upper bound theorems (Chen and Baladi, 1985) are othermethods.
All of the methods mentioned above, however, have some drawbacks.
Limit equilibriummethods, for example, cannot reflect the slip surfaces’
actual stress conditions (Lechman andGriffiths, 2000), and as a result of
simplifying assumptions, their accuracy is compromised (Sakellariou
and Ferentinou, 2005). The numerical methods are time-consuming,
and their accuracy is strongly reliant on correct geotechnical and
physical parameter estimation (Feng et al., 2018).

Recently, soft computing methods have been increasingly
applied in various domains of science and engineering e.g., (Ebid
et al., 2021a; Mehmood et al., 2022; Ebid et al., 2021b; Onyelowe
et al., 2023a), including slope stability prediction e.g., (Liu et al.,
2014; Zhou et al., 2019; Choobbasti et al., 2009; Samui, 2008), that
paving the way for new prospects in geotechnical engineering. The
primary issue with the most of these soft computing methods—with
the exception of genetic programming and logistic regression—is
that they are black-box. This indicates that they do not provide a
transparent model that illustrates how input and output parameters
relate to one another. Furthermore, lack of interpretability have
prevented most of the soft computing methods from achieving their
full potential in engineering applications.

Conventional and soft computing methods can be used to
conduct slope analysis. Factor of safety (FoS) of both natural and
man-made slopes plays a very important role and must therefore be
carefully taken into consideration. However, the acceptability and
applicability of approaches vary with changes in slope conditions. In
addition, researchers have investigated new utility tools and
approaches in the form of soft computing models and numerical
modeling (Tinoco et al., 2018; Singh et al., 2020; Hassan et al., 2022),
apart from conventional methods. However, there are not many
thorough reviews of the methods that have been applied to slope
stability analysis.

Soft computing models refer to a set of computational
techniques that aim to address complex, imprecise, and uncertain
problems. These models use approaches like fuzzy logic, neural

networks, genetic algorithms, and other heuristics to provide flexible
and efficient solutions where traditional methods might fall short.
The present review in slope stability consolidates knowledge,
identifies gaps, and guides future research. This comprehensive
approach significantly contributes to solving slope stability
problems by ensuring that efforts are based on the most current
and robust information available.

Understanding how well soft computing models-based slope
stability analysis performs under various slope conditions is crucial
as these methods become more widely used. Therefore, using both
traditional and soft computing methodologies, this study has
analyzed and critically assessed studies that have been conducted
on slope stability. There has also been a comparison of the models’
performance indices. Furthermore, there are not many thorough
studies of the techniques employed in slope stability analyses.
Following that, the study has also considered and briefly
examined the approaches’ applicability and limitations.

2 Methods of slope stability used in
literature

Researchers have used a variety of techniques to examine the
slope stability of soils (Liu et al., 2014; Tinoco et al., 2018;
Javankhoshdel and Bathurst, 2014) and rocks (Taheri and Tani,
2010; Singh et al., 2020). The methods include conventional such as
finite element method (FEM), limit equilibrium (LE) methods,
friction circle method etc. and soft computing methods such as
Gaussian process regression (GPR), support vector machine (SVM),
artificial neural network (ANN), etc. that have been continuously
improving over time (Samui, 2008; Zhang and Li, 2021).

2.1 Conventional methods

The Finite Element Method (FEM) is a representative of the
mesh-based method and is probably the most widely used numerical
method in geotechnical problems e.g., (Zienkiewicz and Taylor,
2005; Belytschko et al., 2014; Bathe, 2006; Onyelowe et al., 2023b;
Onyelowe et al., 2023c). More recently, to study the application of
smoothed-particle hydrodynamics in the modeling of geophysical
flows like landslide, debris flows and stability failure problems across
the world with particular focus on the landslide-associated
geohazards, a constitutive mathematical review has been carried
out (Onyelowe et al., 2022). The FEMs can consider the constitutive
behavior of soil and are not required to assume the specific failure
surface as compared to LEmethod. Twomethods were presented for
slope stability analysis combined with FEM: the strength reduction
method (SRM) and the gravity increasing method (GIM) (Kaur and
Sharma, 2016; Pourkhosravani and Kalantari, 2011).

In the SRM, the parameters of the soil are reduced using a
reduction factor until the failure happens, and the FoS is calculated
as the reciprocal of this factor using iterations. The SRM and the LE
method usually give very similar results for homogenous slopes
(Matsui et al., 1992). However, the SRM is sometimes sensitive to
nonlinear algorithms and flow rules. In addition, the SRM cannot
determine failure surfaces, which may be only slightly less critical
than the SRM failure surface (Cheng et al., 2007).
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In the GIM, the calculated gravity increases gradually until
the slope becomes unstable. Therefore, the GIM aims to obtain
the limit of gravity, which is represented by the acceleration of
gravity (Sternik, 2013). The FoS is defined in Equation 1 as the
ratio between the failure gravity (Gf) and the real-world
gravity (Gi):

FoS � Gf

Gi
(1)

Limit equilibrium methods are commonly used in practice to
determine the stability of a slope. By assuming force and/or moment
equilibrium, the equilibrium problem is solved while doing stability
analysis utilizing the limit equilibrium (LE) approach. The stability
of a slope is determined by FoS, which is defined as the ratio of the
soil’s shear strength to the shear stress necessary for equilibrium in
the conventional limit equilibrium technique (Duncan, 1996). The
equilibrium analysis cannot be performed without first assuming a
slip surface, which can be planar, circular, or non-circular in shape.
It is assumed that the shear strength is fully mobilized along the slip
surface at the point of failure and that the FoS remains constant
throughout the slip surface. Eventually, an iterative procedure is
used in the stability analysis to find the critical slip surface—that is,
the slip surface with the lowest FoS. Many limit equilibrium
techniques have been developed and used in slope stability
analysis over the years such as the ordinary method of slices
(Fellenius, 1936), Bishop’s modified method (Bishop, 1955), force
equilibrium methods [e.g., Lowe and Karafiath (Lowe, 1960)],
Morgenstern and Price’s method (Morgenstern and Price, 1965)
and Spencer’s method (Spencer, 1967). On the basis of these limit
equilibrium methods, slope stability charts have also been
established [e.g., Taylor (Taylor, 1937; Taylor, 1948), Bishop and
Morgenstern (Bishop and Morgenstern, 1960); Janbu (Janbu, 1968);
Hunter and Schuster (Hunter and Schuster, 1971); Cousins
(Cousins, 1978)], which are helpful for swift calculation of a
slope’s stability and preliminary analysis.

