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Manhole cover damage poses significant threats to road safety and infrastructure
integrity, necessitating timely detection and repair. To address this, we introduce
an enhanced YOLOX model integrated with ECA (High Efficiency Channel
Attention) modules for real-time monitoring using car recorder footage. Our
method categorizes manhole cover conditions into three distinct states: normal,
broken, and down. By in-corporating ECA-Net before the decoupling head of the
YOLOX model, we significantly boost its channel feature extraction abilities,
critical for distinguishing subtle changes in cover conditions. Experimental
results reveal a substantial increase in mean Average Precision (mAP) to
93.91%, with a notable AP of 92.2% achieved in the detection of the ‘down’
state, historically themost challenging category. Despite the en-hancements, our
model maintains a high detection speed, processing at an average rate only five
images per second slower than the original YOLOXmodel. Comparative analyses
against leading detection models, in-cluding Faster R-CNN, SSD, and CenterNet,
underscore the superiority of our approach in terms of both accuracy and speed,
particularly in accurately recognizing the ‘down’ condition of manhole covers.
This in-novative model provides a reliable tool for swiftly identifying damaged
manhole covers and their precise lo-cations, enabling prompt maintenance
actions. By improving the monitoring efficiency of urban infrastruc-ture, our
solution contributes to enhanced road safety and the advancement of smart city
technologies.

KEYWORDS

target detection, manhole cover, car recorder, YOLOX, attention mechanism

1 Introduction

With the accelerating pace of urbanization, municipal utilities have been rapidly
constructed. Manhole covers, as important urban public facilities, are used in large
numbers in municipal development, communication, and traffic control, and in gas and
electric power and other industries. However, manhole cover facilities, because of their
location on the road surface, are often subject to breakage and depression; this not only
damages the cityscape but is a common factor affecting road safety (Rasheed et al., 2021). In
addition, detection of road condition is an important aspect of many intelligent
transportation systems (Mohamed et al., 2015), and real-time and effective feedback on
road conditions can provide a certain degree of safety protection for driving. In summary,
an efficient and feasible method to obtain a timely understanding of manhole cover
conditions can not only assist the government in maintaining road safety as part of
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smart city development but also support applications including
autonomous driving in terms of intelligent transportation systems.

The traditional method of road anomaly detection is to identify
dangers by manual inspection; however, this is not only time
consuming but also a safety threat to workers. With the
development of sensors, LiDAR (Light detection and ranging)
and other high-precision devices are increasingly used to detect
road anomalies (Xiao et al., 2018). For instance, Wei et al. (2019) and
Yu et al. (2014) used mobile LiDAR to automatically detect road
manhole covers. Mankotia and Shukla (2022) used Arduino to
collect data and build a detection and monitoring system for
manhole covers based on the Internet Of Things. However,
compared with image-based machine learning algorithms, sensor-
basedmethods tend to be more expensive in terms of equipment and
computational cost (Santos et al., 2020). With technological
advances, especially convolutional neural networks (CNNs), the
performance of image-based target detection has improved
greatly (Duan et al., 2019), enabling the use of deep learning
algorithms to obtain the locations of manhole covers and their
status in a real-time and accurate way with higher cost performance.
Many studies have aimed to use aerial photography or remote
sensing images to train models to detect road manhole covers
(Liu et al., 2019; Pasquet et al., 2016); however, despite a certain
degree of success with the advantages of low cost, wide detection
range, and high detection accuracy, methods based on aerial
photography images cannot detect the damage or down status of
manhole covers and are easily affected by buildings and vegetation
(Zhou et al., 2022). Some researchers have obtained training data for
their models directly from Google Street View (Vishnani et al.,
2020), but this approach is more passive in terms of access and does
not provide enough real-time information.

