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Introduction: Cracks, as structural defects or fractures in materials like concrete,
asphalt, andmetal, pose significant challenges to the stability and safety of various
structures. Addressing crack detection is of paramount importance due to its
implications for public safety, infrastructure integrity, maintenance costs, asset
longevity, preventive maintenance, economic impact, and environmental
considerations.

Methods: In this survey paper, we present a comprehensive analysis of recent
advancements and developments in crack detection technologies for structures,
with a specific focus on articles published between 2022 and 2023. Our
methodology involves an exhaustive search of the Scopus database using
keywords related to crack detection and machine learning techniques. Among
the 129 papers reviewed, 85 were closely aligned with our research focus.

Results: We explore datasets that underpin crack detection research,
categorizing them as public datasets, papers with their own datasets, and
those using a hybrid approach. The prevalence and usage patterns of public
datasets are presented, highlighting datasets like Crack500, Crack Forest Dataset
(CFD), and Deep Crack. Furthermore, papers employing proprietary datasets and
those combining public and proprietary sources are examined. The survey
comprehensively investigates the algorithms and methods utilized,
encompassing CNN, YOLO, UNet, ResNet, and others, elucidating their
contributions to crack detection. Evaluation metrics such as accuracy,
precision, recall, F1-score, and IoU are discussed in the context of assessing
model performance. The results of the 85 papers are summarized, demonstrating
advancements in crack detection accuracy, efficiency, and applicability.

Discussion: Notably, we observe a trend towards using modern and novel
algorithms, such as Vision Transformers (ViT), and a shift away from traditional
methods. The conclusion encapsulates the current state of crack detection
research, highlighting the integration of multiple algorithms, expert models,
and innovative data collection techniques. As a future direction, the adoption
of emerging algorithms like ViT is suggested. This survey paper serves as a
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valuable resource for researchers, practitioners, and engineers working in the field
of crack detection, offering insights into the latest trends, methodologies, and
challenges.
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Cracks, structural defects, infrastructure integrity, preventive maintenance, economic
impact, survey

1 Introduction

Cracks are structural defects or fractures that occur in various
materials, such as concrete, asphalt, and metal, often caused by
stress, environmental factors, or wear over time. These
imperfections can significantly compromise the integrity of
structures, such as buildings, bridges, roads, and other
infrastructures (Jiya et al., 2016). Understanding and
addressing cracks is of paramount importance due to the
following reasons:

Safety Concerns: Cracks in structures can pose severe safety
hazards to the public. They weaken the structural stability, making
buildings and bridges susceptible to collapse, potentially leading to
injuries or loss of life.

Infrastructure Integrity: The presence of cracks can undermine the
overall structural integrity of essential infrastructure. As cracks propagate
and grow, they can weaken load-bearing elements, causing irreversible
damage and costly repairs if not addressed promptly.

Maintenance Costs: Unchecked cracks can escalate maintenance
costs significantly. Small cracks, when detected early, are easier and
cheaper to repair than allowing them to worsen and cause extensive
damage, requiring more extensive and costly rehabilitation.

Asset Longevity: Effective crack detection and timely repairs can
extend the lifespan of structures. By addressing cracks early on, the
overall durability and longevity of buildings and infrastructure can
be significantly improved.

Preventive Maintenance: Crack detection plays a crucial role in
implementing preventive maintenance strategies. Early
identification allows for targeted repairs or reinforcement,
preventing the cracks from spreading and mitigating potential risks.

Economic Impact: Infrastructure failure due to undetected
cracks can result in significant economic losses. Repairs and
structural rehabilitation can be costly, and in severe cases,
infrastructure failures can disrupt transportation, utilities, and
daily activities, impacting productivity and economic stability.

Environmental Impact: Cracked structures may allow for water
ingress, leading to corrosion of reinforcement and other
components. Water infiltration can further exacerbate cracks and
compromise the structural integrity, impacting the environment and
potentially leading to water-related issues like mold growth.

Given these critical implications, crack detection assumes immense
significance in maintaining public safety, preserving infrastructure
assets, and ensuring the efficient and sustainable operation of
modern societies. Timely and accurate crack detection methods are
vital tools for engineers, researchers, and practitioners, helping them
assess structural health and make informed decisions to enhance the
safety and longevity of our built environment.

In this survey paper, we focus on recent advancements and
new developments in crack detection technologies for structures,

with a specific emphasis on articles published in the years
2022 and 2023. To compile our findings, we conducted a
thorough search of the Scopus database using the keywords
“crack detection,” “building,” “road,” “pavement,” and
“concrete.” The search was further refined to include articles
related to machine learning and deep learning techniques. The
language criterion was set to English to ensure the coherence and
consistency of the gathered information.

Our search yielded a total of 129 papers, of which 85 were closely
aligned with our research focus. From Table 1 we can see the
complete detail about the information from Scopus.

These articles serve as the foundation for our survey, enabling
us to analyze the state-of-the-art developments and trends in crack
detection within the context of structures. Additionally, we
employed VOSviewer, a specialized software tool for
bibliometric analysis, to generate keyword cloud maps,
providing a visual representation of the prominent terms and
concepts in the selected articles which it is obvious in Figure 1.
It is clear that “Deep Learning” and,“Convolutional Neural
Networks (CNN)” have the most relation with our main search
topic “Crack Detection”. Moreover, we have extracted valuable
insights from the charts depicting “Documents by year,”
“Documents per year by source,” “Documents by search area,”
and “Documents by country or territory,” which contribute to our
comprehensive understanding of the current landscape of crack
detection research. As we can see from Figure 2 there are 78 papers
which published in 2022 and 51 papers in 2023 up to now. We can
see increment in the amount of the papers which published in
“Sensors” and “Remote Sensing” in 2023 compare to 2022 due to
the Figure 3. It is obviously clear that this search topic appears
most in the fields of “Engineering” and “Computer Science”, we
can see this point from Figure 4. And from Figure 5 we can see the
First 10 countries which published the papers in this field, more
than the others.

Continuing with the survey paper, the subsequent sections
delve into the methodologies used for crack detection. We explore
traditional image processing techniques, such as edge detection,
thresholding, and binary image analysis, highlighting their
strengths and limitations. Additionally, we delve into the
application of state-of-the-art deep learning architectures,
including Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Transformers, and other deep
learning models, showcasing their superior performance and
ability to capture intricate crack patterns (Golding et al., 2022;
BaniMustafa et al., 2023).

