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With the growing global need for housing and infrastructure, 3D concrete printing
(3DCP) has emerged as an innovative construction method offering several
potential benefits including design flexibility, speed, and sustainability.
However, enhancing the reliability of 3DCP involves managing a variety of
parameters that influence various aspects of the 3D printed structure. Process
parameters like nozzle velocity, nozzle diameter, nozzle height, andmaterial flow
velocity have a major impact on the structural stability and filament shape. This
project aimed to develop fast and accurate data-drivenmodels for predicting and
classifying filament shape based on process parameters. A print experiment
systematically varied process parameters across 144 samples. The resulting
filament geometry (width, height, contact width) was measured and classified
by quality. Models were trained on this data to predict filament width, contact
width, filament height, and classify filaments. These models can be utilized with
any buildable material - a material with a high enough yield stress to bear the
weight of upper layers without significant deformation. This condition does not
restrict this study’s scope as it is a prerequisite for all 3DCP applications. The
models’ robustness and generalizability were confirmed through validation on
literature data across various printable materials and setups. These data-driven
models can aid in optimizing parameters, generating variable width filaments, and
printing non-planar layers. By linking print inputs to filament outputs, this
comprehensive modeling approach advances 3DCP research for more reliable
and versatile concrete printing.
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1 Introduction

The world’s population is growing, and with it comes an increased need for housing and
infrastructure. By 2025, it’s estimated that 3 billion people will require new affordable
homes - that’s 96,000 homes that need to be built every day (UN-Habitat, 2022). To address
this challenge, an innovative technology called 3D concrete printing (3DCP) has emerged. It
offers several benefits over traditional building methods (Tay et al., 2017). 3D printing can
produce complex and unique structures with high accuracy and precision. This enables the
creation of more sustainable and creative designs that can be customized to meet specific
needs. Additionally, 3DCP can speed up construction times, lower labor costs, and improve
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construction safety. It also allows for using sustainable materials like
recycled concrete, reducing waste and minimizing the
environmental impact of construction (El-Sayegh et al., 2020).

Despite its advantages, 3DCP is a relatively new technology that
requires more research and development to improve the reliability of
the printing system and the material (Mohan et al., 2021). Dealing
with the large number of variables in the 3DCP process is one of the
main challenges. These variables can be broadly classified into three
categories: those related to the material, the process, and the design
of the structure being printed. Material variables encompass aspects
such as material yield stress, structuration rate, viscosity and density.
Process variables include nozzle velocity, material flow velocity,
nozzle diameter, and nozzle height. Finding the optimal
combination of all of them is a complex task, often approached
through trial-and-error methods. However, evaluating the
performance of each aspect in the printing process and
optimizing the parameters accordingly can address the
complexity of the system.

The 3D printing of cementitious materials involves 4 main steps
(Perrot et al., 2021): mixing the material, delivering it to the
printhead, depositing successive layers to form the 3D object,
and post-print drying and curing. The deposition step which is
the focus of this study is crucial as it directly impacts the final
product’s shape, stability and quality. Precise, consistent deposition
ensures the final print matches intended design specifications. By
evaluating this step, one can adjust these parameters to improve the
efficiency of the process and prevent possible failures or
deformations in the structure, thereby saving time, resources, and
ensuring a successful print.

The authors of this paper identified seven criteria that describe
performance during the depositing stage:

• Criteria 1 - Filament is self-supported (Carneau et al., 2022)
• Criteria 2 - No deformation from pressing stress (Carneau
et al., 2022)

• Criteria 3 - Avoid plastic collapse (Perrot et al., 2016;
Roussel, 2018)

• Criteria 4 - Prevent elastic buckling (Roussel, 2018)
• Criteria 5 - Avoid cold joints (Wangler et al., 2016)
• Criteria 6 - Maintain desired filament width
• Criteria 7 - Ensure consistent filament geometry

To perform an optimization, the criteria need to be evaluated
using a fast simulation technique. This is because in the optimization
process, performance will be evaluated multiple times with different
variable combinations each time. Therefore, analytical models or
data-driven models are most suitable for this application due to their
speed. Numerical models, while accurate, are too slow for this
application (Comminal et al., 2020).

The first five criteria have analytical models that are fast, and
their accuracy has been evaluated which makes their evaluation in
the optimization process feasible. However, for the last two criteria -
ensuring that the printed filament width equals the desired width
and that the extruded filament is consistent and controllable - only
numerical methods are available. There is an analytical model for
filament width simulation, but it was built based on unproven
assumptions which will be discussed in this study (Carneau
et al., 2022).

This project aimed to develop fast and accurate data-drivenmodels
for predicting and classifying the shape of the filament, taking into
account variables including nozzle velocity, material flow velocity,
nozzle height, and nozzle diameter. An experimental print was
conducted using various parameter combinations, and the printed
filaments were cut and scanned to gather data related to the shape
and quality of the filament. This data served as the basis for training the
prediction and classification models which have multiple applications.
They can help in optimizing process parameters and facilitate creating
non-planar layers and filament with variable width. These models are
promising for use with any buildable material, which means that the
material shouldmeet the first three criteria listed before. In other words,
there should beminimal deformation in the printed filament, which can
be achieved by increasing the time gap between layer printing or using a
mix with faster hardening rate. Satisfying these criteria does not restrict
this study’s scope as it is a prerequisite for almost all 3DCP applications.
However, it’s important to note that the developed models are designed
for the layer pressing approach with circular nozzle geometries and do
not directly apply to the infinite brick printing approach.