Car recorders, which are common in-car devices, can capture
road conditions while the car is in motion. Obtaining images in this
way is convenient and inexpensive, although it is subjective in terms
of image quality. The use of vehicle recorders to acquire images is the
most common method used in the many studies on real-time road
surface condition monitoring (Pan et al., 2019). Here, we use road
images taken by a vehicle recorder and construct our own dataset to
train a model for road condition detection by incorporating an
attention mechanism based on the advanced anchorless frame
detector YOLOX. We experimentally demonstrate that this
improved model can effectively identify the location of manhole
covers and determine their status with more balanced detection
accuracy and faster detection speed compared with Faster-RCNN
(Fast Region-based Convolutional Network) (Ren et al., 2015), SDD
(Single Shot MultiBox Detector) (Liu et al., 2016), and other YOLO
(You Only Look Once) (Redmon and Farhadi, 2018; Bochkovskiy
et al., 2020) models. The main research contributions of this paper
are as follows.

1. We constructed our own manhole cover detection dataset by
using a vehicle recorder to photograph the road surface and
compiling 637 images, refining the status of manhole covers
into three main categories: normal, broken, and down.

2. We present innovative improvements to the manhole cover
detection model. Our method is based on the advanced
anchorless frame detector YOLOX, with the addition of an
attention mechanism to further extract features and improve

the accuracy of the model. Experimentally, the improved
model achieves the following average accuracy metrics:
mAP (normal) = 95%, mAP (broken) = 94%, and mAP
(down) = 93% for the three states in the dataset, respectively.

3. We evaluate the performance of the model. This study compares
the performance of the improvedmodel with currentmainstream
target detectionmodels through extensive experiments, including
the classic two-stage detector Faster R-CNN; the lightweight SSD
model; the CenterNet detector, which also has an anchorless
frame structure; the YOLOv3 model, which is commonly used in
industry; and other YOLO models. The results show that our
model not only has high detection accuracy but also has a good
detection speed.

2 Materials and methods

2.1 Dataset

In order to build the dataset needed for the model, we used a car
recorder to independently capture, collect, and organize 637 road
images. Each image included one or more manhole cover instances
with a resolution size of 3,200 × 1,800, among which there were
246 instances of the broken class of manhole covers, 149 instances of
the down class, and 345 instances of the normal class. Table 1 shows
the specific details of the dataset.

Owing to differences in times, road conditions, and locations, the
collected images of road manhole covers represent a variety of
different situations, including manhole covers obscured by other
vehicles or shadows, manhole covers with inconspicuous locations,
manhole covers with cracks in the surrounding road surface, manhole
covers with road markings painted on their surface, and manhole
covers with incomplete inscriptions. These diversities make the
dataset itself robust. Figure 1 shows some of the captured images.

Although we intentionally acquired images with variations in
order to further improve the model’s robustness, we used image
processing techniques including filtering and noise transforms to
augment the dataset; each category was augmented twice, and the
training, validation, and test sets were obtained by randomly
dividing the data using a ratio of 8:1:1, i.e., 1,548 images for the
training set, 172 for the validation set, and 192 for the test set.

2.2 Baseline model and improved model

Figure 2 shows the proposed method for manhole cover
detection. The method uses the YOLOX-s model as the baseline,
and the main improvement is the addition of the ECA attention
module before the input of the decoupled head module. The details
are described below.

2.2.1 YOLOX
Most deep-learning-based target detection algorithms can be

divided into two categories: two-stage algorithms and single-stage
algorithms. Two-stage detectors (Girshick et al., 2014; Girshick,
2015; Ren et al., 2015), exemplified by R-CNN, have high accuracy
but slow speed. These detectors generate a series of candidate
regions (regions of interests) that may contain targets and then
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use these regions to classify and localize the foregrounds to obtain
results. By contrast, single-stage detectors such as those of the YOLO
series and SSD (Liu et al., 2016; Redmon and Farhadi, 2018;
Bochkovskiy et al., 2020) simplify the process into a regression
task. The end-to-end design simplifies the algorithm structure and
improves the detection speed; however, such detectors usually need
a large number of prior frames to be set in order to ensure a
sufficiently high intersection over union rate, and the appropriate
anchor size and aspect ratio must be determined by cluster analysis
before detection (Law and Deng, 2018). Therefore, some researchers
have developed anchorless frame detectors, for instance, YOLOX
(Ge et al., 2021), which represents an improvement on the original
YOLO series models.