Moving forward, we discuss potential future research directions
in the field of crack detection. This includes the necessity for more
diverse and comprehensive datasets, encompassing various types of
structures, lighting conditions, and crack patterns (Sun et al., 2023).
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The survey paper also advocates for the development of real-time
crack detection systems and the incorporation of explainable AI
techniques to enhance the interpretability of crack detection models
(Li G. et al., 2022; Ma D. et al., 2022).

In conclusion, this survey paper aims to be a valuable resource,
consolidating the current knowledge on crack detection in
structures. By reviewing both conventional and advanced
techniques and providing insights into potential future
developments, we aspire to inspire further advancements in this
critical area, ultimately contributing to the safety, reliability, and
longevity of vital infrastructures. To facilitate comprehension

throughout the paper, we provide a list of acronyms along with
their expanded forms which you can find it in Table 2.

2 The approach

2.1 Datasets in crack detection

In the realmof crack detection for various structures, the availability of
diverse and appropriately curated datasets holds a pivotal role in
advancing research and innovation. These datasets serve as the

TABLE 1 Summary of scopus query and search results.

Query in Scopus (TITLE-ABS-KEY (“crack detection” “deep learning”) OR TITLE-ABS-KEY (“crack detection”
“MachineLearning”) OR TITLE-ABS-KEY (“crack detection” “building” “road” “pavement” “concrete”))
AND PUBYEAR >2021 AND (LIMIT-TO (OA, “all”)) AND (LIMIT-TO (PUBSTAGE, “final”)) AND
(LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (LANGUAGE, “English”))

Search Results 129

Unrelated Results 44

Related Results 85

FIGURE 1
Keywords map by VOSviewer.
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foundation upon which crack detection models are trained, tested, and
validated. A robust dataset ensures the realism and accuracy of the
models, facilitating the development of effective and reliable crack
detection methodologies. The creation and utilization of datasets in
crack detection research encompass a wide spectrum of applications,
from building and road infrastructure to pavements and concrete
structures. These datasets encapsulate a range of crack types, sizes,
orientations, and severity levels, mirroring the real-world scenarios that
researchers and engineers encounter in practice. By incorporating the
inherent complexity and variability of cracks, these datasets enable the
evaluation and comparison of detection algorithms under diverse

conditions. In the context of recent advancements, the integration
of machine learning and deep learning techniques has spurred the
demand for datasets that accommodate the unique challenges posed by
these methods. Such datasets should not only represent structural
defects accurately but also encompass a variety of environmental
conditions, lighting variations, and perspectives, enhancing the
models’ adaptability and generalization capabilities. As we delve
into the datasets utilized within the 85 papers reviewed in this
survey, it becomes evident that researchers draw from a
combination of sources to bolster the quality and
comprehensiveness of their studies. Some papers leverage publicly
available datasets, while others design and assemble their datasets,
tailored to the specific objectives of their crack detection research.
Moreover, a subset of studies combines both approaches, harnessing
the power of existing public datasets and augmenting them with
proprietary data to enhance the richness and diversity of training
and testing scenarios. These datasets collectively contribute to the
diversity and comprehensiveness of crack detection research. The
subsequent sections of this paper delve into a detailed analysis of
the datasets’ origins and utilization. We categorize these datasets based
on their sources and types, presenting a comprehensive overview of the
dataset landscape. This analysis provides insights into the dataset
selection and utilization practices that influence the evolution of
crack detection technologies.

2.1.1 Public datasets
Publicly available datasets have played a crucial role in shaping the

landscape of crack detection research. These datasets, carefully curated
and made accessible to the research community, serve as valuable
resources for benchmarking, testing, and validating crack detection
algorithms. Researchers leverage these datasets to assess the
performance of their methods and foster a collaborative environment

FIGURE 2
Documents per year by year.

FIGURE 3
Documents per year by source.
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for advancing the field. In the pursuit of effective crack detection
solutions, these datasets offer a diverse array of crack types, surface
textures, and lighting conditions. The utilization of public datasets
ensures a level playing field for researchers, enabling fair comparisons
and promoting the development of innovative techniques. The following
tables provide an overview of the distribution of papers per datasets and
datasets per papers, shedding light on the prevalence and usage patterns
of these publicly available resources. The datasets employed in these
studies represent a diverse collection, each contributing to the
advancement of crack detection technologies. Some of the prominent
public datasets used in these papers include.

• Crack500: A dataset containing images of cracked and non-
cracked concrete surfaces.

• Crack Forest Dataset (CFD): Images of cracked tree bark textures.
• CrackTree200: Images of tree bark with cracks for assessing
detection techniques.

• Deep Crack: Images of various crack types for evaluating
detection methods.

• GAPs384: Grayscale images containing cracks, patches, and
non-defective areas for pavement crack detection.

• AigleRN: Images of cracks in road pavements for evaluation.
• CrackTree260: Tree bark images with cracks.

FIGURE 4
Documents by subject area.

FIGURE 5
Documents by country or territory.

Frontiers in Built Environment frontiersin.org05

Kaveh and Alhajj 10.3389/fbuil.2024.1321634

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1321634


• CRKWH100: Grayscale images of road surface cracks.
• CrackLS315: Images of cracked and non-cracked surfaces.
• RDD2022: Dataset focused on road damage detection,
including cracks.

• DeepCrack537: Extended version of the Deep Crack dataset
with a larger set of images.

• AED: Images of asphalt surfaces, including cracks.
• CrackSegNet: Dataset for evaluating the CrackSegNet model.
• DAGM 2007: Dataset used in image analysis and pattern
recognition.

• CCIC: Dataset containing images of building cracks.
• CrackTree206: Additional tree bark images with cracks.
• SYCrack: Dataset used for crack detection research.
• Mixed Crack Dataset (MCD): Dataset containing mixed
crack types.

• Building Wall Crack Images (BWCI): Images of cracks in
building walls.

• SDNET2018: Comprehensive dataset for concrete
crack detection.

