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Dampers should be installed at appropriate quantities and locations to control
building vibrations against excitations such as earthquakes andwind loads. One of
the objectives of the structural optimization problem for damper placement is to
minimize the initial cost of damper installation to satisfy various structural
constraints under a set of input levels and target performance values.
However, it is arbitrary what input levels should be used in the design, and it
is also necessary to account for various uncertainties in the inputs and structural
properties. This study presents a new method for assessing the robustness of
building structures with design variables while simultaneously considering various
phases of structural performance criteria and input amplitudes. The proposed
robustness index is a multidimensional function that can take into account the
influence of different input levels on the structural performance. In this paper, the
proposed new robustness index is applied to the robust optimal design of the
damper placement, where the damping coefficient of the linear oil damper added
to the building is uncertain. The worst resonant seismic motion for the building is
investigated based on the critical double impulse method and its equivalent one-
cycle sine wave, which is used as the input seismic motion. By applying the
equivalent one-cycle sine wave to the structural response analysis with variations
in the input velocity amplitude, the proposed robustness index is effective in
comprehensively assessing the relationships between the input velocity
amplitude of the seismic motion and the upper response limit of the structure
under the variation of the damping coefficient of the oil damper. The
comprehensive and efficient evaluation of these relationships enables a more
detailed assessment of the influence of uncertainties in design variables on
structural performance. In the numerical examples, the optimal damper
placement for a 12-story building model is discussed based on the robustness
and structural performance of both acceleration and story ductility distribution.
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1 Introduction

In the structural design of buildings, it is common practice to
evaluate structural safety with respect to design criteria by calculating
the maximum response of major structural components such as
columns and beams and vibration control components such as oil
dampers. These maximum responses are obtained by conducting time
history response analysis to design seismic motion with the prescribed
material properties and performance. In addition, from the viewpoint of
rational design, many examples of structural optimization exist, with
seismic response as one of the constraints (Fragiadakis and
Papadrakakis, 2008; Kaveh et al., 2010; Gholizadeh, 2015;
Papavasileiou and Charmpis, 2016). However, the components of a
building may exhibit variations (i.e., uncertainties) in a given
performance due to various factors such as construction errors,
manufacturing variations, and aging. Since there is a concern that
such variations in structural properties may cause the building response
beyond the design criteria, it is necessary to understand and adequately
account for the influence of the variations on structural performance
during structural design.

To investigate the effect of uncertainties in structural properties
on the seismic response of buildings, many studies have been
conducted on uncertainty analysis methods, including those by
Ben-Haim and Elishakoff (1990), Takewaki and Ben-Haim
(2005), Henriques et al. (2008), Elishakoff and Ohsaki (2010),
and Fujita and Takewaki (2011). One of the purposes of the
uncertainty analysis is to find upper and lower bounds of
response to parameters with uncertainties, and several efficient
methods have been proposed. For example, the interval analysis
method is one of the conventional uncertainty analysis methods, in
which the uncertain parameters are defined as interval variables with
lower and upper bounds. Various interval analysis methods have
been proposed (Moens and Vandepitte, 2004; Chen et al., 2009;
Moens and Hanss, 2011; Faes and Moens, 2020; Wang et al., 2022).
In interval analysis, there is no need to use the probability quantities
required for variation based on probability theory since it yields
definite upper and lower bounds on the range of the variation of the
parameters. Although the interval analysis approach is a classical
method, it is easy to handle from a practical standpoint, and it will
continue to be used as one of the effective methods to account for
uncertainties such as design variables.

Robustness is defined as the resistance or stability of a building
performance against various types of uncertainties. In the field of
engineering, the keyword “robust design” has been focused on in
order to actively consider the variations caused by various
uncertainties during design. For example, it has been desired to
establish a robust building structure system based on the
assumption of variations due to various factors (Doltsinis and Kang,
2004; Lagaros and Papadrakakis, 2007; Gokkaya et al., 2016).
Furthermore, optimal design with the consideration of robustness is
called robust optimal design. A robust structural optimization design
means that there is less degradation of the structural response even in
the worst-case variation. As one of the indexes to quantitatively evaluate
robustness for optimal design, the robustness function was proposed by
Ben-Haim (2006), where variation of uncertainty is assumed.

In recent years, seismic characteristics such as large-amplitude
and long-period seismic motions have been clarified, and research
on design methods for structures with additive dampers has been

intensified (Zhang and Soong, 1992; Castaldo and De luliis 2014;
Garivani et al., 2020; Nabid et al., 2020; Xiao et al., 2021). Structural
design theory with additive dampers aims to improve damping
performance with constraints on cost, worst-case response, and
other factors. It is well-known that damper characteristics such as oil
dampers may differ between actual and predetermined values due to
various uncertainties such as temperature dependence, aging, and
manufacturing errors. Fujita and Yasuda (2016) and Fujita et al.
(2021) developed robust optimal damper placement problems
considering variations in the damping performance of linear and
nonlinear oil dampers, but they do not consider building plasticity.

On the other hand, it is important to consider not only the
variation in structural properties but also the variation in inputs.
Akehashi and Takewaki (2019) developed the optimal placement
problem of oil dampers for a critical double impulse (DI) input for
an elastoplastic multi-mass model. Critical DI is an input consisting
of two impulses that simulate near-fault earthquake motion, and the
upper limit of the displacement response can be obtained by acting
on the second impulse at the most critical timing for the building.
The upper limit of the acceleration response, as well as the
displacement response, can be evaluated by back-substituting the
critical DI to an equivalent one-cycle sine wave. When considering
input variability, the critical DI is also useful in robust optimal
design problems because it provides an upper limit of response for a
given velocity amplitude V (Fujita et al., 2021).