The fundamental distinction between the various LE methods is
the way in which the interslice normal (E) and shear (T) forces are
calculated or assumed. All LE methods rely on these assumptions.
Among the other factors are the assumed slip surface’s shape and the
equilibrium conditions needed to calculate the FoS. Table 1
summarizes a few chosen LE techniques together with their
underlying presumptions.

A brief overview of some of these commonly used methods
is given in the sections that follow, with the goal of identifying
the primary differences in the various methods for
determining FoS.

2.1.1 The ordinary method
The Ordinary method ignores the shear forces and the

interslice normal forces while satisfying the moment
equilibrium for a circular slip surface. This method’s benefit is
that it does not require an iteration procedure, making it simple to
solve the FoS. The FoS is based on moment equilibrium and
computed by Abramson et al., (2002) and Nash (1987) shown
in Equations 2, 3:

FoS � ∑ c′l +N′ tan ϕ′( )∑W Sin α
(2)

N′ � W cos α − ul (3)
where, c′ = cohesion, u = pore pressure, l = slice base length and α =
inclination of slip surface at the middle of slice.

2.1.2 Bishop’s method
It is assumed that the soil mass fails due to rotation on a

circular slip circle centered on a point (Zhang and Li, 2021; Bishop,
1955). The normal force is taken to apply at the center of the base
of each slice, and the shear stress between the slices is ignored
because the forces on the sides of the slices are taken to be
horizontal. The simplified Bishop’s approach produces
reasonably precise FoS values, but it does not satisfy the entire
static equilibrium (Verma et al., 2013). The Bishop method
suggests that interslice shear forces can be neglected. The
Bishop approach proposes that interslice shear forces can be
ignored. The FoS can be computed using Bishop’s approach
using Equation 4.

FoS �
∑ c′l cos α( )+ P−rul cos α( )( ) tan ϕ′( )

cos α( )+ sin α( ) tan ϕ′( )( )/ FoS( )[ ]
∑W sin α( ) (4)

where c′ = cohesion, l = width of slice, α = angle at the base of sliding
slice, ϕ′= angle of internal friction, ru = Pore water pressure, W =
effective weight of the slice, p =Normal force acting at the base of the
slice, and FoS = Factor of safety.

TABLE 1 Summary of LE methods (Abramson et al., 2002; Nash, 1987).

Methods Circular Non-circular ∑M � 0 ∑ F � 0 Assumptions for T and E

Ordinary √ - √ - Neglects both E and T

Bishop simplified √ (*) √ (**) Considers E, but neglects T

Janbu simplified (*) √ - √ Considers E, but neglects T

Lowe-Karafiath - √ - √ Resultant inclines at, θ � 1
2 (α + β)

Corps of Engineers - √ - √ Resultant inclines at, θ � 1
2 (α1 + α2)

Sarma √ √ √ √ Interslice shear, T � ch + E tan ϕ

Spencer √ (*) √ √ Constant inclination, T � E tan θ

Morgenstern and Price √ √ √ √ Defined by f(x), T � f(x) · λ · E
Note: (*)suitable for failure surfaces that are circular and non-circular and (**) fulfills the vertical force equilibrium for the base normal force.
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Figure 1 depicts a simplified schematic diagram of circular
failure of slopes using Bishop’s method, as well as the forces
acting on a single slice.

2.1.3 Jambu’s method
Janbu’s approach is suitable to non-circular soil mass failure.

Similar to Bishop’s method, shear stress acting between the slices is
ignored because horizontal forces should exist on the sides of each
slice, and the normal force is assumed to act at the center of each
slice’s base. Janbu’s corrected approach, which took into account the
inter-slice shear force, was applied by Verma et al. (2013). The Janbu
approach suggests that the interslice forces are normal. Equation 5
provides the Janbu expression for FoS.

FoS � c′l + P − rul( ) tan ϕ′( )sec α( )∑W sin α( ) (5)

Figure 2 depicts the slice approach for analyzing non-circular
failures on slopes using Janbu’s method and the forces acting on a
single slice. Researchers employed non-circular failure analysis as
well as Janbu’s corrected approach for circular failure in slopes.

2.1.4 Lowe–Karafiath’s method
The primary purpose of Lowe–Karafiath’s Method (Lowe, 1960)

is to analyze and assess the safety of slopes, embankments, and earth
structures by calculating the factor of safety against potential sliding
along a slip surface. In FoS computation, Lowe-Karafiath’s technique

FIGURE 1
(A) Schematic representing: analysis of circular failure of slopes using Bishop’s method of slices. (B) Forces acting on a single slice: (i) the weight of
the soil above the failure surface W, (ii) the interslice reactions from the adjacent slices Xi-1, Xi+1, Vi-1, Vi+1, (iii) the reaction of the stable ground which
consists of a normal effective N′ and a shear component T, respectively, and (iv) the boundary water force U.

FIGURE 2
(A) Schematic representing: analysis of non-circular failure of slopes using Jambu’smethod of slices. (B) Forces acting on a single slice: (i) the weight
of the soil above the failure surfaceW, (ii) the interslice reactions from the adjacent slices Xi-1, Xi+1, Vi-1, Vi+1, (iii) the reaction of the stable ground which
consists of a normal effective N′ and a shear component T, respectively, and (iv) the boundary water force U.
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(Lowe, 1960) satisfies only force equilibrium. Lowe-Karafiath’s
technique, like other methods, makes the assumption that the
inclination of the interslice force is equal to the average of the
inclinations of the slope surface (β) and the slice base (α), that is,
θ � 1

2 (α + β)where θ is the inclination of the interslice resultant force.
Hence, the interslice forces can be expressed in Equation 6 as follows:

T � E tan θ (6)

2.1.5 Corps of engineers method
The Corps of Engineers approach is similar to Lowe-Karafiath’s

method, with the exception of the assumption of interslice force
inclination. The Corps of Engineers method is used to determine the
FoS for slope stability. There are two possible approaches to assume
the angle of the interslice resultant force using this method. Initially,
it can be presumed that it is parallel to the ground, meaning that θ =
β, where β represents the slope angle. Secondly, it can be equivalent
to the average angle of slope between the critical shear surface’s entry
and exit points.