• Crack45K: Large dataset with images of various crack types.
• Stone331: Dataset with images of stone surfaces and cracks.
• CQU-BPDD: Images of bridge pavement cracks.
• Historical Building Crack 2019: Dataset focusing on historical
building cracks.

Table 3 shows the complete information about the public
datasets which used in the studies.

2.1.2 Papers with their Own dataset
Some of the papers among the 85 reviewed in this survey have

taken a proactive approach by creating their own datasets tailored to
their research objectives. These researchers recognized the
importance of aligning the dataset with the specific characteristics
of their crack detection problem. By meticulously designing and
curating their datasets, these studies aimed to capture the nuances of
real-world scenarios, considering factors such as structural types,
crack severity levels, lighting conditions, and surface textures.
Creating a custom dataset offers several advantages. Researchers
have the flexibility to control and manipulate variables to simulate a
wide range of scenarios, contributing to a more controlled
experimentation environment. Furthermore, custom datasets can

address specific challenges or limitations present in publicly
available datasets. However, this approach requires substantial
effort in data collection, annotation, and validation, ensuring the
dataset’s integrity and applicability. The complete details of these
proprietary datasets are presented in Table 4.

2.1.3 Papers using both their Own and
public datasets

In the landscape of crack detection research, a subset of the
reviewed papers stands out by leveraging a dual-source approach.
These studies draw from the strengths of both their own
meticulously curated datasets and publicly available datasets. By
merging these sources, researchers aim to achieve a harmonious
balance between dataset richness and diversity. The integration of
proprietary and public datasets provides a unique opportunity for
robust training and evaluation. Researchers benefit from the
specificity and customization of their dataset while also
capitalizing on the broader scope and variety offered by public
datasets. This combination empowers researchers to validate the
adaptability and generalization capabilities of their crack detection
models across a spectrum of scenarios. Papers adopting this hybrid
approach acknowledge the complementary nature of different
datasets and recognize that collaborative efforts between
proprietary and public sources can foster innovation and drive
the advancement of crack detection techniques. For further
insights into the specific datasets employed in these papers, refer
to Table 5. These variations underscore the dynamic nature of crack
detection research and highlight the multifaceted strategies
researchers employ to overcome challenges and contribute to the
evolution of structural health assessment technologies.

2.2 Algorithms and methods in
Crack detection

The development and application of algorithms and methods in
crack detection are central to the advancement of structural health
assessment. As the field of crack detection has evolved, machine
learning and deep learning techniques have emerged as powerful
tools for automated crack detection, offering innovative solutions to
the challenges posed by crack identification and characterization.

TABLE 2 List of acronyms used in this paper.

Acronym Expanded form Acronym Expanded form

CNN Convolutional Neural Network ANN Artificial Neural Network

FCN Fully Convolutional Network ViT Vision Transformer

SSD Single Shot MultiBox Detector CRF Conditional Random Field

IoU Intersection over Union Rsef Regional-Scale Edge Feature

mAP Mean Average Precision ResNet Residual Neural Network

ROC Receiver Operating Characteristic UNet U-Net

PR Precision-Recall YOLO You Only Look Once

MCC Matthews Correlation Coefficient kNN k-Nearest Neighbors

DCNN Deep Convolutional Neural Network GAN Generative Adversarial Network
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TABLE 3 Datasets and their brief explanation per papers.

Dataset Explanation Paper Type Download link

Crack500 Crack500 was curated by capturing 500 RGB
color images featuring cracks on the surfaces
of 500 asphalt roads, each with a resolution of
2560 × 1440. (Lee et al., 2023)

Munawar et al. (2022a), Mohammed et al.
(2022), Yong and Wang (2022), Zhang et al.
(2022), Zhao et al. (2023a), Lee et al. (2023),
Yang et al. (2023)

Image https://www.kaggle.com/datasets/
pauldavid22/crack50020220509t090436z001

Crack Forest
Dataset (CFD)

The Crack Forest dataset comprises 118 pairs
of RGB color images capturing asphalt road
surface cracks in Beijing, China. These images
were taken using an iPhone 5, and they
maintain their original resolution of 480 ×
320 pixels

Lee et al. (2023), Munawar et al. (2022b),
Gooda et al. (2023), Inácio et al. (2023),
Zhang et al. (2023a), Zhao et al. (2022),
Jing et al. (2022), Zhao et al. (2023a),
Li et al. (2022a)

Image https://github.com/cuilimeng/CrackForest-
dataset/tree/master

CrackTree200 CrackTree200 offers high-resolution images
at 800 × 600 pixels along with corresponding
label values identifying surface cracks on
asphalt surfaces. The dataset includes
numerous images featuring cracks on asphalt
surfaces with tree shadows. (Lee et al., 2023)

Zhao et al. (2023a), Lee et al. (2023),
Lv et al. (2023)

Image https://github.com/fyangneil/pavement-crack-
detection/tree/master?tab=readme-ov-file

Deep Crack The crack segmentation dataset encompasses
537 RGB color images, each with dimensions
of 554 × 384 pixels. This dataset is
characterized by its inclusion of images at
various scales, showcasing cracks that can
occur on surfaces composed of different
materials. It features images depicting cracks
on both concrete and asphalt surfaces. (Lee
et al., 2023)

Lee et al. (2023), Zhang et al. (2022),
Panta et al. (2023), de León et al. (2023), Jing
et al. (2022)

Image https://github.com/yhlleo/DeepCrack

GAPs384 The German Asphalt Pavement Distress
dataset comprises a collection of road surface
images accompanied by labeling data, encom-
passing various distress types such as cracks,
potholes, and inlaid paths. These images have
a resolution of 1920 × 1,080 pixels, and the
dataset consists of a total of 509 images. (Lee
et al., 2023)

Li et al. (2022a), Munawar et al. (2022a),
Zhao et al. (2023a), Lee et al. (2023), Lv et al.
(2023)

Image https://github.com/fyangneil/pavement-crack-
detection/tree/master?tab=readme-ov-file

AigleRN The dataset includes 38 pre-processed
grayscale images depicting a road pavement
surface located in France. This dataset is
divided into two sets, with half of the images
having dimensions of 991 × 462 pixels, and
the remaining half having dimensions of
311 × 462 pixels. (Inácio et al., 2023)