This paper proposes a new method to evaluate the robustness of
elastoplastic buildings concerning uncertain damping coefficients of
dampers, considering various variations across a wide range of input
levels and performance criteria. The uncertain design variables are the
damping coefficients of the oil damper added to the building.
Compared to the previous study conducted by Fujita et al. (2021),
this paper focuses on the influence of the input level variation on
structural performance including elastoplastic behavior. In the
proposed robustness index, the robustness function is extended to
consider simultaneous variations in input levels and multiple design
criteria. This new robustness index can be derived as a three-
dimensional surface. This three-dimensional robustness index can
comprehensively evaluate the relationship between the input level of
the worst-case resonant seismic motion for buildings and the upper
bound of structural responses, such as ductility ratio and floor
acceleration. The input excitation is determined as an equivalent
one-cycle sine wave according to the critical double impulse theory
under the variation in the damping coefficient of the oil damper. By
comprehensively and efficiently evaluating that, the risk of performance
variability can be considered in more detail in the design. Furthermore,
based on the proposed robustness index, a robust optimal design
problem is presented to obtain the optimal damper placement while
considering uncertainties and robustness evaluation under a wide range
of input variations and corresponding performance criteria.

2 Critical double impulse and
equivalent one-cycle sine wave

2.1 Critical double impulse

The fling-step seismic motion is known to be observed near
surface fault raptures (Hisada and Tanaka, 2021). It is noted that the
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fling-step seismic motion is a pulsating seismic motion, and the
waveform with the largest amplitude is similar to the sinusoidal
shape. This kind of pulse-like seismic motions can also be extracted
in the Pacific Earthquake Engineering Research Center (PEER)
database, one of the world’s most famous seismic databases.
Furthermore, long-period pulses, where the predominant period
is approximately 3 s, were observed in the Kumamoto earthquake in
2016, and it is important to examine the safety of buildings against
such pulsating seismic motions. In order to discuss the response
characteristic of the building subjected to such pulse-like ground
motion, Kojima and Takewaki (2015, 2016) proposed a method to
approximate the one-cycle sine wave by composing a DI input,
which is expressed as

€ug t( ) � Vδ t( ) − Vδ t − t0( ), (1)

where δ(t) is the Dirac delta function, V is the input velocity
amplitude, and t0 is the impulse time interval. DI is unique, and
the characteristics of the input seismic motion can be represented
only by V and t0. Assuming the amplitude and period of the one-
cycle sine wave to be Ap and ωp, respectively, the equivalent DI
velocity amplitude Ve and time interval t0e, where the maximum
elastoplastic displacement response to the one-cycle sine wave
coincides, can be expressed as

Ve � π2

ωp
fmaxAp ≃ 1.637

Ap

ωp
, t0e � π

ωp
. (2)

In Eq. 2, fmax was determined so that the maximum values of
the acceleration Fourier amplitude spectra of the one-cycle sine wave
and DI are the same, i.e., the solution of fmax is the maximum
amplitude value of sin(ωt0)/(π2 − (ωt0)2). From Eq. 2, given V and
t0 of DI, it is possible to find the equivalent one-cycle sine wave
acceleration amplitude and period. The relationship between ground
acceleration, ground velocity, and ground displacement in double
impulse and one-cycle sine wave is shown in Figure 1.

Basically, since velocity amplitudeV is positively correlated with
the increasing response, the response characteristics of a building to
a double impulse input are focused on the difference in its time
interval. When impulse time interval t0 is varied under constant V,

the maximum inter-story displacement of the building increases or
decreases depending on the relationship between the dynamic
properties of building and t0. This is because the kinetic energy
immediately after the input of the second impulse depends on the
velocity response at that moment. The critical input timing tc0 is
defined as the input interval to maximize the structural response.
Akehashi and Takewaki (2019) showed that for multi-story
buildings, tc0 is the timing at which the story shear force in the
first story becomes zero after the first impulse action. In this paper,
we refer to such an input as a critical DI, which can always be
regarded as a resonant input. Since it deals with upper bounds on the
response to input variation, it allows for a simplified consideration of
uncertainty with respect to the input. The input velocity amplitude
of the critical DI is denoted as VDI in this paper. Since tc0 is
determined by the hysteresis characteristics of the building and
the input velocity amplitude VDI, the independent variable for the
critical DI is only VDI. In this paper, the lower bound of VDI is
approximately 0.7 [m/s], and the upper bound of VDI is 1.5 [m/s].
This is determined so that the objective building plasticizes at
approximately VDI � 0.7 [m/s]. This means that VDI � 0.7 [m/s]
can be regarded as the elastic limit. On the other hand, VDI �
1.5 [m/s] is about twice the elastic limit that is corresponding to the
life-safety limit level.

2.2 Equivalent one-cycle sine wave

For the response of a building to an impulsive input, from an
energetic formulation point of view, kinetic energy is provided to the
system at the moment the impulse acts. As one of the ways to take
into account such a kinetic energy change in the framework of time
history analysis, impulse amplitude VDI of the critical DI can be
added to the current velocity of the building at the impulse input
timing. However, it is concerning that the acceleration increment
also increases locally at the impulse input timing. Therefore, the
acceleration response may increase immediately after the impulse
input timing, and the maximum acceleration response cannot be
properly evaluated. It is well-known that floor acceleration is related
to internal damages including building equipment in a building. In

FIGURE 1
Relationship of the time–history of acceleration, velocity, and displacement between double impulse and the one-cycle sine wave.
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order to consider floor accelerations as design criteria for such non-
structural damages, the acceleration response must be properly
evaluated. In this section, the inverse replacement of the critical
DI with a one-cycle sine wave is considered. As shown in Eq. 2, V
and t0 can be obtained using Ap and ωp when replacing the one-
cycle sine wave with an equivalent DI. Based on these relations, by
finding the critical input timing tc0 of the second impulse at a certain
input velocity amplitude V, equivalent one-cycle sine waves Ap and
ωp corresponding to the critical DI are obtained from the inverse
of Eq. 2.