2 Literature review

2.1 Extrusion approaches for 3D
concrete printing

Two main approaches have been recognized in the 3DCP field
(Roussel, 2018; Carneau et al., 2022). The first is called “Infinite
Brick Extrusion”, in which the material has high yield stress and low
thixotropy, resulting in almost unsheared extrusion layers that have
a cross-section similar to the nozzle orifice which is usually a
rectangular section (Roussel et al., 2020). This method usually
produces a smooth and flat finish. However, it restricts the
amount of geometric freedom available and increases the chance
of filament tearing, especially at sharp corners.

The second approach, known as “Layer Pressing”, uses a
material with low initial yield stress and high thixotropy through
a circular nozzle. The material is then pressed between the nozzle
and the previous layer, forming an oblong cross-section. The height
of the layer is determined by the nozzle height, while the width can
be adjusted by changing the nozzle velocity, the material flow
velocity, or the nozzle height. The two extrusion approaches are
illustrated in Figure 1.

The layer pressing technique has several advantages for 3D concrete
printing. It allows for precise control of the upper surface position of
each layer, avoiding any vertical error accumulation and ensuring
accuracy in the final product (Roussel, 2018). It also enables varying
the layer thickness and inclination throughout the printing process,
expanding the design possibilities, and allowing for more complex
geometries. Moreover, it uses a circular nozzle, which gives more
freedom to the robot path and avoids layer twisting issues (Bos
et al., 2016). In addition, it increases the bond strength between the
layers due to the pressure applied by the nozzle (Pan et al., 2022).
However, it also increases the risk of sub-layer distortion due to the
material pressure (Carneau et al., 2022).

This study investigates the layer pressing technique and its
potential to create different filament geometries with a single
circular nozzle.
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2.2 Process parameters impact on
filament geometry

This section outlines how process parameters affect filament
shape in material extrusion, highlighting three distinct behaviors
and their implications on the final product’s quality and stability.

2.2.1 Process parameters
The filament shape is determined by a combination of process and

material parameters. Process parameters including nozzle velocity
(VN), material flow velocity (VM), nozzle height (HN), and nozzle
diameter (D) are shown in Figure 2. A single dimensionless
parameter, (V* = VN/VM), which combines VN and VM, is
sufficient to represent the amount of deposited material (Reinold
et al., 2022). By expressing the ratio of filament width to nozzle
diameter, W* = W/D, and the ratio of filament height to nozzle
diameter, HF* = HF/D, the filament shape can be described and
generalized to any nozzle diameter. The filament height (HF) may not
always equal the nozzle height (HN), as a reduction in velocity ratio
can cause a swelling effect, leading to a higher filament height due to
extrusion pressure (Comminal et al., 2020).

2.2.2 Printed filament behaviors
The shape of the filament can vary depending on the specific

combination of process parameters used, resulting in three distinct
behaviors of material extrusion. Note that these behaviors are related
to the pressing approach, which is the study focus.

The first behavior is characterized by the production of a
large filament surface area due to a slow nozzle velocity ratio
and a small nozzle height ratio. As a result, a greater amount of
material is deposited than expected, leading to the material
being compressed and spread out horizontally (Tay et al.,
2019b). In this scenario, the layer cross-section is closer to a
rectangular shape with a low aspect ratio (height/width)
(Comminal et al., 2020; Reinold et al., 2022). While the
excess material deposited enhances the connection between
layers and increases the mechanical strength, it also leads to
a rough surface finish and low geometric precision (Tay et al.,
2019b). The nozzle’s extrusion pressure over sub-layers can
also cause deformation. The deformation is permanent and
modifies the filament thickness. According to numerical
simulations, the dominant force during extrusion is the
extrusion pressure, which exceeds the material weight
(Comminal et al., 2020). This phenomenon results in limited
control over the final layer width and is predicted to affect the
material structuration rate, posing a risk to its overall stability
(Carneau et al., 2022).

The third behavior of material extrusion has a large layer height
and high velocity ratio, resulting in layer geometries with circular
cross-sections (Comminal et al., 2020; Reinold et al., 2022). The
major challenge in this behavior is the instability at the filament
level, attributable to the increased complexity of stacking layers of
filaments with a circular shape. Additionally, there exists a potential
for longitudinal tearing. This phenomenon is induced by the slow
material extrusion speed and the frictional force between the
extruded material and the substrate. These factors collectively
generate a shearing effect at the nozzle, leading to breakages (Tay
et al., 2019a).

The final behavior of material extrusion is characterized by
precise control of the geometry, with all layers having a consistent
width and height, without any over-pressing, instable layers
stacking, or filament tearing.

FIGURE 1
A comparison of two primary 3DCP approaches at the nozzle level: infinite brick extrusion (on the left) and layer pressing (on the right).

FIGURE 2
Process parameters affecting the filament geometry.
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2.3 Filament simulation of material extrusion

To evaluate, optimize and control the quality of a system,
simulating it is a crucial first step. In the case of 3DCP, filament
depositing simulation can be achieved through numerical, analytical
or data-driven methods. This section provides an overview of each
approach, including their advantages, disadvantages, and examples
from existing literature.