Inácio et al. (2023) Image https://github.com/Sutadasuto/uvgg19_crack_
detection?tab=readme-ov-file

CrackTree260 The dataset comprises 260 images, each with
dimensions of 800 × 600 pixels, captured
using an area-array camera under visible light
illumination conditions. (Inácio et al., 2023)

Inácio et al. (2023), Siriborvornratanakul
(2022), Wang et al. (2022a)

Image https://github.com/qinnzou/DeepCrack

CRKWH100 The dataset includes 100 images of a road
pavement surface, each with dimensions of
512 × 512 pixels, captured using a line array
camera under visible light illumination
conditions. (Inácio et al., 2023)

Inácio et al. (2023), Zhao et al. (2023b),
Siriborvornratanakul (2022), Wang et al.
(2022a)

Image https://github.com/qinnzou/DeepCrack

CrackLS315 The dataset comprises 315 images, each with
dimensions of 512 × 512 pixels, captured
using a line array camera under laser
illumination. (Inácio et al., 2023)

Inácio et al. (2023), Zhao et al. (2023b),
Siriborvornratanakul (2022), Wang et al.
(2022a)

Image https://github.com/qinnzou/DeepCrack

RDD2022 The dataset includes 21,041 road damage
images from Japan, the Czech Republic, and
India, distributed as follows: 10,506 from
Japanese pavement, 7,706 from Indian
pavement, and 2,829 from Czech pavement.
It covers various road conditions, comprising
eight distinct categories, such as longitudinal
cracks, transverse cracks, and crosswalk blur.
(Yu and Zhou, 2023)

Liu et al. (2022), Ashraf et al. (2023), Yu and
Zhou (2023)

Image https://figshare.com/articles/dataset/
RDD2022_-_The_multi-national_Road_
Damage_Dataset_released_through_
CRDDC_2022/21431547

(Continued on following page)

Frontiers in Built Environment frontiersin.org07

Kaveh and Alhajj 10.3389/fbuil.2024.1321634

https://www.kaggle.com/datasets/pauldavid22/crack50020220509t090436z001
https://www.kaggle.com/datasets/pauldavid22/crack50020220509t090436z001
https://github.com/cuilimeng/CrackForest-dataset/tree/master
https://github.com/cuilimeng/CrackForest-dataset/tree/master
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/yhlleo/DeepCrack
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/fyangneil/pavement-crack-detection/tree/master?tab=readme-ov-file
https://github.com/Sutadasuto/uvgg19_crack_detection?tab=readme-ov-file
https://github.com/Sutadasuto/uvgg19_crack_detection?tab=readme-ov-file
https://github.com/Sutadasuto/uvgg19_crack_detection?tab=readme-ov-file
https://github.com/qinnzou/DeepCrack
https://github.com/qinnzou/DeepCrack
https://github.com/qinnzou/DeepCrack
https://figshare.com/articles/dataset/RDD2022_-_The_multi-national_Road_Damage_Dataset_released_through_CRDDC_2022/21431547
https://figshare.com/articles/dataset/RDD2022_-_The_multi-national_Road_Damage_Dataset_released_through_CRDDC_2022/21431547
https://figshare.com/articles/dataset/RDD2022_-_The_multi-national_Road_Damage_Dataset_released_through_CRDDC_2022/21431547
https://figshare.com/articles/dataset/RDD2022_-_The_multi-national_Road_Damage_Dataset_released_through_CRDDC_2022/21431547
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1321634


TABLE 3 (Continued) Datasets and their brief explanation per papers.

Dataset Explanation Paper Type Download link

DeepCrack537 This dataset consists of 537 images, each
accompanied by annotated labels. All images
and their corresponding labels share a
uniform size of 544 × 384 pixels. (Zhang et al.,
2023a)

Zhang et al. (2023a) Image Not Available

AED The AED dataset consists of three sub-
datasets: AigleRN (38 images), ESAR
(15 images), and Dynamique (16 images).
These images are unevenly illuminated and
prone to noise interference, with mostly small
cracks. (Zhang et al., 2023a)

Zhang et al. (2023a) Image https://universe.roboflow.com/ben-ohmju/
aed-0awut/dataset/1

CrackSegNet The CrackSegNet dataset contains 919 crack
images. (Yang et al., 2023)

Yang et al. (2023) Image Not Available

DAGM 2007 The DAGM 2007 dataset is organized into
10 classes, with 6 classes designated for
development and 4 classes for the
2007 DAGM sym- posium competition. In
the initial 6 classes, there are 1,000 nonde-
fective images and 150 defective images each,
while the remaining 4 classes comprise
2,000 nondefective and 300 defective images
per class. Each class is generated using
distinct texture and defect models. (Kim et al.,
2023b)

Kim et al. (2023b) Image https://www.kaggle.com/datasets/
mhskjelvareid/dagm-2007-competition-
dataset-optical-inspection

CCIC This dataset comprises concrete images with
cracks collected from various METU Campus
Buildings, divided into negative and positive
crack images for classification. Each class
contains 20,000 images, totaling
40,000 images with dimensions of 227 ×
227 pixels in RGB. It originates from
458 high-resolution images (4032 ×
3024 pixels) using (Zhang et al., 2016)’s
method. The high-resolution images exhibit
variations in surface finish and illumination
conditions. No data augmentation
techniques, such as random rotation or
flipping, are employed

Ozgenel and Sorguc¸ (2018), Wang et al.
(2022b), Golding et al. (2022), Islam et al.
(2022), Jayaraju et al. (2022),
Paramanandham et al. (2022), Pu et al.
(2022), Bai et al. (2023), Shim et al. (2023)

Image https://www.kaggle.com/datasets/
arnavr10880/concrete-crack-images-for-
classification

CrackTree206 The dataset consists of 206 images of road
cracks, each with a resolution of 800 ×
600 pixels, and may contain occlusions and
shadows. (Zhang et al., 2022)

Zhang et al. (2022) Image https://github.com/qinnzou/DeepCrack

SYCrack There are 177 images, all sized uniformly at
256,256 pixels, which were captured from
cracks on the Suoyang Ancient City wall
surface. (Zhang et al., 2022)

Zhang et al. (2022) Image Not Available

Mixed Crack
Dataset (MCD)