By using the one-cycle sine wave equivalent to the critical DI as the
input, the input can also be regarded as resonant to the building. This
means that the upper limit of the response to input uncertainty can be
handled without searching for variations in the input characteristics.
Furthermore, one-cycle sine waves are also appropriate for evaluating
the maximum acceleration response of the building, because the input
waves are continuously and smoothly varied that represent a portion of
the actual pulse-like seismic wave. In this paper, the worst input timing
tc0 is first obtained based on the theory of the critical DI by applying time
history analysis to the objective building model subjected to a single
impulse to search the time when the story shear force is zero, as
explained before, and then the equivalent one-cycle sine wave is used as
the actual input seismic motion for the structural design. The
acceleration amplitude of the equivalent one-cycle sine wave is then
dependent on the velocity amplitude VDI of the critical DI.

3 Evaluation of robustness against
variations in uncertain parameters

3.1 Definition of the robustness function
under varied input levels

Robustness is defined as a measure of the degree of variability of
the responses or performance of the structure to various
uncertainties derived by input and structural properties. In order
to consider robustness during structural design and structural
optimization, a quantitative measure of robustness is needed. As
one of such quantitative robustness indices of a building against
variations in uncertain parameters, Ben-Haim (2006) proposed a
robustness function based on the info-gap model. Uncertainty
parameters to account for variation can be categorized into
probability-based and non-probability-based methods. The info-
gap model belongs to the non-probabilistic uncertain model. An
interval variable, one of the non-probabilistic uncertainty
parameters, is defined as the upper- and lower-limit range of
uncertain parameters, defined by the following equation:

XI ~X, α( ) � XI
i ∈ R

∣∣∣∣XI
i � ~Xi − αΔXi, ~Xi + αΔXi[ ], i � 1, 2, ..., N{ },

(3)
where ( )I denotes that it is an interval variable or an interval vector.
ΔXi is the standard variation range of uncertain parameters, and α

denotes the degree of variation of the interval variableXI
i . By including

α in the interval variable, its upper and lower limits can be made
variable. In particular, in the case of α � 0, Eq. 3 represents a set whose
elements are nominal values (design values without considering
variation) only.

The concept of the robustness function is shown in Figure 2. The
left part of the figure represents the relationship between design
variables and structural performance function. As the uncertain
design domain represented by variable interval parameters is
expanded by uncertainty degree α, the region of variation in the
building response varies corresponding to f(XI), as shown in the
performance function. On the other hand, the allowable response space
should depend on the performance criteria, such as themaximum inter-
story drift or top floor acceleration, which are usually used as the design
criteria. When the maximum value on the response space due to the
variation in design variables coincides with the boundary of the
allowable response space, any larger variation will cause a deviation
from the allowable response space, and the variation range at this point
is themaximumvariation range α̂, which is allowed for design purposes.
As the maximum allowed range of the variation in design variables
depends on the value of the performance criteria fc required in the
design, the robustness function is a representation of these α̂ − fc

relationships.
The authors previously proposed optimal design problems using

this robustness function, but they conventionally assumed a single
variable, such as input levels or performance criteria, and handled
the other as a constant (Fujita et al., 2021; Hosoda and Fujita, 2023).
However, the amplitude of input external disturbances varies based
on the frequency of their occurrence, and it is common practice to
set appropriate design criteria for such various input levels, so it is
not appropriate to address only specific input levels. Therefore, in
this paper, we also focus on changes in the magnitude of the input,
i.e., the input velocity amplitude VDI. For a constant performance
criterion, the robustness function is generally expected to be larger
when VDI is smaller. As a function of the nominal value ~X �
~X1, ~X2, ..., ~XN{ } of the design variable assuming variation, the

performance criterion fc, and the input velocity amplitude VDI,
the expanded robustness function is expressed as

α̂ ~X, fc, VDI( ) � max α
∣∣∣∣∣∣maxf XI ~X, α( ), VDI( )≤fc{ }, (4)

where f is the evaluation function for the structural design, such as
the maximum inter-story displacement of the building used in the
design performance criteria. If f is equal to the required
performance fc at the nominal value, then α̂ � 0.

3.2 Detailed definition of variables on the
robustness function

The robustness function defined in Eq. 4 is a function whose
variables are the nominal value ~X of the design variable assuming the
variation, the performance criterion fc, and the input velocity
amplitude VDI. This section describes the definitions of these
variables in this paper.

3.2.1 Nominal value ~X of design variables
assuming variation

In this paper, the design variable regarded as the uncertain
parameter is the damping coefficient of oil dampers for each story
added to the seismic vibration-controlled building, where
ΔXi � 0.1 × ~Xi. This means that if the robustness function value
α̂(~X, fc, VDI) � 1, the maximum ± 10% variation of the design
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variable will just satisfy the specified performance criteria fc

and VDI.

3.2.2 Performance function f
The performance function f in Eq. 4 can be set arbitrarily by the

structural designer. In the earthquake-resistant structural design, it
is important to reduce inter-story displacement, and furthermore,
floor acceleration is also an important design index when
considering interior damage during an earthquake and
habitability for frequently occurring vibrations. In this paper,
considering enhancing both structural and non-structural safety
of buildings, the multi-performance function is defined as

f X, VDI( ) � max μi X, VDI( )/�μ, amax ,i X, VDI( )/�amax

∣∣∣∣i � 1, 2, ..., N{ },
(5)

where μi is the story ductility ratio, which is the ratio of the
maximum response displacement to yield displacement in the ith
story and amax ,i is the maximum absolute acceleration during the
time history in the ith story. Since these two structural responses
have different dimensions, they are standardized by the design
criterion values, which are described below.