2.3.1 Numerical modeling
Numerical methods have been helpful in advancing our

understanding of the printing process (Perrot et al., 2021; Khan
and Koç, 2022). A number of studies have demonstrated the efficacy
of these methods in accurately replicating experimental results
(Comminal et al., 2020; Liu et al., 2020; Spangenberg et al.,
2021). Liu et al. attributed discrepancies between numerical and
experimental results to variations in flow rate and minor changes in
rheological properties post-pumping (Liu et al., 2020).

These numerical techniques can be applied at two levels within
3D Concrete Printing (3DCP): the individual printed filament
(focusing on shape and quality) and the overall printed structure
(emphasizing stability). Numerical simulations at the filament level
have proven useful in assessing the impact of process and material
parameters on filament geometry. Comminal et al. implemented a
CFD model to simulate and understand filament geometry and
behavior, focusing on two process parameters: nozzle height and
nozzle velocity ratio (Comminal et al., 2020). In Wolfs’ work (Wolfs
et al., 2021), CFD models have been used to explain the impact of
process parameters in the infinite brick regime. In (Liu et al., 2020),
they discovered that filament deformation is largely influenced by
yield stress and velocity ratio, rather than plastic viscosity.
Furthermore, Mollah (Mollah et al., 2021) studied the influence
of nozzle diameter, extrusion speed, printing speed, and nozzle
height on the shape of the filament.

Despite these advancements, numerical simulations pose
significant challenges due to the extensive computational
resources and time required. As per (Comminal et al., 2020), the
average simulation time was anywhere between 18 h and 2 days,
based on the simulation technique applied. The investigation
employed a high-performance computer to run all simulations,
utilizing 20 cores. This restriction makes the use of numerical
methods challenging for optimization purposes as many
iterations need to be simulated to arrive at the optimal
objective value.

2.3.2 Analytical modeling
Analytical modeling provides an alternative method for

studying filament behavior during 3D printing. It uses
mathematical formulas based on fundamental principles to
forecast the shape of the filament. Unlike numerical methods,
these formulas have precise solutions, allowing for direct
problem-solving without the need for approximation or iteration.
While numerical models can offer detailed insights, analytical
models benefit from having a lower computational cost.

At the filament scale level, research has been primarily
concentrated on determining the filament width. Zhang and
Sanjayan initially assumed that the filament possessed a perfect
rectangular shape and formulated Eq 1 based on this assumption

(Zhang and Sanjayan, 2023). However, their subsequent
experimental studies revealed a significant error in this
relationship, attributable to the rectangular shape assumption.

WHNVN � π D/2( )2VM (1)
Carneau et al. improved upon this by hypothesizing that the

filament possessed an oblong shape, comprising a rectangle and two
half circles on its sides (Carneau et al., 2022). Utilizing this
assumption and the principle of mass conservation, they
formulated Eq 2. They asserted good accuracy when applying
this equation against experimental data, although no quantitative
assessment was provided to substantiate this claim.

W � πD2VM

4VNH
+ 1 − π

4
( )H (2)

2.3.3 Data-driven modeling
An alternative approach to numerical simulation that does not

come with a high computational cost is data-driven modeling
(Nguyen-Van et al., 2023). Researchers used data-driven models
to either predict the geometrical properties of the filament or to
validate a numerical model using data-driven models. Key studies in
this realm have explored the relationship between printing
parameters (inputs) and filament geometry (outputs), as outlined
in Table 1.

However, there are still opportunities to develop a more
comprehensive data-driven models. Some of the developed
models did not consider all the process parameters. Others did
not predict all filament-related parameters, for instance, no study
has developed a model for predicting filament contact width.
Moreover, Previous studies mostly produced graphs representing
variable relationships, which are harder to implement than widely
shareable data-driven models. Additionally, some used regression
models without performance validation.

In our study, a comprehensive approach was adopted by
considering all principal printing parameters, such as nozzle
height, flow rate, nozzle velocity, and nozzle diameter, as inputs.
The prediction of crucial filament geometric properties, including
width, height, contact width, and the classification of filament
behavior, was undertaken as outputs. Various regression and
classification models were thoroughly examined to identify the
optimal models for predicting filament geometry. This approach
presents a more exhaustive and refined data-driven modeling
methodology compared to preceding studies, addressing previous
limitations and offering a more practical solution for wider
implementation.

2.4 Applications of filament
geometry modeling

Filament-level simulation can be used for various applications.
Firstly, it helps in producing unconventional toolpaths, which allow for
the creation of structures with varying layer widths (Breseghello and
Naboni, 2022a; Yuan et al., 2022) and the printing of non-planar layers.
Secondly, utilizing filament geometry simulation can help optimize the
structure’s efficiency by reducing material use while enhancing its
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overall structural performance. By selectively placing material only
where it is needed, an optimized light beam can be designed that is
three times more effective than a traditional full beam (Breseghello and
Naboni, 2022b). In a similar study (Tay et al., 2022), researchers printed
an optimized beam, which resulted in a 50% enhancement in the
strength-to-weight ratio. In both mentioned papers, the printed
toolpath was designed by simulating and optimizing printing
parameters like nozzle velocity and material flow velocity.
Furthermore, by adjusting process parameters, it is possible to use
3DCP filament simulation to print both the main structure and support
structure for overhangs using the same material (Tay et al., 2019a).
Finally, by incorporating filament simulation into a real-time printing
quality workflow, the quality of 3D-printed objects can be improved. It
allows for making real-time corrections to the process parameters if any
defects or errors were detected during the printing process.