The MCD dataset comprises a total of
2,538 raw images along with their
corresponding annotations. These images
encompass concrete cracks, asphalt cracks,
and earthen cracks, sourced from datasets
such as CrackTree206, Crack500, Deep
Crack, and SYCrack. (Zhang et al., 2022)

Zhang et al. (2022) Image Not Available

Building Wall
Crack Images
(BWCI)

BWCI consists of 4,500 wall crack images
with 27 27 pixels. (Islam et al., 2022)

Islam et al. (2022) Image Not Available

SDNET2018 SDNET2018 is an extensive dataset
consisting of more than 56,000 images
capturing both cracked and non-cracked
concrete bridge decks, walls, and pavements.
Notably, the dataset encompasses cracks
ranging from as narrow as 0.06 mm to as wide
as 25 mm. (Dorafshan et al., 2018)

Lv et al. (2023), Ngo et al. (2023), Philip et al.
(2023), Qayyum et al. (2023), Lu et al. (2022),
Inam et al. (2023), Kao et al. (2023), Shim
et al. (2023), Li et al. (2023a), Popli et al.
(2023)

Image https://www.kaggle.com/datasets/
aniruddhsharma/structural-defects-network-
concrete-crack-images

(Continued on following page)

Frontiers in Built Environment frontiersin.org08

Kaveh and Alhajj 10.3389/fbuil.2024.1321634

https://universe.roboflow.com/ben-ohmju/aed-0awut/dataset/1
https://universe.roboflow.com/ben-ohmju/aed-0awut/dataset/1
https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection
https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection
https://www.kaggle.com/datasets/mhskjelvareid/dagm-2007-competition-dataset-optical-inspection
https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
https://github.com/qinnzou/DeepCrack
https://www.kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://www.kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://www.kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1321634


2.2.1 Machine learning methods
Machine learning techniques encompass a range of

methodologies that enable computers to learn patterns and make
predictions from data without being explicitly programmed. These
methods leverage statistical algorithms to recognize patterns and
trends, making them well-suited for analyzing crack patterns and
textures in images. One key advantage of machine learning is its
versatility in handling various types of data and extracting relevant
features for crack detection. However, the effectiveness of traditional
machine learning methods can be limited by their dependence on
hand-crafted features and their inability to capture complex spatial
relationships within cracks.

2.2.2 Deep learning
Deep learning, a subset of machine learning, has gained

immense popularity in recent years due to its ability to
automatically learn hierarchical representations from raw
data. Deep learning models, such as convolutional neural
networks (CNNs), have demonstrated remarkable success in
image classification, object detection, and segmentation tasks.
CNNs excel at capturing intricate features and patterns within
images, making them particularly well-suited for crack detection.
Deep learning methods often outperform traditional machine
learning approaches by automatically learning relevant features
from data, eliminating the need for manual feature engineering.
However, deep learning models typically require large amounts

of labeled data and significant computational resources
for training.

2.2.3 Convolutional neural networks (CNNS)
CNNs are a class of deep neural networks specifically

designed for processing grid-like data, such as images. They
consist of multiple layers, including convolutional, pooling,
and fully connected layers, which extract progressively
abstract features from input images. CNNs have shown
remarkable performance in various computer vision tasks,
including crack detection, by automatically learning and
capturing complex visual patterns within crack images. The
hierarchical structure of CNNs allows them to identify local
features as well as global patterns, making them a suitable
choice for crack identification and classification.

Advantages of CNNs in Crack Detection Hierarchical Feature
Learning: CNNs can automatically learn and represent hierarchical
features within images, capturing intricate patterns and textures
characteristic of cracks. Local and Global Context: CNNs can
simultaneously capture local and global contextual information,
aiding in accurate crack identification. Robustness: CNNs are
robust to variations in lighting, orientation, and noise, making
them suitable for real-world crack detection scenarios.
Disadvantages of CNNs in Crack Detection:

Data Requirements: CNNs require a large amount of labeled
training data to generalize well to diverse crack patterns and

TABLE 3 (Continued) Datasets and their brief explanation per papers.

Dataset Explanation Paper Type Download link

Crack45K The dataset comprises 45,000 images, each
with a resolution of 224 × 224 pixels,
showcasing diverse pavement surfaces, both
with and without cracks. (Ali et al., 2022)

Ali et al. (2022) Image Not Available

Stone331 The dataset consists of 331 grayscale images
of stone surfaces, each with a size of
512,512 pixels. It’s worth noting that the
entire image may not contain the stone, so
masks are provided to exclude predictions
outside the stone area. (Konig et al., 2021;
Siriborvornratanakul, 2022)

Siriborvornratanakul (2022) Image https://github.com/qinnzou/DeepCrack

CQU-BPDD The CQU-BPDD consists of
60,056 bituminous pavement images
captured by in-vehicle cameras on a
professional pavement inspec- tion vehicle in
southern China. Each image corresponds to a
2 × 3 meters pavement patch on highways
and has a resolution of 1200900 pixels. The
dataset includes seven distress types:
transverse crack, massive crack, alligator
crack, crack pouring, longitudinal crack,
ravelling, repair, and normal pavement
conditions. (Tang et al., 2021)

Liu et al. (2022) Image https://github.com/DearCaat/CQU-BPDD

Historical
Building Crack
2019

This dataset comprises 3,886 images,
including annotated RGB images, with
757 depicting cracks and 3,139 depicting
non-crack conditions. The raw images were
captured using a Canon camera (Canon EOS
REBEL T3i) with a resolution of 5184 ×
3456 pixels. These images feature historical
buildings, such as the Mosque (Mas- jed) of
Amir al-Maridani, situated in Sekat Al
Werdani, El-Darb El-Ahmar, in the Cairo
Governorate. (Yadav et al., 2022)

Yadav et al. (2022) Image https://data.mendeley.com/datasets/
xfk99kpmj9/1
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TABLE 4 Papers with their own datasets.