3.2.3 Performance criteria fc
Since the performance function in this paper is defined as the

standardized multi-objective, as shown in Eq. 5, the performance
criteria are given specified coefficients depending on �μ and �amax. For
example, in the case that the performance criterion fc is 1.0, it
means that the structural design should not violate the design
criteria of ductility on inter-story drift and maximum floor
acceleration. In the robustness function discussed in this paper,
this performance criterion is handled as a variable to consider the
seismic performance redundancy under varied input levels.

3.2.4 Input velocity amplitude VDI

The one-cycle sine wave equivalent to the critical DI is used as
the actual input seismic motion to the building in this paper. Since

the input amplitude of the sine wave is dependent on the critical DI,
the input seismic motion can be regarded as the function of the input
velocity amplitude VDI. By considering the variation in VDI, the
optimal design problem is handled for various input degrees. It is
also possible to implicitly take into account the upper-limit variation
of the response to the input variation due to its resonance effect on
the structure.

3.3 Application of uncertainty analysis for
the evaluation of the robustness function

In order to derive the robustness function defined in Eq. 4, an
optimization problem is included that searches for the upper bound
on the degree of uncertainty, where the uncertain parameters should
be the worst combination to satisfy the specified performance
criteria. Although it is difficult to determine the uncertainty
bound corresponding to this implied optimization problem, it
has been reported that the inverse problem of this optimization
problem, i.e., finding the maximum performance function under a
given uncertainty bound, can be useful for efficiently deriving the
robustness function. This problem can be solved using the
uncertainty analysis framework, where the upper and lower
bounds of performance functions are derived. A flowchart for
evaluating the robustness function in this paper is shown in
Figure 3. This flowchart is a minor revision of the previously
proposed uncertainty analysis method, called the NURP method.
A detailed explanation of this flowchart is described in this section.

First, we consider the case to derive the robustness function of
the relationship (α̂, fc) for a specific VDI. The NURP method
proposed by Fujita and Yasuda (2016) is one of the uncertainty
analysis methods used to derive the worst combination of uncertain
parameters under a given uncertainty degree, where the upper
bound of the performance function is obtained. The feature of
the NURP method is to approximate the variation in the
performance function with a polynomial such as the Taylor
series expansion, when only one uncertain parameter is

FIGURE 2
Robustness evaluation using uncertainty analysis.
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considered to be changed. This approximation is efficient in
reducing the computational time for the time-consuming time
history response analysis of the building. When the range of
variability α is specified, and the obtained upper response limit is

regarded as the performance criterion value, specified α corresponds
to the robustness function value α̂.

Since the target building should be treated as an elastoplastic
building model for various input levels including severe design

FIGURE 3
Flowchart of the uncertainty analysis method (modified NURP).
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loadings, it is concerning that there may be an unstable
approximation where the performance function changes
drastically due to uncertainties. This is mainly because, due to
variations, the number of plasticizing stories increase or the
maximum response stories for the worst response change. The
NURP method uses a cubic function determined by the value of
the evaluation point and its neighboring linear gradient when
complementing between evaluation points, but if such points
exist within the variation interval, a fairly large difference may
exist between the critical variation calculated by the NURP
method and the actual critical variation.

Therefore, in this paper, as a method to solve this issue without
significantly increasing the computational time, we added a
procedure to compare the actual response to the critical point
calculated by the conventional NURP method with the response
to the evaluation points at nominal, upper, and lower bounds of an
uncertain parameter (phase 4 in Figure 3). That is, the point with the
largest response among the four points is evaluated as the critical
point to be updated.

3.4 Robustness function to the simultaneous
variation in input levels and
performance criteria

Figure 4 shows a conceptual diagram of the α̂, fc, VDI

relationship for a model with a certain nominal value ~X for a
design variable assuming variation. In this paper, this
relationship is referred to as the α̂ − fc − VDI relationship. Many
of the previous studies, e.g., Fujita and Yasuda (2016), Fujita et al.
(2021), and Hosoda and Fujita (2023), treated either fc, VDI as a
fixed value and evaluated α̂ as a one-variable function (α̂ − fc

relationship and α̂ − VDI relationship in Figure 4). On the other
hand, in this paper, the robustness function α̂ of the model with the
specified nominal variable ~X is evaluated by considering both
variations of fc and VDI. This allows for a comprehensive
evaluation of robustness at a wide range of input and
performance levels, which has been difficult in previous studies.
This expansion of robustness evaluation is expected to be able to
evaluate the influence of the variable input amplitude, i.e., multiple

design phases such as the elastic limit or life-safety limit, to seismic
structural performance.

In order to evaluate the three-dimensional robustness
relationship in α̂ − fc − VDI, first, given the input velocity
amplitude VDI, a few (α̂, fc) coordinates were obtained using the
uncertainty analysis method, as shown in Section 3.3. Next, the same
procedures are performed for various VDI, and cubic surfaces are
approximately determined once a sufficient number of (α̂, fc)
coordinates are obtained within the assumed domain of each
variable. Note that in this paper, fc is defined as multi-objective
criteria by Eq. 5, and it is difficult to treat single-cubic surfaces for
both criteria. Therefore, α̂ with fc � max μi/�μ{ } and α̂ with fc �
max amax ,i/�amax{ } are separately evaluated as surfaces as described
above, and the surface that takes the larger value by comparing two
surfaces is selected and integrated to be used as a robustness function
with the α̂ − fc − VDI indicator.