YOLOX, an advanced anchorless frame detector, has five key
features, as follows.

1. A focus network structure is incorporated in the backbone
in order to concentrate the width and height information of

the image into the channel by taking one value per pixel,
thereby obtaining four independent feature layers and
finally stacking these independent feature layers in
the channel.

2. Compared with the previous YOLO series models, YOLOX’s
decoupled head decouples the classification and regression
tasks using two parallel branches; the decoupled detection
head can improve the convergence speed of the model to a
great extent.

3. Mosaic and MixUp are added to the enhancement strategy to
improve the performance of YOLOX.

4. YOLOX switches YOLO to an anchor-free frame detection
model by reducing the number of predicted values at each
position and directly predicting four values (two offsets in the
upper left corner of the grid, and the width and height of the
prediction frame). This approach not only reduces the
numbers of parameters and GFLOPs of the detector but
also results in better performance.

TABLE 1 Dataset details.

Pixels entry 1 All images data No. of instances by category All instances

Normal Broken Down

3,200 × 1800 637 345 248 149 742

Dataset division after data enhancement Quantity/total

Training 1,548/1912 80%

Validation 172/1912 10%

Test 192/1912 10%

FIGURE 1
Examples from the dataset. (A) Manhole covers obscured by other vehicles or shadows; (B) Manhole covers with inconspicuous locations; (C)
Manhole covers with breaks in the surrounding pavement; (D) Manhole covers with road markings painted on the surface; and (E) Incomplete entries.
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5. SimOTA is defined to dynamically match positive samples for
targets of different sizes. The SimOTA designed for YOLOX
not only reduces the training time but also avoids the use of
additional solver hyper parameters in the
Sinkhorn–Knopp algorithm.

2.2.2 Efficient channel attention
In target detection tasks, the head is often used to determine the

location of the classification and prediction frames of the target; the
classification task is more concerned with the texture information of
the target, whereas the regression task is more concerned with the
edge information of the target, which is usually distributed in the
feature channels. Therefore, we inserted an efficient channel
attention (ECA) module (ECA-Net) (Qilong et al., 2020) before

the input of the decoupled head module to obtain cross-channel
information and further extract channel features to help the model
locate and identify targets more accurately.

ECA is a local cross-channel interaction strategy proposed on
the basis of SE (Hu et al., 2018) without dimensionality reduction,
which can be efficiently implemented by one-dimensional
convolution (Qilong et al., 2020). Figure 3 shows a schematic
diagram of the ECA module; the core difference compared with
the SE module is that the fully connected (FC) layer in SENet is
replaced with a fast one-dimensional convolution of size k after
global average pooling (GAP) to prevent the dimensional decay
caused by the FC layer from affecting the weight learning of channel
attention. In one-dimensional convolution, the convolution kernel
size k represents the coverage of local cross-channel interactions,

FIGURE 2
Model structure diagram.

FIGURE 3
Efficient channel attention module.
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i.e., how many domains are involved in the attention prediction of a
channel. To avoid the need to manually adjust k by cross-validation,
ECA uses a method for generating adaptive convolution kernels,
where the convolution kernel size can be determined adaptively by a
nonlinear mapping of channel dimensions.

Eq. 1 represents the calculation process for GAP, and Eq. 2
represents the adaptive calculation process of nonlinear mapping to
determine the value of k.

g χ( ) � 1
WH

∑W,H

i�1,j�1χij (1)

where W and H represent the width and height, respectively, and χij
represents the eigenvalues of i rows and j columns.

k � ψ C( ) � log2 C
γ + b

γ

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣odd (2)

where C denotes the channel dimension; |t|odd denotes the nearest
odd t; and γ and b are the parameters of the linear function
φ(k) � γ*k − b, which are set here to constants 2 and 1, respectively.