2.1.6 Sarma’s method
Sarma’sMethod Sarma (1973) is a well-established technique for

determining the FoS for slope stability, especially in complex
scenarios involving non-circular slip surfaces. Both of the
equilibrium requirements are met by this approach (Abramson
et al., 2002). Additionally, a linear Mohr-Coulomb expression
(Equation 7) is assumed for the interslice force interaction.

T � ch + E tan ϕ (7)
where, c and ϕ are the shear strength parameters, and h is the
slice height.

2.1.7 Morgenstern-price method
The Morgenstern-Price method, which assumes the interslice

force function, also fulfills both force andmoment equilibriums. The
interslice force inclination can vary with an arbitrary function (f(x))
as per the Morgenstern-Price approach (Morgenstern and Price,
1965) and presented in Equation 8:

T � f x( ) · λ · E (8)

Where, λ = the scaling factor of the assumed function and f(x) =
the interslice force function, which varies continuously through the
slip surface. The approach proposes assuming any kind of force
function, such as user-defined, half-sine, or trapezoidal. The base
normal force (N) and the interslice forces (E, T) have the same
relationships as those found in Janbu’s generalized technique. The
interslice forces for a particular force function are calculated
iteratively until Ff equals Fm in the Equations 9 and 10 (Nash, 1987).

Ff � ∑ c′l + N − ul( ) tan ϕ′( ){ }sec α( )[ ]∑ W − T2 − T1( ){ } tan α( ) +∑ E2 − E1( ) (9)

Fm � ∑ c′l + N − ul( ) tan ϕ′( )( )∑W sin α( ) (10)

2.1.8 Spencer’s method
Spencer’s approach is identical to the Morgenstern-Price

method, with the exception of the assumption for interslice

forces. For interslice forces, a constant inclination is assumed,
and the FoS is calculated for both equilibrium (Spencer, 1967).
Using this approach, the interslice shear force is associated with
Equation 11:

T � E tan θ (11)

2.1.9 Friction circle method
The friction circle method is part of the broader category of limit

equilibrium methods used for analyzing slope stability. This method
divides the slip surface into vertical slices and evaluates forces and
moments for each slice to determine equilibrium (Terzaghi et al.,
1996). It calculates the FoS by comparing resisting forces, derived
from soil friction along the slip surface, to driving forces. The method
is particularly useful for preliminary assessments of slopes with
cohesive soils, where circular failure surfaces are likely. While it
simplifies calculations, it assumes uniform soil properties and a
circular failure surface, which may not always reflect real conditions.

2.1.10 Taylor’s method
Taylor’s method is applicable for circular failure of the soil mass

(Taylor, 1937). The assumption that soils are homogeneous and
isotropic is incorrect in practice (Sakellariou and Ferentinou, 2005).
Researchers previously used Taylor’s slope stability chart to estimate
the factor of safety of slopes having simple geometry with
homogenous and isotropic soil properties in clays under single-
value undrained shear strength (Javankhoshdel and Bathurst, 2014;
Liu et al., 2022). Taylor (1937) developed charts for calculating the
factor of safety for simple slopes of cohesive-frictional (c-ϕ) shear
strength soils. The disadvantages of Taylor’s chart include the
requirement for repeated processes to determine the FoS.
Equation 12 can be used to compute the FoS. Taylor’s slope
stability chart is shown in Figure 3.

FoS � Su
γHNs

(12)

where the depth factor (D) and slope angle (α) determine the
stability number (Ns). In Figure 3, “H” represents the slope’s height

FIGURE 3
Schematic representing Taylor’s slope stability chart for
cohesive soils.
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TABLE 2 Comparison of conventional slope stability methods.

Aspect Ordinary

method

Bishop’s
method

Janbu’s
method

Lowe and
Karafiath’s
method

Corps of
engineers
method

Sarma’s
method

Morgenstern
and Price’s
method

Spencer’s
method

Finite
element
method

Friction
circle

method

Taylor’s
method

Linear
surface
failure
method

Description Divides the
potential failure

mass into
vertical slices
and solves for
the equilibrium
of each slice

Considers both
vertical force
and moment
equilibrium for

each slice;
assumes circular
slip surfaces

Uses both force
and moment
equilibrium,
applicable for

both circular and
non-circular slip

surfaces

Considers both
force equilibrium
(normal and shear
forces) for each

slice

Incorporates
assumptions
similar to the
simplified

Bishop method

A hybrid
method

combining
aspects of force
and moment
equilibrium
methods with
empirical

adjustments

A comprehensive
method that satisfies

both force and
moment equilibrium

Another
comprehensive
method that

satisfies both force
and moment
equilibrium,
similar to

Morgenstern and
Price

Solves stress-
strain

relationships,
discretizes slope

into finite
elements

Method
analyzing
stability

based on a
circular
failure
surface

Graphical
method using
pre-computed
charts for
stability

assessment

Simplified
method

assuming an
infinite planar
failure surface

Accuracy Less accurate,
especially for
complex slopes

High accuracy
for circular slip

surfaces

Simplified method
less accurate;
generalized

method highly
accurate for both
circular and non-

circular slip
surfaces

More accurate,
can handle more

complex
geometries than
Ordinary method

Moderate
accuracy,
suitable for
practical

engineering
problems

Improved
accuracy for

specific
applications

due to empirical
adjustments

Highly accurate for
both circular and
non-circular slip

surfaces

Highly accurate,
similar to

Morgenstern and
Price, can handle
complex slip
surfaces

High accuracy,
detailed

representation of
slope conditions

Generally
accurate for
slopes with
circular
failure
surfaces

Provides
approximate
results; less
detailed

Less accurate
for non-

uniform slopes
or deeper
failures

Complexity Simple and easy
to implement

More complex
than Ordinary
method but

straightforward

Simplified
method:

straightforward;
generalized
method

More complex
due to additional
force equilibrium

equations

Simple to
moderate

complexity, with
empirical

adjustments

More complex
due to empirical
adjustments

and theoretical
considerations

Complex, requires
iterative solution

methods

Complex, requires
iterative solution

methods

More complex,
computationally

intensive

More
complex,
involves
detailed

calculations

Simplified
graphical
method

Simple and
straightforward

Limitations Less reliable for
complex slip
surfaces and

inter-slice force
distribution

Assumes
circular slip
surfaces

Simplified method
may not be
accurate for
complex

geometries;
generalized

method requires
more

computation

Requires
assumptions

about inter-slice
force function,

which may affect
accuracy

May not be
suitable for

highly complex
slopes

Empirical
adjustments
may not be
valid for all
slope types

Requires iterative
solution and can be
computationally

intensive

Requires iterative
solution and can

be
computationally

intensive

Requires
extensive data,
expertise, and
computational

resources

Requires
iterative

calculation or
software for
detailed
analysis

Simple if
charts are
available;
minimal

computation

Minimal; often
manual

calculations
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and “DH” the hard stratum’s depth from the slope crest. It is
generally accepted that “H” and “α” are deterministic.
Additionally, Su, a lognormally distributed or random variable,
and γ, a constant, or both, can be used to compute the
probability of failure for lognormal distributions with
uncorrelated random variables.

2.1.11 Linear surface method
The Linear Surface Failure Method, used for analyzing infinite

slopes in granular soils, assumes a planar failure surface. It is
particularly effective for evaluating stability in granular materials
like sand where cohesion is minimal (Duncan et al., 2014). The
method involves calculating the factor of safety (FS) by comparing
the resisting forces (due to friction) to the driving forces (due to
gravity). This approach simplifies analysis by assuming an infinite
slope and a linear failure surface, making it suitable for preliminary
assessments of steep slopes.

Table 2 contains detail comparison of various limit equilibrium
methods used in slope stability analysis, including the Ordinary
Method, Bishop’s method, Jambu’s method, Corps of Engineers
method, Sarma’s method, Lowe and Karafiath’s method,
Morgenstern and Price’s method, Spencer’s method, Finite
element method, Taylor’s method, and Linear surface
failure method.

2.2 Soft computing methods

Figure 4 displays the uses of soft computing methods in slope
stability analysis over the past 20 years (2003–2022). The trend line
is shown by the black dashed line, while the bars show the yearly
number of studies. The Web of Science database provided the
statistical data. After determining the relevance of the papers to
the topic and using the search terms “soft computing method” and
“slope stability analyses,” 159 publications from 2002 to 2022 were
found. In comparison to 2019, the number of publications increased
significantly in 2022. This demonstrates that the application of soft
computing methods to slope stability issues has received more

attention from researchers in recent years. It should be noted
that many soft computing methods can be employed in a single
article, resulting in a greater number of methods utilized than the
number of papers reporting those research.

Themajority of published works have examined related to slopes
stability subjected to circular-type failure and stability of these slopes
are based on slope geometry (i.e., H and β), shear strength of the
geomaterial (i.e., c and ϕ), gravity (i.e., γ), and water condition
(i.e., ru). Soft computing/data mining methods based on historical/
modeled data have been applied for two main purposes in these
studies: (1) prediction of FoS, i.e., the output of these models is the
FoS, and (2) prediction of slope stability (SS) status, i.e., the output of
proposed models indicates the stability or instability of the slope.
Several of these models are compared below in terms of FoS/SS and
their performance metrics. Table 3 presents the comparison of these
soft computing techniques highlighting their strengths and
weakness in slope stability.

2.2.1 Artificial neural network (ANN)
In the ANN mathematical model, neurons are regarded as

processing elements or nodes. A network with input vectors x1,
x2, . . . , xm and output vectors y1, y2, . . . , yp as shown in Figure 5, can
be expressed in Equation 13 as follows:

yj � foutput ∑k
h�1

wjhfhidden ∑m
i�1
whixi + wh0

⎛⎝ ⎞⎠ + wj0
⎡⎢⎢⎣ ⎤⎥⎥⎦ (13)

where fhidden and foutput represent the respective transfer functions
for the hidden and output layers. whi and wjh represent the neuron
weights of input neuron i to hidden neuron h and hidden neuron h
to output neuron j, respectively. xi is the ith input unit; k is the
number of neurons in the hidden layer; m is the number of input
units; p is the number of output units; who is the threshold (or bias)
for neuron h; wjo is the threshold for neuron j.

Neural network models can be classified as feed forward or
feedback based on their topology. The back propagation (BP) and
radial basis function (RBF) algorithm models are commonly used in
soft computing prediction models.

Zhou et al. (2019) employed ANN to predict slope stability, with
a 0.827 accuracy. Similarly, Qi and Tang (2018) used ANN to predict
slope stability and found an accuracy of 0.84.

2.2.2 Support vector machine (SVM)
The optimal classification hyper-plane problem with linear

separability is the basis for the SVM method (Samui, 2008; Zhu
and Zhang, 2004). Maximizing the training set interval is the
algorithm’s objective. Nonnegative relaxation variables (ξn, n �
1, 2, ..., k) are necessary for generalized optimum classifications
under conditions that are not linearly separable. Then, the
Equations 14, 15 present classification hyper-plane
optimization problem:

min
w,b

� w‖ ‖2
2

+ C∑n

i�1ξ
2
i (14)

which subject to

yi w × xi + b( )≥ 1 − ξ i
ξ i ≥ 0, i � 1, 2, ..., n

{ (15)

FIGURE 4
Number of machine learning research on slope stability
conducted each year, with the trend line represented by the
dashed line.
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TABLE 3 Brief comparison of different soft computing methods used in slope stability prediction.