4 Three-dimension robustness
function α̂ with performance criteria fc
and input velocity amplitude VDI

4.1 Building model and oil damper

This section shows an example of the evaluation of the α̂ − fc −
VDI relationship shown in Section 3, when a one-cycle sine wave
equivalent to the critical DI is applied to a shear elastoplastic
building model with oil dampers, as shown in Figure 5A. The
building model parameters are shown in Table 1. The shear
spring is assumed to have bilinear elastoplastic restoring force
characteristics, where the stiffness ratio is determined by
referring to typical steel structures, and the distribution of the
initial shear stiffness is a trapezoidal distribution, where the ratio
of the top story to the bottom story is 1:2, and its magnitude is set to
match the designed fundamental natural period shown in Table 1
and Figure 5B. The structural damping is assumed to be
proportional to the initial stiffness.

The oil damper is assumed to be a linear damper, and in this
section, the nominal damping coefficient of the damper at each story
is proportional to the story stiffness, so that the added first-order

FIGURE 4
Three-dimensional robustness function on input variation and performance criteria.
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damping factor due to the damper is 0.05. The variation in the
damping coefficient is considered the uncertainty of the damping
characteristics of the oil damper, as described above (Figure 5C). As
a criterion for the range of the variation, we consider a variation of
± 10% with respect to the nominal value at α̂ � 1. The range of
variation can be variable according to the robustness function α̂. A

time–history analysis for the elastoplastic MDOF model is
performed using an originally coded program in MATLAB based
on the Newmark β method. The accuracy of the time–history
response analysis was verified by comparing the results obtained
using commercial software.

4.2 An evaluation example of the α̂ − fc − VDI
relationship

Figure 6 shows a three-dimensional robustness function on the
α̂ − fc − VDI relationship obtained by the proposed method in
Section 3. Note that since the main focus of this study is to
evaluate robustness in the plastic range, the range of input levels
where the maximum response displacement of the building model

FIGURE 5
Structural properties of the 12 DOF model: (A) elevation, (B) story stiffness distribution, and (C) uncertainty of the damping coefficient.

TABLE1 Building model specifications.

Number of stories 12 Damping factor 0.01

Mass [t] 400 Yield story drift angle 1/150

Story height [m] 4.0 Yield inter-story drift [m] 0.0267

Fundamental period [s] 1.20 Secondary stiffness ratio 0.1

FIGURE 6
Robustness surface based on the multi-objective performance function.
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does not exceed the yield displacement is not included in
the analysis.

In Figure 6, thefc − VDI curve for a given α̂ is considered. In this
curve, fc generally increases (worsens) as VDI increases. A design in
which the degree of increase in fc is small even when VDI increases
can be a favorable fc − VDI curve. This is because it implies that the
structural performance is high even for the large amplitude of
inputs. In addition, for the α̂ − fc curve at a given VDI, fc

generally increases as α̂ increases, i.e., as the variation in the
design variable assuming variation increases. A design with a
small increase in fc can be said to be a design with high
robustness since the performance deterioration is small even if
the variation in the design variables increases. A mentioned
above, it is possible to evaluate that a model with a α̂ − fc − VDI

relationship surface, in which the degree of degradation of fc is
small in relation to the increase inVDI in thefc − VDI curve for each
α̂, and α̂ in the α̂ − fc curve for each VDI, has high robustness in a
wide range of input levels and performance levels.

Next, to discuss the influence of uncertainties on the obtained
α̂ − fc − VDI relationship diagram, the story direction distribution
of the worst variation rate of the damping coefficient, i.e., critical
variation of the damping coefficient, that provides the upper limit of
the maximum response is shown in Figure 7, and the maximum
negative and positive response values corresponding to maximum
responses after the first and second impulse action are shown in
Figure 8. Both figures show results for some α̂ when
VDI � 0.8, 1.2, 1.5[m/s], and horizontal bars in Figure 7 represent
the worst-case variation rate of the damping coefficient obtained by
the NRUP method.

In the case ofVDI � 0.8 [m/s], the robustness function surface is
determined not by the maximum inter-story displacement
(maximum story ductility ratio) but by the maximum
acceleration response. Around this input level, the maximum
response at the negative side is larger than the positive side, and

this appears in the top story. The oil dampers treated in this paper
are arranged so that the damping is smaller in the upper stories, so
the effect of the variation is less pronounced in the upper stories.
This is related to the very small slope of the robustness surface to α̂

near this input level. In addition, as shown in Figure 7A, the critical
variation distribution of the damping coefficient of the damper is
almost the same regardless of α̂ and is at the lower limit for
most stories.

On the other hand, in the case ofVDI � 1.2[m/s], the robustness
function surface is given by the maximum story ductility ratio as fc.
Since the floor response near the third story, which exhibits the
worst-case response, increases locally around this input level, the
increase in energy, i.e., the increase in VDI − α̂ required to increase
the worst-case response, is relatively small, and the degree of
increase in fc is large relative to the increase in VDI − α̂.
Figure 7B and Figure 8B show that the critical variation in the
damping coefficient of the damper is at the lower limit in the third
story, where the ductility ratio is maximum at the positive side and
mostly at the upper limit in the several levels above and below it,
regardless of α̂. However, in the other stories (eighth or above), the
critical variation is different according to α̂.