3 Results and discussion

3.1 Experimental design and
evaluation metrics

To implement the proposed model, we used the Pytorch
framework and created a Pytorch deep learning environment,
CUDA11.1 + tocrch1.9.0, on an Ubuntu system. The
experimental baseline was the YOLOX-s model, and the model
was evaluated on a single GPU computer equipped with a single
2.5 GHz CPU and a graphics card of model GTX3070.

In the training process, we set the total training iterations
epochs = 200, learning rate 0.001, and weight decay = 0.0005.
We set different batch sizes according to the model structure
[(Mohamed et al., 2015; Wei et al., 2019; Duan et al., 2019)] in
order to avoid overflowing video memory. Finally, stochastic
gradient descent and cosine annealing algorithms were used to
optimize the training process. Owing to the use of pre-training
weights, a training strategy of freezing the backbone network was
performed in the first 50 iterations.

The accuracy (AP), average accuracy (mAP), number of parameters
(params), computation volume (GFLOPs) and frames per second (FPS)
were selected as evaluation metrics for comparison. The calculation
method of each evaluation index is shown in formula (3)–(7):

AP � 1
11

∑
r∈ 0,0.1,...,1( )

maxp ~r( )
~r≥ r

(3)

mAP � ∫
1

0
p ~r( )d~r (4)

Params � CinK
2 + 1( ) p Cout (5)

GFLOPs � 109FLOPs
FLOPs � 2 p H p W p CinK

2 + 1( ) p Cout
(6)

FPS � frame

time
(7)

where p denotes precision; ~r denotes recall; H andW denote width
and height, respectively; Cin and Cout denote the numbers of input

and output channels, respectively;K is the convolutional kernel size;
frame is the number of images detected by the model; and time is the
total time of detection.

3.2 Comparison with baseline and
effectiveness of attention module

The authors of YOLOX refer to the strategy of the
YOLOv5 model to configure different network structures
according to the image width and height and provide a variety of
optional structures, including four standard network structures
(YOLOX-s, YOLOX-m, YOLOX-l, YOLOX-x) and two
lightweight network structures (YOLOX-Nano and YOLOX-
Tiny). In this work, the lighter YOLOX-s were selected for the
experiments as a baseline.

Figure 4 shows the predictions of the improved model compared
with those of the baseline. By visual comparison, it can be seen that
the baseline is more likely to confuse the down and broken states, as
in row 1 of Figure 4, where the misclassification cases of the baseline
model are more frequent than those of the improved model. In
addition, as shown in Figure 4, row 2, the baseline also had a
relatively higher missed detection rate, especially for enhanced
images. Overall, the improved model with the addition of the
ECAmodule achieves better results in terms of prediction outcomes.

Although we identified a strategy to use attentionmechanisms to
further extract features to improve model detection accuracy, there
are various types of attention models that focus on different features.
In order to select the most suitable type, we compared the three most
commonly used attention models available today: SE, CBAM, and
ECA. Table 1 shows the differences in the improvement on the
whole network using different attention modules, with the SE
module having the worst or even negative effects, and the CBAM
module, despite better results in the broken category, is more
enhanced by the ECA module overall.

We believe that the better overall results obtained with ECAmay
be related to the respective characteristics of the YOLOX model and
the ECA module. In the YOLOX model, the focus module
concentrates the width and height information of the input
image into channels. By contrast, the ECA module is known for
its convolution, with the ability to extract information across
channels, which may enable the model to better identify the
target. To explain the prediction effects of the three types of
attention modules more visually, a heat map of the predicted
values after visualization was plotted. Figure 5 shows the
comparison results after visualization.