Soft computing
technique

Task Strengths Weakness

Artificial neural
network (ANN)

A multi-layer network of interconnected
nodes (artificial neurons)

Captures complex, non-linear relationships
Scalability and flexibility with data of different
sizes

Prone to overfitting
Sensitive to feature scaling
Sensitive to hyperparameter tuning,
Interpretability issue-black-box nature

Support vector
machine (SVM)

To transform the original data into a higher-
dimensional space where it becomes easier to
separate the classes using a hyperplane

Handle high-dimensional data well, Different
kernel functions (linear, polynomial, radial
basis function, sigmoid) allows SVM to model
complex relationships in the data, Robustness
to overfitting

Computationally intensive, Highly dependent
on the choice of the kernel function and its
parameters, Sensitive to noise, Interpretability
issue

Random forest (RF) Leveraging the power of multiple decision
trees to improve predictive accuracy

Accuracy and robustness, Reduced overfitting,
Handling high-dimensional data

Harder to interpret, Computationally
expensive

Gaussian process (GP)
regression

To perform regression analysis by providing
probabilistic predictions that quantify the
uncertainty of the predictions

Handling of uncertainty and the incorporation
of prior information, Highly flexible and
capable of fitting complex, non-linear
relationships in data

Sensitivity to kernel selection and noise,
Interpretability issue, Highly dependent on the
choice of the kernel function and its
parameters

Decision tree (DT) Divides the data into branches based on
feature splits

Strong performance with non-linear
relationships
Easy to interpret

Prone to overfitting
It may create deep trees with high variance

k-Nearest
Neighbor (k-NN)

To perform prediction based on the similarity
of input data points to their nearest neighbors
in the feature space

Various distance metrics (Euclidean,
Manhattan, Minkowski, etc.), allowing it to be
tailored to different types of data and problem
requirements, Computationally inexpensive

Sensitivity to noise and outliers,
Interpretability issue, Sensitivity to parameter
choices

Multilinear
regression (MLR)

To model the relationship between a
dependent variable (target) and multiple
independent variables

Clear interpretations of the relationship
between the dependent variable and each
independent variable, Relatively easy to
understand and implement

Assumes a linear relationship between the
independent variables and the dependent
variable, sensitive to outliers

Multivariate adaptive
regression splines (MARS)

To model complex non-linear relationships
between the dependent variable and multiple
independent variables

Robustness to outliers, Relatively easy to
interpret

Sensitive to parameter tuning,
Computationally intensive

Gradient Boosting
Machine (GBM)

Combining multiple weak learners (typically
decision trees) sequentially

Handles complex relationships, Robustness to
overfitting

Computational complexity, Sensitive to noisy
data, Black-box nature

Adaptive neuro-fuzzy
inference systems (ANFISs)

To model complex relationships between
input and output variables by combining the
advantages of fuzzy logic and neural networks

Effectively handle uncertainty and imprecision
in data using fuzzy logic, Capture non-linear
relationships between input and output
variables

Computationally expensive, Domain
knowledge requirement

FIGURE 5
Typical architecture of a neural network.
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where C ∈ (0,+∞) is the parameter for penetration, w is the
normal vector, and b is the hyper-plane’s bias. Through nonlinear
transformations, the SVM algorithm can convert the input space
into a high-dimensional space. The kernel function K(xi, xj) �
Φ(xi) × Φ(xj) can be used to define the nonlinear
transformation. There are four kernel functions, with the most
popular being the radial basis function (RBF) kernel. The
function of the radial basis function kernel is given in Equation 16:

K xi, xj( ) � exp −σ xi − xj

���� ����( )2 (16)

where σ is the essential kernel parameter that specifies the kernel’s
width, and σ ∈ (0, 1).

The SVM for slope stability was applied by Lin et al. (Lin et al.,
2018) with six typical slope parameters: pore water ratio, unit
weight, cohesion, internal friction angle, slope angle, and slope
height and found an accuracy of 0.6667.

2.2.3 Random forest (RF)
An ensemble learning technique called RF is used to address

regression and classification issues. Breiman in 2001 developed a
combinatorial classification method called the RF (Breiman, 2001).
It is comprised of many decision-tree classification models
Θ h(X, k), k � 1, 2, ...{ }, where the input vector and the parameter
set is a random vector that is independently and identically
distributed. The inconsistent results are decided by the voting
process. The following is the main idea of RF: The original
sample set is resampled to create numerous sample sets, each of
which reflects the entirety of the training data for a given category
tree. When each sample set evolves into a tree, mtry properties are
selected at random from the M properties at each node. Once the
purity of every node reaches its lowest point, one of the mtry

attributes is chosen to mature. The generated ntree trees can then
be used to build the RF classifier, which can then be used to classify
the newly data set. The number of votes by tree classifiers influences
the classification result and presented in Equation 17 is:

c � argmaxc
∑ntree

k�1 I h X,Θk( ) � c( )
ntree

( ) (17)

where c is the result of the classification and ntree is the number of
trees. Figure 6 depicts the RF functional architecture.

Zhou et al. (2019) found that the accuracy value was 0.808 after
applying RF to 221 datasets for slope stability. In order to determine
slope stability, Lin et al. (2018) employed RF on 132 datasets,
yielding an accuracy of 0.83. In the same way, Qi and Tang
(2018) used RF to analyze the soil slope stability of 148 slope
instances and achieved an accuracy of 0.93.

2.2.4 Gaussian process regression (GPR)
Rasmussen’s hypothesis—that neighboring observations should

to exchange information—forms the foundation of the GPR model
(Rasmussen and Williams, 2006). A joint multivariate Gaussian
distribution can be found for any finite number of the random
variables in a gaussian process. Let a×b stand for the input and
output domains, respectively, from which n uniformly and
randomly distributed pairs (ai, bi) are taken. For regression, let
b ⊆ R; then, a Gaussian process on a is distinct by themean function
μ: a → R and a covariance function k: a × a → R. The main
supposition of GP regression is that y is given as b � f(a) + ξ,
where ξ ~ N(0, σ2). In GPR, for every input x, there is a
corresponding random variable f(a), which is the value of the
stochastic function f at that location. That is, In GPR, there is a
corresponding random variable f(a)that represents the value of the
stochastic function f at that specific position for each input x. In this
work, it is assumed that the observational error n is normal
independent and identically distributed, with a mean value of
zero μ(a) � 0, a variance of σ2 and f(a) drawn from the
Gaussian process on a specified by k. This is given in Equation 18,