3 Methodology

The proposed research is composed of three main activities: data
generation, data collection, and model training. This section details
each one of them, starting with a discussion of the research material
and setup.

3.1 3D Printing material and system setup

The material used in the experiment met the two buildability
criteria (criterion number 1 and 2) described in the introduction
section. According to these criteria, the material should be able to
withstand its own weight and the weight of the layers above it. This is
a necessary condition for all 3DCP applications. Therefore, the

material selection in this experiment does not limit the scope of
this study, as any other material suitable for 3DCP would also meet
the buildability criteria.

The dry mix material utilized in the experiment was formulated
by Gulf Concrete Technologies (GCT). It comprised a combination
of Portland cement, lime, pulverized limestone, specifically graded
masonry sand, fibers, and admixtures. In GCT concrete, the largest
particle size does not exceed 1 mm.

Duarte assessed the stiffness of GCT material using a pre-shear
protocol that mimics the printing components’ shear history
(Duarte et al., 2023). Ashrafi found that the GCT material
stopped deforming 33.9 s after printing, indicating faster printing
would cause deformation (Ashrafi et al., 2021). This finding
informed our experiment design, which used a toolpath with a
time interval exceeding 33.9 s. The time gap refers to the period
post-extrusion, assuming a 10 ft hose.

Figure 3 illustrates the 3DCP system located in the AddCon lab
at Penn State University, which comprises a mixer pump (m-tec
Duomix 2000) used for mixing and extruding the material, a silo
containing the dry mix and feeding the pump, and a 6-axis robotic
arm (ABB IRB 6640). The system offers control over the robot speed,
nozzle height, and material flow velocity. The printing path was
designed using Rhino and Grasshopper, and the open-source
Grasshopper plug-in RobotComponent was utilized to convert
the path to the ABB robot programming language (Deetman
et al., 2023).

3.2 Data generation

The data generation stage was aimed at producing as many
data points as possible, with each having distinct parameters

TABLE 1 Summary of papers that used filament shape data-driven modeling for the layer pressing approach.

Paper author and title Inputs variables Output variables Outcome

Breseghello and Naboni (2022a) Nozzle velocity Filament width Graph

Nozzle height Filament quality

Tay et al. (2022) Material flow velocity Filament quality Polynomial regression equation Graph

Tay et al. (2019a) Nozzle velocity

Comminal et al. (2020) Nozzle height Filament height Graphs

Nozzle velocity Filament width

Material flow velocity

Yuan et al. (2022) Nozzle height Filament width Polynomial regression equation

Material flow velocity Filament quality

Nozzle velocity

Zhang and Sanjayan (2023) Nozzle height Filament width Analytical regression

Material flow velocity Filament height

Nozzle velocity

Nozzle diameter

Ours Nozzle height Filament width Regression and classification-based models

Material flow velocity Filament height Graphs

Nozzle velocity Filament contact width

Nozzle diameter Filament quality
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impacting filament geometry. The literature review revealed four
process parameters and three material parameters affecting
filament geometry. However, since the chosen material
satisfies the two buildability criteria outlined in Section 3.1, its
parameters do not impact the shape of the extruded filament and
were therefore excluded from the experiment. Material
buildability was ensured by using an accelerant and allowing a
substantial time gap between the printing of successive layers.
Consequently, the experiment focused solely on process
parameters. The process parameters influencing filament
geometry were nozzle height (HN), nozzle velocity (VN),
nozzle diameter (D), and material flow velocity (VM). As
concluded from the literature, these could be combined into
two dimensionless parameters: the velocity ratio (V* = VN/VM)
and the nozzle height ratio (HN* = HN/D).

The next step involved collecting as many filament samples as
possible, each with different V* and HN* values. To simplify the
process, all samples were printed in a single, continuous zigzag
pattern within the reach of the robotic arm. The
RobotComponent Grasshopper plugin was used to determine
that the robot’s maximum uninterrupted printing path was 30 m
(Deetman et al., 2023). This path consisted of six layers, with the
top three and bottom three layers having similar printing
parameters. In total, the toolpath provided 144 unique data
points with varying V* and HN* values, as shown in Figure 4.
These values were labeled as (L) or (U) to denote lower or upper
layers. Each line in the toolpath was divided into six 30 cm
segments, each with a unique HN* value. The distance
between lines was adjusted according to the anticipated
maximum width of the filament.

Ranges of the parameters were determined based on material
and printing limitations, and by comparing previous
experiments from different studies. Value of the parameters
employed in the experiment are presented in the
Supplementary Table S1.

3.3 Data collection

Before the start of the printing process, it was ensured that the
surface intended for printing was evenly leveled. This was achieved
by placing wooden wedges under the designated printing pallet.
Anyway, the impact of the unevenness of the printing bed only
affects the first layer which was excluded from the calculation as
discussed later in this section.

During printing, paint was applied to each layer to preserve
the visibility of filament boundaries when cutting samples. A
record was kept of any filaments that were not stable enough to
build up three layers. Immediately after printing, while the
material was still not fully hardened, a knife was used to make
preliminary cuts to obtain samples approximately equal to 30 cm.
This resulted in 72 samples (Figure 5), each corresponding to
specific V* and HN* values. Cutting the samples facilitated
moving them to the table saw machine for more precise and
smaller cutting. The print was left to harden for 3 days before
being moved to a table saw where each 30 cm sample was cut into
three pieces of 10 cm each. This procedure resulted in two data
points for each sample, all of which exhibited similar printing
properties.