Paper Their own dataset

Li et al. (2022b) This study employed image data obtained from CiCS, a rapid road condition detection system in China. The dataset consisted of
1,923 pavement cracking images in “jpg” format, each with a resolution of 96 dpi (3,024 × 1887 pixels). Out of these, 1,538 images were
allocated for training, while the remaining 385 were designated for testing

Yang et al. (2022) The dataset comprised 10,400 images acquired by a vehicle equipped with a highway condition monitor, encompassing a total of
202,840 labeled instances of pavement distress

Lee et al. (2022) The dataset consisted of 4,000 images, equally divided into 2,000 negative and 2,000 positive samples

Mo et al. (2022) The hazardous clearance set comprised 1,200 samples, while the non-hazardous clear-ance set contained 800 samples

Li et al. (2022c) The dataset consisted of 600 images captured using the Teledyne Dalsa S3-24-02k40, a high-speed linear array industrial digital camera

Zhang et al. (2023b) The dataset comprises approximately 800 photos of bridge cracks, collected manually using a digital camera with a resolution of 1,664 ×
1,664 pixels in JPG format. In total, 4,033 images were labeled, capturing various weather conditions

Ha et al. (2022) Total 6,650 images

Maslan and Cicmanec (2023) Total 3,279 images

Loverdos and Sarhosis (2022) Total 107 fully annotated images of masonry structures

Wibowo et al. (2022) Total 2,516 images obtained through web scraping

Wang (2023) The dataset initially consisted of 284 images, each with a resolution of 1706 × 1,280 pixels and 8 bits per channel in RGB format, captured
on the campus of Hefei University using a smartphone. After applying augmentation techniques, the dataset expanded to encompass
6,000 images

Xu et al. (2022) The dataset comprised 148 images of pavement cracks, which were captured using smartphones and covered various types of cracks.
Additionally, data augmentation techniques were applied to expand the dataset by 50%

Kapadia et al. (2023) The dataset was meticulously curated, containing over 80,000 images of cracks and an equal number of non-crack images sourced from
concrete cube surfaces

Ma et al. (2022b) The MaDataSet, a collection of 474 images depicting cracks in ancient timber structures, was compiled from the Bawang Academy at
Shen-yang Jianzhu University

Wan et al. (2022) The dataset comprised more than 300 crack images from the Jing-Hang Grand Canal
Extra Large Bridge site and over 1,500 crack images from the laboratory. Following data augmentation, the total image count expanded to
7,000

Ren et al. (2022) A high-resolution camera, affixed to a vehicle, gathered 9,650 images portraying diverse pavement cracks for the dataset.

Elghaish et al. (2022) The dataset comprised 4,663 images of highway cracks, categorized into three groups
“vertical cracks,” “horizontal and vertical cracks,” and “diagonal cracks.”

Chu et al. (2023) Total 6,000 images from Pakistani roads

Wu et al. (2022) 125 images of cracked concrete with dimensions measuring 3120 × 4160 pixels

Nomura et al. (2022) Totally around 100,000 images

Yu et al. (2022) 437 RGB images with their segmentation labels

Yu et al. (2022) The dataset comprises 1,000 digital photos captured using a Canon EOS 5DS R camera during regular bridge inspections. Among these
photos, 487 contained cracks, and through augmentation techniques, this number was expanded to 3,365 images

Munawar et al. (2022a) The benchmarking dataset included 600 images depicting damage to buildings located in Sydney

Kun et al. (2022) The dataset consisted of 385 images of bridges taken at Zhongshan Bridge in Gansu
China, using an I-800 Airborne Plane Array Camera

Kolappan Geetha et al. (2023) The dataset used to train the 1D DFT-CNN model consisted of 1,492 images containing cracks and 1,321 images without cracks on
concrete surfaces, encompassing diverse optical conditions

Hammouch et al. (2022) The dataset was generated from video frames supplied by the Moroccan National
Center for Road Studies and Research (CNER) through the SMAC system, leading to a collection of 3,287 images that were manually
annotated

Deng et al. (2023) Total 6,840 images

Tan and Dong (2023) The dataset was thoughtfully curated to include 2000 images, primarily due to hardware (GPU) constraints. Segmentation masks were
generated using LabelImgPlus

Paramanandham et al. (2023) The authors utilized their own dataset for their research

(Continued on following page)
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variations. Computational Intensity: Training and fine-tuning
CNNs can be computationally intensive, necessitating powerful
hardware and resources. Interpretability: The inner workings of
CNNs can be challenging to interpret, limiting their explainability in
critical applications. In the 85 articles surveyed, a diverse array of
algorithms and methods were employed for crack detection.

Notably, the following algorithms emerged as prominent choices,
showcasing their effectiveness in addressing the intricacies of crack
identification and classification:

CNN (Convolutional Neural Networks): CNNs, as previously
discussed, are widely used for crack detection due to their ability to
capture complex patterns and textures in images. They have been

TABLE 4 (Continued) Papers with their own datasets.

Paper Their own dataset

Lee and Huh (2022) Total 800 multisensory images

Kim et al. (2022) The wall quality dataset consisted of 5,000 images showcasing various defects such as cracks, holes, efflorescence, damp patches, and spall
issues, with 1,000 images dedicated to each category

Kou et al. (2022) The dataset encompassed 380 images of rail cracks, gathered over a year in diverse weather, traffic, and wear conditions

Yuan et al. (2022) 300 self-captured pavement crack images

Liu et al. (2023) Total 21,547 images

Guo et al. (2023) Total 88 images

Li et al. (2023b) The dataset was generated from drone-captured rock mass crack images, resulting in a VOC dataset that employed advanced data
augmentation techniques

Kim et al. (2023a) The image dataset was sourced from the Korea Expressway Corporation’s bridge monitoring system, consisting of a total of 192 images

Tse et al. (2023) The dataset included 4,000 crack images, covering nine distinct crack types with different orientations

Lee and Yoo (2023) The crack dataset consisted of 11,226 image sets along with corresponding masks, facilitating precise crack detection and non-semantic
object removal

Quqa et al. (2022) A dataset comprising images of welding joints from a long-span steel bridge, captured using high-resolution consumer-grade digital
cameras

Ji et al. (2022) Total 11,449 images, including 4,650 pavement and 6,799 concrete images

Chen et al. (2022) Total 1,452 images

TABLE 5 Papers with Public dataset and their own dataset.