B � b1, ..., bn( ) ~ N 0, K + σ2I( ) (18)
where Kij = k (ai, aj) and I is the identity matrix. As B/A ~ N(0, K +
σ2I) is normal, so is the conditional distribution of test labels given

FIGURE 6
A random forest process’s typical architecture.
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the training and test data of (B/B, A,A*) . Then, one has
B*/B,A, A*~ N(μ,∑) where μ and ∑ are given in Equations 19
and 20:

μ � K A*, A( ) K A,A( ) + σ2I[ ]−1B (19)
∑ � K A*, A*( ) − σ2I − K A*, A( ) K A,A( ) + σ2I[ ]−1K A,A*( )

(20)
This is also true for the other values of K(A, A), K(A*, A), and

K(A*, A*); here, A and B are the vectors of the training data and
training data labels bi, whereas A* is the vector of the test data. If
there are n training data and n* test data, then K(A, A*) represents
the n × n* matrix of covariance, which is evaluated at all pairs of
training and test datasets. Tien Bui et al. (2019) used GPR for
predicting slope stability FoS and found that the R2 value is 0.9467.

2.2.5 Decision tree (DT)
DT addresses both regression and classification issues using a

structure like a tree (Kardani et al., 2021; Pekel et al., 2020). Nodes in
a DTmodel that have outgoing edges are called internal nodes, while
nodes without any edges are called leaf nodes (leaves). DT models
also use branches to connect the nodes. Classification trees and
regression trees are the two forms of DTs. Classification trees divide
data into two subsets according to class labels, and they keep doing
this until a stopping criteria is reached. Another kind of DT used in
machine learning to address regression issues is regression trees.
They are used for predicting continuous output variables, as
compared to classification trees, which are used to predict a
discrete set of values. Regression trees split data into two groups
and continue doing so until a stopping condition is met. DTs have
numerous advantages, including ease of understanding and
explanation (Witten and James, 2013). But DTs can be extremely
sensitive. Minor adjustments to the input data can have considerable
effects on the trees and the results (Witten and James, 2013). Because
of their reliance on the greedy algorithm, DTs may occasionally fail
in achieving a globally optimal outcome (Ben-Gal et al., 2014). A tree
structure may effectively show the relationship between binary
dependent variables and related independent variables, which is
one of the advantages of DT analysis. Decision trees are hence a
popular and effective data mining technique (Duch et al., 2004).
Amirkiyaei and Ghasemi (2022) used J48 to assess the stability of
slopes with 92.3% accuracy.

2.2.6 k-nearest neighbor (k-NN)
The k-NN approach is a well-known soft computing technique

that is used to solve regression and classification issues. In the feature
space, it is assumed that similar samples are frequently found near to
one another (Peterson, 2009). The k-NN technique determines the k
closest samples within the dataset for each sample point and
computes their distance from the previous sample points. The
samples that satisfy k with the smallest distances comprise the
input data. The outcome of classification problems is class
membership (labels). The majority class among the k closest
samples is used to classify a sample. The sample is assigned to
the closest class if k = 1. The average value of the closest samples in a
regression issue is the output value (Mahmoodzadeh et al., 2022).
The k-NN method’s quick and easy training process is one of its
benefits. Furthermore, the k-NN method can reduce noise to some

degree (Bhatia, 2010). But as k is a sensitive parameter, a smaller
value could result in overfitting, while a bigger value could result in
underfitting. Furthermore, processing costs might be high,
particularly for large datasets (Bhatia, 2010). To ensure
performance, hyperparameters must be properly chosen. Image
recognition is one of the k-NN method’s application scenarios
(Zhang et al., 2006; Homaeinezhad et al., 2012), text classification
(Trstenjak et al., 2014; Tan, 2006), and recommendation system
(Adeniyi et al., 2016). Huang et al. (2020) used k-NN algorithm for
slope stability to achieve prediction accuracy up to 92.30%.

2.2.7 Multilinear regression (MLR)
The MLR, often known as multiple regression, is a simple

machine learning technique that explains the relationship
between two or more predictor variables and a response variable.
The model is shown in Equation 21 (Pandey et al., 2022):

y � α0 + α1 × x1 + α2 × x2 + ... + αn × xn + ξ (21)
where y is the dependent variable (output data), α0 is the intercept or
constant term, and α1 to αn are the coefficients of the independent
variables (input data) x1 to xn, respectively. The MLR aims to
minimize the sum of squared errors between the dependent
variable’s actual values and its predicted values by estimating the
values of the α coefficients. The fact that MLR can only take into
account a linear relationship between the input and output data is
one of its drawbacks. Chakraborty and Goswami (2017) used MLR
to predict FoS of slope stability using 200 cases and found that
R2 is 0.847.

2.2.8 Multivariate adaptive regression
splines (MARS)

MARS is a nonlinear regression approach that is used for
classification and regression applications. MARS uses a collection
of piecewise linear functions known as basis functions to model the
relationship between several inputs and one output (Falae et al.,
2021; Zhang and Goh, 2016). There are similarities between other
basis functions, using the linear basis function as an example. The
linear basis function Bi(x) can be defined in Equation 22 as
three types:

(1) Constant values T (the intercept).
(2) A hinge function:

Bi x( ) � max 0, x − T( ) (22)

(3) A function of two or more hinge functions.

MARS model M can be expressed as a sum of basis functions
given in Equation 23:

M � ∑t
i�1
tiBi x( ) (23)

where ti is the constant coefficient. The model iteratively adds new
functions after beginning with a single basis function. The algorithm
chooses each hinge’s ideal location in a stage-by-stage, greedy
fashion (Friedman and Roosen, 1995). Using a limited number of
basis functions, MARS has the advantage of developing a
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straightforward model that captures intricate interactions between
inputs and outputs. On the other hand, MARS might be affected by
the initial basis function and stopping criteria selected. MARS is
often used in credit scoring (Lee et al., 2006; Lee and Chen, 2005),
and species distribution models (Leathwick et al., 2006) and also has
applications in time series analysis (Lewis and Stevens, 1991). Liao
and Liao (Liao et al., 2020) used MARS to predict FoS of slope
stability with R2 value is 0.8629.