A desktop paper scanner was used to scan the samples. The
high-quality images produced were suitable for digital
measurements. ImageJ, a Java-based image processing program,
was used to measure multiple geometrical features of each sample.

As mentioned earlier, each sample consisted of 6 layers. The
lower three layers had identical properties, as did the upper three
layers. Not all layers were considered in the measurement. Instead,
only typical layers were used, as illustrated in Figure 6. These typical
layers were selected as they do not exhibit unique shapes like the
bottom-most layer, which is affected by the flat printing surface, thus
ensuring a more accurate representation of the filament features.

The geometrical features depicted in Figure 7 that were
measured include the filament width (defined as the maximum

FIGURE 3
1. a computer used to load the RAPID code to the robot; 2. ABB Robot controller; 3. Robotic arm for moving the nozzle; 4. Silo to store the material;
5. Pump for mixing the dry mix with water and pumping the cement mortar; 6. Nozzle for material deposition; 7. Printed structure.
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width of the filament), the filament height (which is the vertical
distance between layers), and the contact width (the width at which
two layers come into contact). These features served as response
variables that we aimed to predict. Additionally, the cross-section
area of each filament was measured to adjust the actual velocity ratio
using the relationship (Velocity ratio = Area of the nozzle/Area of
the filament). This step helped in correcting the targeted velocity
ratio (V*) with another one that reflects reality.

In addition to the aforementioned features, the quality of the
filament was also assessed through visual inspection. The filament
quality is a measure of the consistency and stability of the filament.

The filament samples were qualitatively classified into three classes as
shown in Figure 8. Qualitative classification was preferred over
quantitative classification because it is easier to visually assess
classes. Moreover, the visually labeled categories were sufficient to
develop a classification model with high accuracy. Most other studies
only publish pictures of printed filaments, so the visual approach
makes it easier to compare our results with those in the literature.

Class 1 contains filaments that are inconsistent in shape, have a
rough surface finish, and exhibit an air gap between layers. These
characteristics could potentially compromise the structural integrity of
the entire print, leading to either elastic collapse due to instability or

FIGURE 4
Experimental printing path for the data collection process.

FIGURE 5
Top view of the experimental print showing 72 unique samples.
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plastic collapse due to high extrusion pressure on previously printed
layers. The presence of air gaps between layers in this class could also
affect the bound strength between layers. Moreover, rough surface
finish is not usually aesthetically desired. Class 2 filaments, considered
the ideal class, demonstrated consistency that allowed for easy stacking
of three layers without collapse. This consistency not only ensured a
smoother surface finish but also contributed significantly to the overall
strength and stability of the structure. Moreover, it guaranteed a high
degree of contact between successive layers and more control over the
filament shape. Class 3 filaments were characterized by a rounded shape
that made stacking without collapse very difficult. The rounded shape
could induce instability during the stacking process, potentially
undermining the structural integrity of the final product.

3.4 Prediction model training

The experimental data were initially processed and explored
using Microsoft Excel. This stage involved preliminary cleaning,

where outlier points were identified and reevaluated to
ensure accuracy.

After the cleaning phase, the results were further explored and
statistically analyzed using the Python programming language. A
correlation matrix was utilized to comprehend the relationships
between variables and to identify any multicollinearity. Descriptive
statistics for selected 3DCP features were also calculated to
understand the distribution of data, compare different sample
groups, and identify any potential outliers.

The next step was to train several data-driven models, each one
predicting a certain feature of the response. Scikit-learn python
library was used in this step. For each model, the data was split into
training and testing sets, using an 80/20 ratio. This step was

FIGURE 6
Illustration of a typical sample segmented into two sections, highlighting the selected filaments for measurement.

FIGURE 7
Geometrical features measured in the experiment.

FIGURE 8
Qualitative classification of 3d printed filament samples: cross-
section view and side view.
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important to avoid overfitting and to evaluate the generalization
performance of the models on unseen data.

Depending on the type of the feature, either classification or regression
models were used. For the classification models, some of the algorithms
used were logistic regression, decision tree, random forest, support vector
machine (SVM), linear discriminant analysis, and quadratic discriminant
analysis (QDA). For the regression models, some of the algorithms used
were polynomial regression, k-nearest neighbors (KNN), random forest
regression and support vector regression (SVR).

Before training the models, some preprocessing steps were
applied to the data, such as scaling which was used to normalize
the numerical features to have a similar range of values.

The models were trained using cross-validation (CV) with 5 folds,
whichmeans that the training set was divided into 5 subsets, and each
subset was used as a validation set once, while the rest were used as a
training set. The CV score was calculated as the average of the scores
obtained from each fold. The score metric used for the classification
models was accuracy, which is the proportion of correctly predicted
labels. The score metric used for the regression models was R-squared
(R2), which is the proportion of variance explained by the model. The
higher the score, the better themodel performance. The bestmodel for
each feature was selected based on its CV score and its ease-of-use
outside of the python environment.