In the case ofVDI � 1.5 [m/s], the maximum story ductility ratio
is also active for the robustness surface. Figure 8C shows that the
maximum inter-story displacement at both negative and positive
sides is plasticized in almost stories. In particular, the plasticization
at the negative side results in larger energy being absorbed by the
hysteresis loop in those stories. Therefore, the increase in energy
required to increase the worst-case response near this input level is
again larger, and the degree of the increase in fc is smaller than that
in VDI − α̂. As for Figure 7C, it can be shown that the critical
variation in damping coefficients of the damper is, as in the case of
VDI � 1.2[m/s], at the lower limit in the third story, which has the
maximum response, and at the upper limit for the fourth and fifth
stories immediately above it, regardless of α̂. On the other hand, the

FIGURE 7
Worst combination of damping coefficients for each robustness function value: (A) VDI � 0.8 [m/s], (B) VDI � 1.2 [m/s], and (C) VDI � 1.5 [m/s]
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lower stories below the third story have different critical variations
depending on α̂.

As shown in Figure 7, in the case of the structural design
considering the variation in the damping coefficient of the
damper, even if a uniform lower limit is adopted, it does not
necessarily result in the worst-case response. This investigation
and similar results were also discussed by Fujita et al. (2021).

5 Robust optimal design considering
uncertainty in damping characteristics
of oil dampers

5.1 Optimal design index using robustness
functions with performance criteria and
input velocity amplitude as variables

In this section, the robust optimal design problem is proposed to
determine the oil damper placement that improves the structural
performance with robustness using the proposed robustness surface
based on the α̂ − fc − VDI relationship. With regard to robust
optimization, many problems have been addressed to optimize
robustness at a certain input level or performance criterion, e.g.,
Fujita and Yasuda (2016), Fujita et al. (2021), and Hosoda and Fujita
(2023). However, especially in multi-story high-rise buildings, due
to the effects of plasticity and other factors, the variation in the
seismic response dependent on various design variables are so
complex that it is not possible to properly evaluate the
robustness of buildings only at specific input levels or
performance criteria. Therefore, in this paper, by using the
robustness surface proposed in the previous section that can treat
the simultaneous variation in input levels and performance criteria,
it is possible to comprehensively evaluate the robustness of the
building model with respect to those variations. As for the

performance function for the robustness surface, Eq. 5 is also
used in this section to consider the multi-objective structural design.

As mentioned in the evaluation example in Section 4, in the
α̂ − fc − VDI relationship, fc generally increases with respect to
increases in α̂ and VDI. For a robust optimal design over a wide
range of input and performance levels, it is desirable that the degree
of increase in fc on the α̂ − fc − VDI relationship is small.
Therefore, in order to develop the robust optimal problem, we
consider evaluating the robustness of a certain building model by the
volume SV of the shaded area, as shown in Figure 9A, where its
volume can be calculated by integration by the α̂ − fc − VDI

relationship surface and the plane corresponding to the boundary
of each variable. This robustness index used for optimization as the
objective function not only allows it to be treated as a scalar value but
also improves robustness over a wide range of input and
performance levels.

5.2 Robust optimal design problem

The robust optimal design problem based on the robustness
index presented in Section 5.1 can be expressed as follows:

[Robust optimal design problem]

Find ~c
so as to minimize SV ~c( )

subject to ∑ ~ci ≤ csum ~c � ~c{ }( )
, (6)

where ~c is the nominal value of the damping coefficient of the oil
damper (design variable vector) for each story. In general, the higher
the damping coefficient of the oil damper, the higher the damping
performance, so the upper limit is csum as a total constraint to
compare robustness under a constant sum of them. The upper limit
of the sum of damping coefficients csum can be arbitrarily defined.
The objective function SV(~c) is the volume of the area bounded by

FIGURE 8
Positive and negative maximum performance functions for various input levels: (A) VDI � 0.8 [m/s], (B) VDI � 1.2 [m/s], and (C) VDI � 1.5 [m/s]
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the α̂ − fc − VDI relational surface shown in Section 5.1. This
volume SV(~c) is expressed by the following equation:

SV ~c( ) � ∫
�VDI

V
DI

∫fc α̂( )
fc α̂( )α̂

~c( )dfcdVDI, (7)

where �VDI, VDI
, α̂, α̂ represent the upper and lower bounds of the

input level and the interval of the robustness function, respectively,
which can be set arbitrarily. This problem is an optimal problem to
find the unknown parameters that minimize SV(~c). Here, the
fmincon function of the MATLAB Optimization Toolbox is
applied as the solver for the optimization problem. This solver is
a nonlinear programming solver that finds the minimum value of a
constrained nonlinear multivariable function, and then it can find
parameters that minimize a nonlinear function represented by a
vector of unknown parameters. The optimization algorithm for the
fmincon function based on the interior point method is used.

5.3 Optimal design problem without
considering uncertainties

The robust optimal design problem presented in Section 5.2
aims to suppress the performance deterioration considering
variations in the design variables by taking robustness into
account. On the other hand, robust optimization may result in a
smaller performance value when variation is not considered (at
α̂ � 0). Therefore, we treat the following optimal design problem
that cannot consider the variation of uncertainties of structural
parameters.

[Normal optimal design problem]

Find ~c
so as to minimize SA ~c( )

subject to ∑ ~ci ≤ csum ~c � ~c{ }( )
. (8)

In this paper, the design problem in Eq. 8 is referred to as a
“normal optimal design problem.” In order to optimize structural
performance for various input levels, an objective function is set up
with the intention of obtaining response values to the nominal

values for each input level. This objective function is based on ideas
similar to those treated in the robust optimization problem, as
shown in Eq. 6. The objective function SA(~c) is the area obtained
from the fc − VDI relationship in α̂ � 0, as shown in Figure 9B. This
area value can be calculated by integration with respect to the input
velocity amplitude as

SA ~c( ) � ∫
�VDI

V
DI

fcdVDI. (9)

In this problem, the optimal design is to improve the
performance at various input levels without considering the
variation in the damping coefficient of the oil damper.