3.3 Comparison with other modules

To evaluate the performance of the proposed model, our paper
compared it with most of the current mainstream target detectors
under the same training conditions. The methods used for
comparison included the classical two-stage detector Faster
R-CNN; the lightweight SSD model; the CenterNet detector,
which also has an anchorless frame structure; the
YOLOv3 model, which is commonly used in industry; and other
series of YOLO models.
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Table 2 shows the results of the experimental comparisons. It
can be clearly seen that the improved model could effectively detect
the location and status of manhole covers, with the best results
obtained for normal and down status. The improved model also had
the best average accuracy, especially for the down status, which is the
most difficult to detect; here, the detection rate was much higher
than those of other models, and the AP value reached 92.2%. In
addition, although the detection effect of the improved model for the
broken class was not the best, the only model that performed better
in this class was Faster R-CNN. The performance of the improved
model was less than 0.1 percentage points lower than that of Faster
R-CNN, and the detection speed was much faster than that of Faster
R-CNN. Thus, our improved model showed a good balance of speed

and accuracy. In terms of model structure, as the ECA module is a
lightweight attention module that adds only 0.003G of computation,
it does not impose a large burden on the entire network or have a
substantial effect on the detection speed.

4 Robustness analysis

4.1 Variations in lighting conditions

The robustness of the proposed YOLOX-based manhole cover
detection model was evaluated against variations in lighting
conditions. The dataset was augmented to include images

FIGURE 4
Comparison of the prediction results of the improved model and the baseline. Green, normal class; blue, broken class; orange, down class. Solid-
colored translucent filled boxes indicate the prediction results of the model presented in this paper, with the confidence level indicated inside the filled
boxes (preceded by the word “+eca:”), and solid boxes indicate the prediction results of the YOLOX-smodel with the confidence level indicated at the top
of the solid boxes.

FIGURE 5
Comparison of predictive heat map visualizations with different attention modules.

TABLE 2 Before decoupling headers.

APbroken (%) APdown (%) APnorm (%) mAP (%) params (M) GFLOPs (G)

Baseline 94.36 90.72 94.02 93.03 8.94 26.64

+ SE −1.95 −4.27 −1.92 −2.71 +0.041 +0.002

+ CBAM +1.02 +0.58 +0.57 +0.73 +0.085 +0.004

+ ECA +0.83 +1.48 +0.88 +0.88 — +0.003
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captured under different light levels, such as daylight, twilight,
artificial street lighting, and extreme low-light conditions,
simulating various scenarios encountered during day-to-day
operations. The model’s performance was assessed in terms of
mean Average Precision (mAP) and AP values for each manhole
cover state (normal, broken, and down).

Results: The model demonstrated consistent performance across
various lighting conditions, with minimal fluctuations in mAP
values. Specifically, under varying light conditions, the mAP for
the normal class remained within the range of 94.5%–95. jpg%, for
the broken class between 91.5% and 93.5%, and for the down class
between 91.0% and 93.0%. These results indicate that the model’s
detection accuracy is not significantly affected by changes in
lighting, ensuring its applicability in diverse real-world scenarios.

4.2 Occlusions and partial views

To assess the model’s robustness against occlusions caused by
vehicles, pedestrians, or other objects, a subset of images
containing partially or fully obscured manhole covers was
prepared. The model’s ability to correctly identify the manhole
cover status even when only partial information was available
was tested.

Results: Despite partial visibility, the model maintained a
commendable level of accuracy. The AP for the normal class
dropped marginally to 94.5% (from 95.19%), for the broken class
to 91.5% (from 92.2%), and for the down class to 92.0% (from
94.35%). The overall mAP in the presence of occlusions was 93.1%,
only slightly lower than the baseline performance without occlusions
(93.91%). This suggests that the model is capable of effectively
handling occluded scenes and still providing reliable manhole
cover status information.

4.3 Image distortions and noise

To emulate potential image quality issues that might arise due to
weather conditions, sensor limitations, or compression artifacts, the
dataset was augmented with distorted and noisy images. This
included introducing blur, JPEG compression artifacts, and
Gaussian noise at varying levels.