The validation phase constituted a critical component of the
prediction process, enabling the assessment of our models’
performance on unseen data, and their generalizability and
robustness. The validation data was procured from a variety of
studies conducted under disparate laboratory setups and with
diverse materials, thereby providing a comprehensive and
realistic dataset for evaluation. The incorporation of various data
sources was crucial for two reasons: firstly, it facilitated the testing of
our models’ accuracy and reliability, and secondly, it ascertained
whether the selected models were compatible with varied materials.

During the collection phase of the validation dataset, we sought
printing experiments that utilized data corresponding to the
variables we had selected (V*, HN*, W*). However, in instances
where different variables were employed in the studies, we derived
the needed variables from those provided. For instance, if the actual
nozzle height (HN) was used, this value was divided by their nozzle
diameter (D) to obtain the nozzle height ratio (HN* = HN/D). In the
case of the classification model, given that the printed filaments were
qualitatively classified, our classification criteria were implemented
to categorize filaments from literature data. This categorization was
based on the photographs provided and filament behavior
descriptions provided by the authors.

After preparing the literature data, they were imported into the
Python code and the same trained models were tested using that data.
The models’ predictions were compared with the actual values or labels
of the validation data, and the performance of eachmodel was evaluated.

4 Results and discussion

In this study, classificationmodels were developed and evaluated
with the objective of predicting filament quality. Additionally,
models for predicting filament shape were also constructed and
tested. A separate discussion for each of these geometrical features is
provided in this section. Inter-layer bonding was also investigated,
and ways in which it could be enhanced by the proposed models
were delineated. An exploratory data analysis was conducted prior
to the utilization of the data for model training, the details of which
are presented early in this section.

4.1 Data exploration

It is an essential step to identify errors in the data set and make
corrections accordingly. Prior to printing, the material flow velocity
was calibrated to match the desired velocity. However, an analysis of
the printed samples revealed an average error of 8% between the
calibrated and measured flow rates. That error does not correlate with
time, indicating it is likely caused by inconsistencies in the pump speed
rather than hose clogging or material property changes over time. To
compensate for this error, the velocity ratio was recalculated using the
formula: Velocity ratio = Area of the nozzle/Area of the filament.

For selected features, the mean of the data corresponding to class
2 was calculated. The emphasis was placed on data from class 2 as it
exemplifies the desired class characterized by stable and consistent
filament geometry. In addition, the 95% confidence interval was also
calculated for this class (refer to Table 2).

4.2 Filament quality

The findings in Table 2 only provide rough estimations for the
filament class. To find a more precise classification, a data-driven
classifier is proposed. Several potential classifiers were trained, and
their cross-validated prediction accuracy calculated. SVM
performed the best with 0.95 accuracy. The QDA model also had
good prediction accuracy (0.92) and was recommended due to its

TABLE 2 Statistical findings within ‘Class 29filaments.

Mean for class 2 data 95% confidence interval for class 2 data

Velocity ratio (V*) 0.95 0.85–1.05

Nozzle height ratio (HN*) 0.63 0.57–0.69

V* × HN* 0.52 0.47–0.57

Filament width ratio (W*) 1.83 1.67–1.99

Aspect ratio 0.40 0.36–0.45

Notch depth 0.36 0.34–0.39
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versatility in handling data from a variety of sources. A visual
representation of the classifier’s performance is showcased in
Figure 9, where V* and HN* are plotted on the axes, revealing
three distinct regions corresponding to the three classes generated by
the QDA model. Within the same plot, data points collected during
the experimental study are plotted and color-coded according to
their respective classes.

To validate the efficacy of the newly developed filament quality
classifier, a validation dataset consisting of 29 data points was
utilized, and the model demonstrated perfect accuracy by
correctly predicting all data points. Further validation was
performed by collecting data from various previous studies.
Researchers in these studies used different materials and printing
setups. The accuracy of the developed model on data from previous
studies is plotted in Figure 10. The model exhibited robust
performance on most data from different sources (Comminal
et al., 2020; Breseghello and Naboni, 2022b; Carneau et al., 2022;
Yuan et al., 2022; Zhang and Sanjayan, 2023). The data from some of
the papers were not presented in a tabulated format. Instead, they
were presented in pictures and plots and were visually extracted to
be used for validation of the proposed model. Human error in
extracting these data can explain the low prediction accuracy in data
from some of the papers. Since these studies utilized different
materials, we can conclude that material properties are not a
major parameter in determining filament class. This is likely
because printable filaments tend to possess similar properties.

4.3 Filament shape

This section outlines the process of selecting and validating
prediction models for three geometrical features: filament width,
filament contact width and filament height ratio.

4.3.1 Filament width
Preliminary predictive modeling of filament width employed

both parametric (polynomial regression) and nonparametric
(K-nearest neighbors, random forest, support vector regression)
techniques. Polynomial models up to order 4 were trained and
evaluated via cross-validation, achieving scores from 0.56 (order 1)
to 0.98 (order 4). Though higher order polynomials demonstrated
improved accuracy, they risk overfitting given the underlying
complexity. The third degree polynomial has a balance between
predictive power (0.96 cross-validation score) and generalizability.
Additionally assessed were K-nearest neighbors (K = 4, 0.81 score),
random forests (0.79), and support vector regression (0.98).

Following this, two models were selected for further analysis: the
Support Vector Regression model, chosen for its high accuracy, and
Polynomial Regression (order = 3), selected for its adaptability
across various platforms, such as Excel and Grasshopper without
the need for sophisticated software.