2.2.9 Gradient boosting machine (GBM)
To increase prediction accuracy, GBM is an ensemble of weak

prediction models, like DTs. GBM constructs the model step-by-
step and, because it can maximize any differentiable loss
function, has far wider applicability than previous boosting
techniques. GBM is an accurate and effective technique that
works well for both regression and classification issues. Web
search ranking and ecology are two areas of research where GBM
modeling has been widely applied. The benefits of GBM include
its ability to handle mixed-type data naturally, its strong
prediction ability, and its proficiency in handling output space
outliers. In Civil Engineering, GBM has been employed for
predicting hanging wall stability (Qi et al., 2018). Zhou et al.
(2019) found that 0.865 was the accuracy after using GBM to
221 datasets for slope stability.

2.2.10 Adaptive neuro-fuzzy inference
systems (ANFISs)

The ANFISs are a soft computing technique that combines
ANNs with Takagi-Sugeno fuzzy inference systems (Jang, 1993;
Jang, 1991; Mu’azu, 2023). The essential component is a collection of
fuzzy rules—conditional statements that read, “if x is A, then y is
B”—that are used to simulate a system’s input–output
relationship. An ANFIS uses backpropagation and gradient
descent methods to train a model in about five stages (Jang, 1993):

(1) Fuzzy sets are created from the input data by applying
membership functions.

(2) The input and rules are used to calculate each rule’s
firing strength.

(3) Weighted averaging is used to compute normalized
firing strengths.

(4) The parameters and weights are optimized by adjusting the
subsequent parameters.

(5) The total output is calculated by adding up all of the
incoming signals.

ANFIS’s main benefit is its ability to express structured
knowledge and nonlinearity (Jang, 1993). To train the model,
ANFIS needs an adequate dataset; yet, choosing the right input-
output data is far more important. Additionally, the number of input
data increases exponentially with the number of fuzzy rules, thus
raising the cost of computation and may effect a model’s
performance (Al-Mahasneh et al., 2016). Mohamed et al. (2012)
used ANFIS and obtained R2 of 0.9997 to predict FoS with high
accuracy compared with MLR.

Some other soft computing methods are sparse polynomial
chaos expansion is based on polynomial chaos expansion and
hybrid soft computing models for predicting slope stability.

The use of soft computing models for slope stability analysis
offers distinct advantages in terms of accuracy, flexibility, and
efficiency, particularly in addressing the complexities and
uncertainties associated with real-world slope conditions. On the
other hand, numerous studies have been undertaken in recent years
to develop soft computing models for predicting slope stability
status (see Table 3). For example, Zhou et al. (2019) used the
gradient boosting machine (GBM) method to analyze slope
stability and compared to the artificial neural network (ANN),
random forest (RF) and support vector machine (SVM). It was
found that the GBM has highest accuracy i.e., 0.865. Sari (2018) used
binary logistic regression analysis as an alternative technique to
predict stability condition of slopes with 90.9% accuracy.
Accordingly, Qi and Tang (2018) used basic ensemble classifier
consisting of six individual classifiers and majority voting as a
combination method to improve analysis of slope stability. It is
worthwhile to note that the coefficient of determination (R2)/
accuracy in Table 4 ranges from 0.556 to 0.96. Although, these
models have greatly improved our understanding; however, the
performance and accuracy of the predictive models are not well
interpreted, and the problem of slope stability is still far from being
fully solved. Therefore, the issue of slope failure still posed
considerable challenge for geotechnical professionals. The existing
slope stability issues and damages caused by landslides, it is
necessary to put forward the idea that more systematic and in-
depth research should be carried out on predicting the slope
stability. Consequently, there is a need for more accurate and
reliable methods to predict slope stability. Soft computing
methods provide powerful tools for tackling complex, uncertain,
and imprecise problems. Their flexibility, adaptability, and
robustness make them suitable for a wide range of applications.
Soft computing techniques are known for their proficiency in non-
linear modeling, and there is evidence in the literature from a
number of technical and scientific fields that these techniques
can establish correlations between desired outcomes and a variety
of influencing parameters, whether those parameters have direct or
indirect impacts (Asteris et al., 2022; Koopialipoor et al., 2019).
However, choosing a suitable soft computing model is challenging
for the reasons listed below: (a) Inadequate modeling and validation;
(b) models in use not being able to identify the precise global
optimum; (c) problems with overfitting, etc. However, the
challenges related to computational cost, interpretability, and
data dependence must be carefully managed to fully leverage
their potential.

3 Discussion

Slope instability poses severe risks to infrastructure,
communities, and the environment. Prediction of slope stability
is of primary concern in identifying terrain that is susceptible to
landslides and mitigating the damages caused by landslides
(Rukhaiyar et al., 2018; Alimohammadlou et al., 2014). It is
difficult to accurately predict the stability of a slope due to the
fact that it is dependent on a number of geotechnical and physical
factors. Furthermore, the interactions between these factors are
complex and “often difficult to describe mathematically” (Xue,
2017; Lu and Rosenbaum, 2003).
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Several methods have been proposed to analyze or predict slope
stability, among which are Limit Equilibrium (LE) Methods
(Thiebes et al., 2014; Verma et al., 2013) and numerical methods
[e.g., finite element method (FEM)] (Cai and Ugai, 2004; Dawson
et al., 1999; Griffiths and Lane, 1999) are the most widely employed
methods (Xue, 2017; Liu et al., 2014). Empirical equations (Bye and
Bell, 2001; Taheri and Tani, 2010) and limit analysis approaches
based on lower and upper bound theorems (Chen and Baladi, 1985)
are other methods. All of the methods mentioned above, however,
have some drawbacks. The LEMs, for example, cannot reflect the slip
surfaces’ actual stress conditions (Lechman and Griffiths, 2000), and
as a result of simplifying assumptions, their accuracy is
compromised (Sakellariou and Ferentinou, 2005). The numerical
methods are time-consuming, and their accuracy is strongly reliant

on correct geotechnical and physical parameter estimation (Feng
et al., 2018).