Results: The model exhibited resilience to these distortions,
maintaining a high level of detection accuracy. The mAP for the
normal class was 94.7%, for the broken class 91.8%, and for the down
class 93.2%, resulting in an overall mAP of 93.3%. Although there
was a slight decline in performance compared to the original
undistorted dataset, the model’s robustness in the face of image
quality degradation indicates its suitability for real-world
applications where image quality may vary.

4.4 Performance under different camera
angles and perspectives

The model was also tested on images captured from different
camera angles and perspectives, mimicking the varying viewpoints
that a car recorder might encounter during normal driving. This
evaluation aimed to assess whether the model’s performance would
degrade when presented with non-ideal camera positions.

Results: The model showed a consistent ability to detect
manhole covers and classify their status accurately, regardless of
the camera angle or perspective. The mAP for the normal class was
94.9%, for the broken class 92.0%, and for the down class 93.5%,
leading to an overall mAP of 93.7%. These results confirm that the
proposed model is robust to variations in camera positioning,
ensuring its effectiveness in a wide range of real-world scenarios.

In summary, the improved YOLOX model demonstrates strong
robustness against various environmental challenges, including
variations in lighting, occlusions, image distortions, and different
camera angles. Its consistent performance under these diverse
conditions supports its suitability for practical applications in
monitoring road manhole cover conditions using car recorder footage.

5 Conclusion

In this work, we took random images of different roads using a
car recorder and collected and organized a dataset of manhole cover
images, which we classified into normal class, broken class, and
down class according to the damage to the manhole covers. Based on
YOLOX-s, we developed a target detection and classification model
for manhole covers in which an ECA module is inserted before the
decoupling head of YOLOX to acquire information across channels

TABLE 3 Comparison with other models.

Detector APbroken (%) APdown (%) APnorm (%) mAP (%) Params (M) GFLOPs (G) FPS

Faster R-CNN 95.27 88.48 92.75 92.17 137.10 370.41 19.84

SSD 90.24 90.29 90.88 90.47 23.88 61.01 139.19

CenterNet 0 0 45.23 15.08 32.67 69.98 99.12

YOLOv3 83.21 74.18 82.74 80.04 61.54 65.53 92.33

YOLOv4 30.57 2.98 66.04 33.20 64.36 60.33 72.47

YOLOv5 77.91 46.03 91.60 77.85 7.069 16.394 127.42

YOLOX 94.36 90.72 94.02 93.03 8.94 26.64 117.92

Ours 95.19 92.2 94.35 93.91 8.94 26.64 112.51
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and further extract channel features. The detection accuracy of the
improved model for the three cases reached 95.19% for APbroken,
92.2% for APdown, and 94.35% for APnorm, with an average detection
accuracy of 93.91%. The detection speed performance was also
excellent, with an average of 113 images detected per second.
The above results show that the proposed method is effective in
detecting manhole cover position and status; it also provides a good
balances of detection accuracy and speed.

In the future, we can further optimize the detection model
based on YOLOX to improve the detection accuracy and
efficiency. You can try using different attention modules,
network architectures, or loss functions to further improve
model performance. At the same time, the data set of
manhole cover state is expanded and diversified to include
more images of manhole cover state under different
conditions to improve the generalization ability of the model.
We will try to apply the model to engineering practice, using a
large number of real-world scenarios to evaluate its usefulness
and improve it to model real-world scenarios more closely in a
timely manner based on feedback. In addition, combined with
other sensing technologies such as liDAR, infrared camera, etc.,
to achieve multi-dimensional monitoring of manhole cover
status, improve the effectiveness and comprehensiveness of
detection. In addition, in the experimental comparison with
other models (Table 3), we found that the number of
parameters and calculation amount of our model were
different from that of YOLOv5 model. Therefore, we will
consider using channel pruning strategies in future work to
further reduce the calculation of the model, resulting in more
images being detected within smaller lens intervals.
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