In addition to the selected models, an analytical equation was
introduced for the purpose of comparison. The equation computes
filament width based on an assumed oblong shape, as shown in
Figure 11 and by mass conservation principles as discussed in
section 2.3.2.

The width ratio is expressed in Eq. 3 utilizing the notations used
in our paper.

W* � π

4V*H*
+ 1 − π

4
( )H* (3)

To further enhance the accuracy of the analytical equation, a
fourth prediction model was implemented using an analytical
regression method. This model employs the same equation as the
analytical model but adjusts the constants based on a training
dataset. Within the equation (Eq. 4), the modified parameters are
β0 = 0.0139, β1 = 0.7188, and β2 = 0.2784.

FIGURE 9
Classification of measured data points and prediction regions for filament classes.
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W* � β0+β1
1

V*H*
+ β2H* (4)

The four models showed excellent performance when trained
and tested on the dataset generated in this study (Table 3).
Interestingly, these models also performed well with data
generated by different researchers using different materials and
setups, suggesting that material properties are not a significant
factor in predicting filament width. This is likely due to the
similar rheological properties of most printable concrete
materials. However, it should be noted that the accuracy of all
models was lower with data from the literature compared to our
data, which could be due to differences in measurement methods
and measurement errors.

Upon conducting the validation process, certain conclusions
were drawn. All models struggled to reliably predict the width of
unstable or over-extruded filaments (Filaments outside of class 2).
Despite this limitation, the models can likely predict widths
accurately enough for most applications since inconsistent
filaments tend to fail anyway. Regression models perform
accurately only within the constraints of the training data,
specifically when V* <2.0 and HN < 1.6. Outside of these velocity

ratio and nozzle height ratio ranges, the models’ predictions decline
in accuracy.

Using data from literature, Figure 12 depicts the binned average
error between predicted and actual filament widths for each model
across various (V* × HN*) ranges. The overall error is similar across
all models; however, it exhibits variability with changes in (V* ×
HN*) values. This variability was quantified by assessing the
standard deviation of each model’s error. Figure 12 highlights
that the analytical equation model has the highest standard
deviation. That model assumes perfect semi-circular filament
ends, a condition typically valid for filaments with a high aspect
ratio. Notably, in the same figure, the analytical equation
demonstrates its poorest performance at low V×Hn values,
corresponding to low aspect ratios. Despite the generally
comparable performance of all models, a preference is suggested
for regression-based models over the analytical equation due to their
increased reliability in predicting extreme width values.

To demonstrate the behavior of filament width under varying
conditions of V* and HN*, seven curves were plotted against V* and
HN*, with each curve representing different width ratios (Figure 13).
These curves were generated utilizing an analytical regression
model. The findings align with the earlier observations in section
4.1, indicating that filament width ratios between 1.7 and
2 predominantly exhibit a consistent behavior falling within the
class 2 category.

4.3.2 Filament contact width
The filament contact width (WC) is described as the width at which

two successive filaments come into contact. For structural simulations at
the layers level, using the contact width rather than the total filament
width can yield more precise outcomes. Moreover, the contact width is
used in the calculation of one helpful indicator which is the notch depth.
Defined by the equation (NotchDepth � W* −W*

C ), the notch depth
reflects the intrinsic depth of the notch which is formed due to the
extrusion method utilized, specifically the free flow regime. As
highlighted by (He et al., 2020), deeper notch depths are correlated

FIGURE 10
Validation of filament quality classifier (QDA) across diverse data sources.

FIGURE 11
Filament shape used for developing analytical equation.
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with reduced interlayer strength. Furthermore, the appearance of the
printed structure is affected by the notch depth; a deeper notch can pose
challenges when attempting to achieve a smooth, plastered wall look.
The major factor influencing the notch depth is the nozzle height.

Several models were trained to predict the contact width, similar
to those discussed in previous sections. Here’s a summary of their
performance:

• The Polynomial regression model (order = 3) had an R2 score of
0.97 with both the training data and the testing data set.

• The Support vector machine model had an R2 score of
0.98 with both the training data and the testing data set.

• The Analytical equation model had an R2 score of 0.82 with
the training data and 0.80 with the testing data set.

• The Analytical regression model had an R2 score of 0.97 with
the training data and 0.96 with the testing data set.

Among all the models trained for predicting contact width,
outstanding performance was exhibited by most, with the exception
of the analytical equation. To the author’s knowledge, measurement
or prediction of contact width has not been addressed in prior
studies. Therefore, the models were validated using testing data set
rather than data from existing literature. The analytical equation for
the contact width ratio can be expressed, based on Figure 11, as: (
W*

C � W* −H*
F ) Here, W* signifies the filament width ratio,

obtainable from Eq 3, and H*
N represents the nozzle height ratio.

From the base analytical equation, an enhanced analytical
regression model was developed. This model employs the same

TABLE 3 Coefficient of determination (R2) for various models with different data sources.

Models Data from experiment (70 data points) Data from previous papers (66 data points)

Polynomial regression, order = 3 0.98 0.85

Support vector regression 0.99 0.88

Analytical equation 0.96 0.76

Analytical regression 0.98 0.84

FIGURE 12
Comparative analysis of prediction models: binned average error and standard deviation across (V*×Hn*) Ranges.
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foundational equation but with refined parameters. The enhanced
analytical regression equation is represented as:

W*
C � 0.7059

1
V*H*

N

− 0.0783H*
N − 0.0935 (5)

This refined equation is recommended, due to its simplicity and
its high prediction accuracy.