5.4 Results and discussion of the robust
optimal design

In this section, the results of the robust optimal design problem
for finding the optimal damper placement added to the elastoplastic
12-story shear degree of freedoms model treated in Section 4 are
shown, and the difference from the normal optimal design is
discussed. In the figure legend and following discussions, the
mass system model treated in Section 4 is referred to as the
“standard model,” the model with dampers where Eq. 8 is
applied as the “normal optimization model,” and the model with
dampers where Eq. 6 is applied as the “robust optimization model.”
The total amount of damping coefficients of the damper csum in Eq. 6
and Eq. 8 is the amount corresponding to a damping constant of 5%,
as in the standard model. Since the optimization solver, i.e., fmincon,
requires an initial solution as the damper placement, the initial
solution for deriving the normal optimization model is the standard
model and for deriving the robust optimization model is the normal
optimization model. The dependence of the fmincon function on the
initial solution is discussed later.

As a result of the optimal design problem, the damping
coefficient distributions of the oil damper for each model are
shown in Figure 10. In addition, for each model, the values of SV
and SA defined in Eqs 7 and 9, respectively, are shown in Table 2.

FIGURE 9
Objective function used in optimization problems based on the three-dimensional robustness function: (A) robust optimization problem and (B)
normal optimization problem.
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Comparing the values of SA and SV, the standard model is the
largest (worst). In addition, the model with the smallest (optimal)
value of SA is the normal optimization model, and SV is the robust
optimization model. This indicates that when comparing the α̂ −
fc − VDI relationship between the normal optimization model and
the robust optimization model, the former is superior in the fc −
VDI relationship at α̂ � 0, but as α̂ increases, the superiority of these
different optimization problems changes. In other words, the robust
optimization model is superior to the normal optimization model
for the variation in the damping coefficients of the oil damper. These
are shown in Figure 11, where the fc − VDI relationship of each
model at each α̂ is evaluated.

From Figure 10, in the robust optimization model, it can be
observed that more dampers are placed in the lower and upper
stories, and fewer dampers are placed in the middle stories,
especially in seventh and eighth stories. This is because, under
a constant total damping coefficient of the damper, the response
increase can be suppressed even if the damping coefficient varies,
by placing more dampers in and around the stories, where the
response displacement or acceleration increases due to variations
in the damping coefficient. The normal optimization model has a
similar placement to the robust optimization model, but the
amount of dampers is approximately 22% and 49% larger for

the seventh and eighth stories, respectively. It may be pointed out
that there is not much difference between the damper placement
of the normal and robust optimization models, but it is important
to note that the normal optimal design, which is used as a
comparison in this paper, takes into account the variability in
input levels. It can be said that the normal optimization model
has a certain degree of high robustness. Although the damping
coefficient difference between both models is small, Table 2
shows that it is possible to improve the SV value using the
proposed robust optimization considering the variation in the
structural properties. In addition, obvious differences exist
between the distributions of the maximum response in both
models, i.e., the worst response occurs at different stories. It
indicates that even if there is not much difference in the both
nominal values, the influence of that variation on the response is
not small.

In order to compare the characteristics of each model, the
distributions of the maximum response at a given input level VDI �
0.8, 1.2, 1.5 [m/s] is compared at α̂ � 0, 1.0, 3.0, as shown
in Figure 12.

Figure 12A shows the case of VDI � 0.8 [m/s]. The maximum
response acceleration is used as fc around this input velocity
amplitude, and the worst response appears at the top story for
any model, input level, and magnitude of variation. It is well-known
that the absolute acceleration is often maximized at the top floor in
such a high-rise building. In addition, each of the optimization
models at α̂ � 3.0 showed improved performance compared to the
standard model. For the other α̂, no significant difference exists
between the models.

Figure 12B shows the case of VDI � 1.2 [m/s]. Around this
input velocity amplitude, the maximum ductility ratio is
predominant as fc, and the location of stories that have the
worst response is different for each. Here, as α̂ increases,
deformation is concentrated on a specific story, i.e., third
story, in the standard model and the normal optimization
model. In contrast, there is no such tendency in the robust
optimization model, and the middle and lower stories are
relatively equally degraded. This indicates that the robust
optimization design is highly robust to damper damping
variations around this input level and suppresses the
concentration of the inter-story drift at a particular floor.

Figure 12C shows the case of VDI � 1.5 [m/s]. Around this
input velocity amplitude, the maximum ductility ratio is also
selected as fc, and the distribution of the worst response is
generally similar to the case of VDI � 1.2 [m/s], but the
deformation in the first story in the robust optimization
model at α̂ � 3 is a little large. Since the objective of robust
optimization is to control the inter-story displacement so that it
is not excessive in a particular story, this result leaves room for
improvement.

As a common feature observed in both the cases of
VDI � 1.2, 1.5 [m/s], when α̂ is small, no significant difference
exists between the response of the normal and robust
optimization models, but as α̂ increases, the distribution of the
response becomes significantly different. This is thought to be due to
the fact that the response distributions are similar when little
variation in damper damping is considered, because no

FIGURE 10
Damping coefficient distribution.

TABLE 2 SA and SV of each model.

SA SV

Standard model 0.8812 2.7405

Normal optimization model 0.8302 2.5902

Robust optimization model 0.8395 2.5833
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significant difference exists in the nominal damper placement of
both models, but when the large variation is considered, a significant
difference exists in the critical variation of damping coefficients of
the damper.

The performance difference between each model is not so
significant when VDI is relatively small, but as VDI increases, the
performance difference between the standard model and both
optimization models becomes more pronounced. This may be
due to the fact that, as a set of performance criteria in this
example problem, the maximum ductility ratio adopted as fc

when VDI is large tends to be larger than the maximum response
acceleration adopted as fc when VDI is small after being
standardized, so that a damper placement that reduces the
maximum ductility ratio was selected as a better solution in the
optimization process.