Paper Public dataset + their own dataset

Ashraf et al. (2023) This study utilized data from two sources: RDD2022, a publicly available online dataset, and a second set of data collected from the roads of
Malaysia

Yong and Wang (2022) 727 images by 4-megapixel Hikvision industrial camera MV-CA060–10 GC and Crack500 dataset

Lee et al. (2023) A total of 1,235 test images were obtained from drone footage on the sea bridge, in addition to 10,789 open images sourced from datasets
including Crack Forest Dataset, Crack500, CrackTree200, Deep Crack, and GAPs384

Zhao et al. (2023b) UAVRoadCrack, and public datasets: CRKWH100, and CrackLS315 Total 7,403 images

Munawar et al. (2022b) All the self-built dataset images were acquired using the DJI-M200 UAV, which utilizes vertical take-off and landing (VTOL) technology.
This dataset amalgamated data from Crack Forest Dataset (CFD), Crack500, and GAPs, resulting in a comprehensive collection of
1,300 images

Kang and Cha (2022) A total of 1,203 images were included in the dataset, and they underwent extensive augmentation using synthesis techniques. Additionally,
the dataset was evaluated using 545 testing images sourced from both existing datasets and their proprietary data

Panta et al. (2023) The dataset of levee crack images was gathered over several years by field inspectors from the New Orleans district of the U.S. Army Corps of
Engineers (USACE). Initially, it contained 1,650 images. To enhance the dataset, 101 additional levee crack images were annotated using the
VGG Image Annotator tool. For comprehensive model analysis, the DeepCrack road crack dataset was also utilized. This dataset’s test subset
comprised 237 images, each accompanied by its respective masks

Inam et al. (2023) Self-built dataset from Pakistan and the SDNET2018 dataset

Kao et al. (2023) Crack images were sourced from various devices, including smartphones, a camera mounted on a UAV (Unmanned Aerial Vehicle), and the
open-source deep-learning dataset SDNET2018

Li et al. (2022a) A total of 48,000 images were used, including those generated through augmentation (from a self-created dataset), and the Crack Forest
Dataset (CFD) and GAPs images were included for evaluation
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applied in various architectures and configurations to achieve high
accuracy in crack identification.

Deep Learning: Deep learning approaches beyond CNNs have
been leveraged to enhance crack detection:

YOLO (You Only Look Once): YOLO is a real-time object
detection algorithm that can identify and locate multiple objects in
an image simultaneously. It has been adapted for crack detection to
provide efficient and accurate localization of cracks within images.

TABLE 6 Main Algorithms with their related papers.

Algorithm Paper

CNN Yang et al. (2023), Chu et al. (2023), Inácio et al. (2023), de León et al. (2023), Guo et al. (2023), Kim et al. (2023a), Lee and Yoo
(2023), Jayaraju et al. (2022), Lee et al. (2022), Yong and Wang (2022), Wu et al. (2022), Lu et al. (2022), Quqa et al. (2022), Chen
et al. (2022), Yadav et al. (2022), Golding et al. (2022), Wang et al. (2022a)

Deep Learning Golding et al. (2022), Kou et al. (2022), Kun et al. (2022), Liu et al. (2022), Pu et al. (2022), Wan et al. (2022), Kolappan Geetha et al.
(2023), Liu et al. (2023), Ngo et al. (2023), Popli et al. (2023), Shim et al. (2023), Yang et al. (2023)

YOLO Ashraf et al. (2023), Zhang et al. (2023b), Maslan and Cicmanec (2023), Gooda et al. (2023), Deng et al. (2023), Yu and Zhou
(2023), Inam et al. (2023), Li et al. (2023b), Tse et al. (2023), Kao et al. (2023), Xu et al. (2022), Li et al. (2022b), Yang et al. (2022),
Ma et al. (2022b), Ren et al. (2022), Nomura et al. (2022), Yu et al. (2022)

UNet Kim et al. (2023b), Gooda et al. (2023), Bai et al. (2023), Deng et al. (2023), Inam et al. (2023), Zhao et al. (2023a), Li et al. (2023a),
Wang et al. (2022b), Li et al. (2022c), Ha et al. (2022), Loverdos and Sarhosis (2022), Mohammed et al. (2022), Jing et al. (2022),
Ji et al. (2022), Wang et al. (2022a)

ResNet Wang et al. (2022a), Islam et al. (2022), Ji et al. (2022), Kim et al. (2022), Paramanandham et al. (2022), Siriborvornratanakul
(2022), Wibowo et al. (2022), Li et al. (2023a), Bai et al. (2023), Deng et al. (2023), Paramanandham et al. (2023), Qayyum et al.
(2023)

Rsef Kim et al. (2023b)

Ensemble Learning Lee et al. (2023)

CrackNet Gharehbaghi et al. (2022), Zhao et al. (2023b)

Mask RCNN Lv et al. (2023), Xu et al. (2022)

Fast RCNN
CrackSN

Mo et al. (2022), Xu et al. (2022), Zhao et al. (2022)
Wang (2023)

Inceptionv3 Kapadia et al. (2023), Paramanandham et al. (2023), Qayyum et al. (2023)

IterLUNet Panta et al. (2023)

VGG Wang et al. (2022a), Elghaish et al. (2022), Hammouch et al. (2022), Islam et al. (2022), Ji et al. (2022), Nomura et al. (2022),
Paramanandham et al. (2022), Wibowo et al. (2022), Zhang et al. (2022), Guo et al. (2023), Paramanandham et al. (2023), Philip
et al. (2023)

MobileNet Ha et al. (2022), Philip et al. (2023), Qayyum et al. (2023)

Xception Philip et al. (2023)

GoogleNet Qayyum et al. (2023), Elghaish et al. (2022)

ShuffleNet Qayyum et al. (2023)

Omni-Dimensional Dynamic Convolution Tan and Dong (2023)

PIRM Paramanandham et al. (2023)

CTCD-Net Zhang et al. (2023a)

DenseNet Li et al. (2022a), Wang et al. (2022a), Islam et al. (2022)

AlexNet Elghaish et al. (2022), Islam et al. (2022), Paramanandham et al. (2022)

SqueezeNet Ha et al. (2022), Wang (2023)

DeepLab Loverdos and Sarhosis (2022), Wang et al. (2022a), Siriborvornratanakul (2022), Yu et al. (2022)

LinkNet Loverdos and Sarhosis (2022)

FPN Loverdos and Sarhosis (2022)

ViT Ali et al. (2022)

Adversarial Network Munawar et al. (2022a), Yuan et al. (2022)

STRNet Kang and Cha (2022)
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TABLE 7 Algorithms used in 85 articles.