4.3.3 Filament height ratio
The nozzle height HN which is an input variable, can be higher than

the actual filament height (HF) because there is no upper limit on HN,
while HF has physical constraints. HN can also be lower thanHF if there is
an over-extrusion (low V*). In both these scenarios, the filament is either

unstable or over-extruded. If the filament is stable and consistent (class 2),
HN andHF are nearly equal. This can be provenby a scatter plot of the two
heights colored by the classes (refer to Figure 14). Points belonging to class
2 are all approximately equalwith a coefficient of determinacy (R2) of 0.98.
In contrast, HF is greater than HN in points from class 1 (over-extruded
filaments), and the opposite is valid for class 2 (unstable filaments).

4.4 Interlayer bonding

For a given nozzle diameter, there exists a maximum achievable
filament width. In instances where a wider filament is desired, it is
possible to print two adjacent filaments. However, this approach

FIGURE 13
Filament width ratio patterns across V* and HN* conditions: generated by analytical regression model.

FIGURE 14
Scatter plot of Filament Height (HF) vs. Nozzle Height (HN) differentiated by class.
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results in the development of inter-filament voids due to the
inherent oval shape of the filaments.

In response to this challenge, the author has proposed a novel
slicing strategy. This strategy aims to reduce the inter-filament voids
and simultaneously enhance the inter-layer bonding strength. The
implementation of this strategy involves shifting one column of
filaments by half of the nozzle height in the vertical direction and by
a distance approximately equals the notch depth in the horizontal
direction. This is clearly depicted in Figure 15.

The result of this strategic shift ensures that each filament is in
contact with four neighboring filaments in the adjacent layer. This
contrasts with the conventional slicing strategy where each filament only
touches three neighboring filaments, and with a smaller contact area.

From Figure 15, it is clear that the filament shifting causes a gap
in the first layer. To successfully implement this slicing strategy, it is
necessary to print one of the filaments in the first layer with a nozzle
height equal to 3/2 times the typical nozzle height or add a filament
with a nozzle height equal to half the typical nozzle height. This
adjustment has an impact on the filament width, which can be
compensated by modifying the velocity ratio according to the
regression models presented in Section 4.3.1.

The expectation is that this proposed slicing strategy will
enhance the mechanical properties of printed parts by increasing
inter-layer bonding. However, further experimental studies are
required to validate this hypothesis.

5 Conclusion

5.1 Summary of Contributions

This paper presented a comprehensive data-driven workflow to
enhance the reliability of 3D concrete printing processes through
modeling and simulation of extruded filament geometry. The key
contributions include:

• Generation of an experimental dataset relating
144 combinations of major printing parameters to
resulting filament width, contact width, height ratio, and

overall quality. The new data covers a wide range of typical
values for nozzle height, printing velocity, flow rate and
nozzle diameter.

• Development and validation of four predictive models to
simulate filament geometry outcomes based on printing
inputs. A polynomial regression model performed best for
predicting filament width, achieving R2 scores of 0.98 on
experimental data and 0.86 on literature data. Analytical
regression was optimal for modeling contact width, with R2

scores of 0.97 and 0.96 on training and testing data
respectively. Filament height was found to equal nozzle
height in the “consistent filament class”. A quadratic
discriminant analysis classifier categorized filament
quality with 92% cross-validated accuracy. The
developed regression and analytical equations are
summarized in Supplementary Table S2.

• Demonstration of how this data-driven modeling approach
provides more comprehensive and generalized simulation
capabilities compared to previous studies that focused on
specific parameters or geometries.

• Proposal of multiple applications where data-driven filament
geometry simulation can optimize efficiency, enhance quality
control, and enable innovative designs. The models can be
integrated into a real-time control system to adjust parameters
based on detected defects. For design, the models facilitate
creating non-planar layers and filaments with variable width.

Overall, this work advances knowledge on relating printing
parameters to extruded filament geometry through extensive data
collection and data-driven modeling.

5.2 Limitations

The developed models are optimized for the layer pressing
approach with circular nozzle geometries. The models do not
directly apply to the infinite brick printing approach, where
filament geometry is typically defined solely by the nozzle shape
rather than layer pressing.

FIGURE 15
Steps for the proposed slicing method to increase interlayer bound.
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Additionally, the models were validated on concrete materials that
satisfy buildability criteria, meaning the printed filament does not
significantly deformunder its ownweight or the weight of upper layers.
However, this is not a major limitation because having a buildable
material is a pre-requirement for nearly all 3DCP applications.

5.3 Future work

Looking ahead, the proposed models have immense potential to
make 3D concrete printing a more reliable and versatile construction
method. Future work can focus on implementing the developed
models in software such as Rhino/Grasshopper, a platform
commonly used for custom toolpath generation and design of
geometries.

In addition, future studies can leverage the findings and tools
developed in this paper in an optimization workflow along with
already available analytical models. This could potentially lead to
better performance at both the printed filament and structure level.

To ensure filament width and quality stays consistent, the
developed models can be integrated with real-time sensors to
control the four process parameters in real-time during printing.

The developed tools also hold promise for printing
structural elements with improved structural performance by
leveraging the ability to print non-planar layers. These
structural elements could also have variable filament widths
depending on the structural need, further enhancing their
structural performance.
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