Since it is known that the initial solution dependence in
gradient-based optimization like the interior point method in
fmincon, several optimization results based on different initial
solutions in fmincon are compared in the proposed
optimization problems. The optimization solver fmincon
function uses the sensitivity of the objective function to
successively update the solution until the objective function
converges within a specified error range. Therefore, if an
inappropriate initial solution is given, the obtained solution

may be a local solution or the number of computational
iterations required until the objective function converges may
be very large. Furthermore, in the example problem, the
computational load required to evaluate the objective function
SV(~c) in Eq. 7 of the robust optimal design problem is relatively
large. In contrast, the evaluation of SA(~c) in Eq. 9, the objective
function of the normal optimal design problem, is not so difficult.
For example, the number of time history response analyses
performed to calculate SA(~c) and SV(~c) for the standard model
under the conditions of this example problem is 23 and
5,941 times, respectively. In this example, the reason why the
normal optimization model, which is the solution to the normal
optimal design problem (Eq. 8), is used as the initial solution given
to the fmincon function when solving the robust optimal design
problem (Eq. 6) is to speed up the convergence of the objective
function based on the expectation that the normal optimization
model has a certain degree of robustness. In order to verify whether
the solution shown in Figure 10 is not a local solution and was
obtained in a smaller number of computational iterations than
other initial solutions, the solution of the robust optimal design
problem with six different initial damper placements (Figure 13A),
including a trapezoidal distribution (standard model), a uniform
distribution, and a random distribution (four), with the total
damper volume remaining constant, are shown in Figure 13B,

FIGURE 11
Three-dimensional robustness function for various robustness degrees: (A) α̂ � 0, (B) α̂ � 1, (C) α̂ � 2, and (D) α̂ � 3
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together with the robust optimization model. The objective
function SV(~c) for the solutions and the number of iterations in
which the solutions were updated in the optimization are also
shown in Figure 13C; the former axis is on the left, and the latter
axis on the right. The different curves of Figure 13B and the
different bars of Figure 13C correspond to the initial solution used
as the first step in the optimization procedure, i.e., fmincon
function, to obtain the models represented by each result
shown in the tables. The values corresponding to “normal
optimization” in the legend and on the horizontal axis are those
of the robust optimization model derived in these examples.

Figure 13B shows that the robust optimization model with the
normal optimization model as the initial solution results in slightly
more damping in the low story and less damping in the eighth
story than the models with other initial solutions. The value of
SV(~c) was the best for the robust optimization model, and it also
resulted in the lowest number of computational iterations during
optimization. Therefore, it can be concluded that providing the
normal optimization model as the initial solution to the fmincon
function when solving Eq. 6 is effective, because a better solution
can be obtained with a smaller computational load for the robust
optimal design.

FIGURE 12
Comparison of performance functions for various input levels and robustness degree α̂ = 0, 1, and 3. : (A) VDI = 0.8 [m/s], (B) VDI = 1.2 [m/s], and (C)
VDI = 1.5 [m/s].
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6 Conclusion

A robustness evaluation method considering a wide range of
input levels and performance criteria was presented for a structural
design with various uncertainties. To address seismic input
uncertainty in structural design, this paper focused on a worst-
case scenario by utilizing a critical one-cycle sine wave, which
establishes an upper bound on the structural response. In
addition to the design constraint of the maximum response, the
proposed robustness index evaluates the change in the robustness
function with respect to variations in input amplitude as a
multidimensional function. Furthermore, using the proposed
robustness index, a robust optimal design problem and its
solution method are presented to find a design that can retain
high performance under uncertain parameters and large fluctuations
in input levels. By solving numerical examples, the solution to the
proposed robust optimization problem was presented using an
elastoplastic shear mass system model with oil dampers. The
detailed results obtained by this paper are as follows.

1) A simplified double impulse method is employed, where the
main part of the near-fault seismic motions is expressed in
terms of amplitude and impulse interval parameters. Based on
the pre-analysis of the critical double impulse for the worst
seismic input to the building structure, it is possible to take into
account the uncertainty of the input. The effectiveness of the
one-cycle sine wave, equivalent to the critical double impulse,

in evaluating the structural response of inter-story ductility
and floor accelerations was confirmed.

2) The uncertainty analysis method, obtaining the upper bound
of the objective function under the specified uncertainty
degrees, was applied to the robustness evaluation by varying
the uncertainty range in a variable manner. The uncertainty
analysis method was applicable for deriving the proposed
robustness function considering both input velocity
amplitude and performance criteria. The three-dimensional
robustness surface was continuously derived by applying the
interpolation of the cubic surface function.

3) The robust optimal damper placement problem, aiming to
determine the damping coefficients of the oil dampers for each
story, for the purpose of improving the volume value for the
robustness surface was proposed. In order to consider the wide
range of the input level and structural performance criteria, the
volume integration value of the robustness surface was
employed as the objective function of the optimal
design problem.

4) The numerical examples were presented using an
elastoplastic 12-degrees-of-freedom model for several
optimization problems. The robust optimal design was
compared with the normal optimal design where
variations in oil dampers are not considered. It was
shown that robust optimization can successively enhance
the robustness by rearranging the damping coefficient
under a constant constraint of the sum of damping

FIGURE 13
Investigation of initial solution dependence for robust optimization: (A) initial solution for random combinations, (B) optimal damping coefficient
distribution, and (C) objective function in robust optimization and number of iterations.
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coefficients. It was confirmed that in robust optimization,
the damping coefficients are increased at specific floors with
larger maximum ductility ratios when the degree of damper
variation is increased. The investigation into the initial
solution dependence revealed that a more robust solution
can be achieved with a smaller computational load by using
the normal optimal design as the initial solution.
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