Slope stability analysis poses challenges due to limited
information, data, and site specificity; thus, soft computing
models prove to be a viable tool for problem solutions. Soft
computing models have an advantage over conventional
statistical and empirical relationships in that they can perform
even in cases where there is no prior relationship between the
predictors and predicted variables. It is important to note that a
large number of researchers have worked extensively to develop
numerous soft computing models, the effectiveness of which
depends on a number of variables that were thoroughly
addressed in this article. However, several performance measures,
which depend on (i) input parameters, (ii) slope conditions, (iii)

TABLE 4 Summary of soft computing methods used for slope stability.

References Technique (auxiliary method) R2 or accuracy Output Number of cases

Zhou et al. (2019) SVM 0.731 SS 221

ANN 0.827

RF 0.808

GBM 0.865

Sari (2018) LR 0.909 SS 46

Qi and Tang (2018) LR (FA) 0.82 SS 148

DT (FA) 0.8

RF (FA) 0.93

GBM (FA) 0.93

SVM (FA) 0.96

ANN (FA) 0.84

Suman et al. (2016) FN 0.823 FoS 103

MARS 0.85

GP 0.817

Feng et al. (2018) NB 0.846 SS 69

Lin et al. (2018) GSA 0.889 SS 107

RF 0.833

SVM 0.667

NB 0.556

Manouchehrian et al. (2014) GA 0.792 FoS 103

Rukhaiyar et al. (2018) ANN (PSO) 0.87 FoS 83

Das and Soulaimani (2021) ANN (Levenberg–Marquardt) 0.852 FoS 46

ANN (Bayesian regularization) 0.846

ANN (differential evolution) 0.903

Gao (2015) AACC 0.913 SS 46

Amirkiyaei and Ghasemi (2022) M5P 0.902 FoS 87

J48 0.923 SS

Note: AACC, abstraction ant colony clustering; ANN, artificial neural network; DT, decision tree; FA, firefly algorithm; FN: functional networks; LR, logistic regression; MARS, multivariate

adaptive regression splines; NB, Naïve bayes; PSO, particle swarm optimization; RF, random forest; SVM, support vector machine; GBM, gradient boosting machine; GP, genetic programming;

GSA, gravitational search algorithm.
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number of data points and many other factors, are typically used to
determine the suitability of soft computing models. Soft computing
techniques seem to be developing as useful techniques for assessing a
variety of issues that are challenging to resolve using conventional
methods. Nevertheless, there are certain difficulties when applying
soft computing to slope stability problems because of (i) the scarcity
of data in certain studies that are site- and location-specific, (ii)
model underfitting and overfitting, and (iii) the likelihood of
misfitting data, which could lead to anecdotal results because soft
computing models are case- and site-specific. Modeling techniques
are classified based on colors, with white-, black-, and grey-box
models used for three levels of prior information (Giustolisi et al.,
2007). Black-box models (e.g., ANN, SVM, etc.) are data-driven or
regressive systems whose functional form of relationships between
model variables is unknown and must be predicted. Black-box
models rely on data to map the relationships between model
inputs and outputs, rather than determining a suitable structure
for the model input-output interactions. However, grey-box models
(e.g., gene expression programming and evolutionary polynomial
regression) are conceptual systems from which the mathematical
structure of the model may be concluded, allowing additional
information about the system’s behavior to be resolved. White-
box models (i.e., TAN, REPT, RT, and C4.5 decision tree) are
systems that openly demonstrate the relationship between input
and output parameters. Figure 7 depicts the above classification,
with the higher the physical knowledge used during model building,
the better the physical interpretation of the phenomenon that the
model provides to the user.

Most of soft computing methods have not been able to realize
their full potential in engineering applications due to their “black-
box” nature and lack of interpretability. These models can be used by
the user to rapidly evaluate and predict the slope stability and
consequences. Based on literature reviews, these techniques have
been effectively used to tackle several complex engineering issues in
a variety of fields, although their use in geotechnical engineering is
limited. The predictive models’ accuracy can be interpreted poorly,
as they do not fully address the issue of slope stability or fully
interpret the contribution of influencing parameters. Therefore,
evaluating slope stability and determining the impact of

influencing factors remain a considerable challenge for
geotechnical professionals. It is critical to develop the idea of
doing more systematic and in-depth study on predicting slope
stability and interpreting the impact of influencing parameters.
Therefore, in order to improve the effectiveness of these
approaches, more thorough and in-depth research on soft
computing models must be conducted.

4 Conclusion and future prospect

This paper focuses on conventional methods that have been in
use for many years. Recent advancements in geotechnical
engineering and soft computing models for slope stability
adaptability and feasibility have also been widely studied. In
literature review it was concluded that the majority of soft
computing models are easier to use, time-saving, and are more
successful than conventional methods. Furthermore, the problems
associated with slope stability in geotechnical engineering have
evolved over time due to a variety of factors that make them
difficult to model numerically and solve using conventional
methods. Soft computing methods have been frequently
employed in slope stability analysis, yielding promising results.
With the availability of numerous open-source soft computing
libraries, it has become easier for researchers to access. Although,
these models have substantially improved our understanding;
however, the performance and accuracy of the predictive models
are not well interpreted, and the problem of slope stability is still far
from being fully solved. Therefore, the issue of slope failure still
posed considerable challenge for geotechnical professionals. The
existing slope stability issues and damages caused by landslides, it is
necessary to put forward the idea that more systematic and in-depth
research should be carried out on predicting the slope stability.
Consequently, there is a need for more accurate and reliable
methods to predict slope stability. Furthermore, one of the
primary issues with the most of the soft computing
methods—with the exception of genetic programming and
logistic regression—is that they are black-box. This indicates that
they do not provide a transparent model that illustrates how input
and output parameters relate to one another. In fact, the “black-box”
aspect and lack of interpretability of most of soft computing
techniques have hindered them from reaching their full potential
in engineering applications. However, soft computing methods such
as tree augmented naive-bayes (TAN), reduced error pruning tree
(REPT), random tree (RT), logistic model tree (LMT), and
C4.5 decision tree are regarded as a “white-box” that clearly
displays the relationship between input and output parameters.
These models can be used by the user to rapidly evaluate and
predict the slope stability and consequences. It is therefore suggested
that in the future, an effort be made to develop robust and
transparent models for evaluating the stability of slopes that are
subject to circular mode failures with improved prediction accuracy.
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