# Paper Algorithm

1 Ashraf et al. (2023) Custom YOLOv7

2 Yang et al. (2023) Deep CNN

3 Kim et al. (2023b) Rsef based on U-net namely, Rsef-Edge

4 Lee et al. (2023) Ensemble learning

5 Zhang et al. (2023b) Yolo v4

6 Zhao et al. (2023b) CrackNet

7 Maslan and Cicmanec (2023) YOLO v2

8 Lv et al. (2023) Mask R-CNN

9 Wang (2023) CrackSN built on the Adam-SqueezeNet architecture

10 Gooda et al. (2023) EfficientNet with residual U-Net for segmentation, YOLO v5 for crack detection

11 Kapadia et al. (2023) The Inceptionv3 model

12 Ngo et al. (2023) Deep learning

13 Chu et al. (2023) CNN

14 Bai et al. (2023) ResNet and ResNet + UNet

15 Kolappan Geetha et al. (2023) Deep Learning

16 Panta et al. (2023) Iterative Loop UNet (IterLUNet)

17 Philip et al. (2023) VGG16, VGG19, ResNet 50, MobileNet, and Xception

18 Qayyum et al. (2023) GoogLeNet, MobileNet-V2, Inception-V3, ResNet18, ResNet50, ResNet101, and ShuffleNet

19 Inácio et al. (2023) Multi-class CNN

20 Deng et al. (2023) YOLOv5 crack detection and Res-UNet segmentation

21 Tan and Dong (2023) A pyramidal residual network, employing an encoder-decoder architecture, incorporates Omni Dimensional Dynamic Convolution
for its operations

22 Paramanandham et al. (2023) The Pixel-Intensity Resemblance Measurement (PIRM) rule was applied in conjunction with VGG-16, ResNet-50, and
InceptionResNet-V2 models for the purpose of crack detection

23 Yu and Zhou (2023) A novel approach for crack detection, named YOLOv5-CBoT, is introduced by enhanc-ing the YOLOv5 network with a Bottleneck
Transformer

24 Zhang et al. (2023a) CTCD-Net: A Cross-layer Transmission network for tiny road Crack Detection

25 de León et al. (2023) A novel crack segmentation algorithm has been developed, which combines the theory of minimal path selection with a region-
based approach. This method involves the segmentation of texture features extracted using Gabor filters

26 Inam et al. (2023) YOLOv5 for crack detection and U-Net for segmentation

27 Liu et al. (2023) Deep convolutional network (Single Shot MultiBox Detector (SSD))

28 Guo et al. (2023) Adopted convolutional neural network (CNN) (VGG16 + Focal Loss)

29 Li et al. (2023b) The YOLOv7 with attention mechanism

30 Kim et al. (2023a) CNN

31 Tse et al. (2023) Improved YOLOv4 with an attention module

32 Kao et al. (2023) YOLOv4

33 Lee and Yoo (2023) Fast encoder-decoder network with scaling attention

34 Zhao et al. (2023a) U-Net

35 Shim et al. (2023) A novel deep neural network has been introduced, accompanied by an adversarial learning-based balanced ensemble discriminator
network

36 Li et al. (2023a) Segmentation by ResNet50 as a UNet model

(Continued on following page)
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TABLE 7 (Continued) Algorithms used in 85 articles.

# Paper Algorithm

37 Popli et al. (2023) Deep learning

38 Xu et al. (2022) Fast RCNN, Mask RCNN and compare with YOLO.

39 Jayaraju et al. (2022) CNN

40 Zhang et al. (2022) FPN-vgg16

41 Wang et al. (2022b) U-Net and the dual-attention network (DANet), and efficient mobile-attention X-network (MA-Xnet)

42 Li et al. (2022b) YOLOv4-3

43 Yang et al. (2022) YOLOv5s

44 Lee et al. (2022) CNN

45 Mo et al. (2022) Fast R-CNN

46 Yong and Wang (2022) An end-to-end real-time pavement crack segmentation network, denoted as RIIAnet, has been developed

47 Li et al. (2022c) U-Net and a side-output part: SoUNet

48 Islam et al. (2022) VGG16, ResNet18, DenseNet161, and AlexNet

49 Ha et al. (2022) SqueezeNet, U-Net, and Mobilenet-SSD

50 Loverdos and Sarhosis (2022) U-Net, DeepLabV3+, U-Net (SM), LinkNet (SM), and FPN (SM)

51 Ali et al. (2022) The vision-transformer (ViT)

52 Wibowo et al. (2022) VGG16 and RestNET50

53 Pu et al. (2022) Deep convolutional neural network (DCNN)

54 Munawar et al. (2022b) Cycle generative adversarial network (CycleGAN)

55 Ma et al. (2022b) YOLO v3, YOLO v4s-mish, and YOLO v5s

56 Wan et al. (2022) Deep Learning

57 Ren et al. (2022) YOLOV5

58 Kang and Cha (2022) Semantic transformer representation network (STRNet)

59 Siriborvornratanakul (2022) DeepLabV3-ResNet101

60 Elghaish et al. (2022) AlexNet, VGG16, VGG19, GoogleNet.

61 Wu et al. (2022) Full convolutional neural networks FCN-8s, FCN-16s, and FCN-32s

62 Liu et al. (2022) Deep Domain Adaptation-based Crack Detection Network (DDACDN)

63 Nomura et al. (2022) YOLOv2 + VGG16

64 Yu et al. (2022) DeepLabV3+

65 Yu et al. (2022) YOLOv5

66 Munawar et al. (2022a) CNN and a cycle generative adversarial network (CycleGAN)

67 Kun et al. (2022) Deep bridge crack classification (DBCC)-Net

68 Mohammed et al. (2022) U-Net

69 Hammouch et al. (2022) VGG-19

70 Lee and Huh (2022) This study introduces a dataset.

71 Lu et al. (2022) Multi-scale crack detection network: MSCNet

72 Kim et al. (2022) Conv2D ResNet.

73 Kou et al. (2022) Deep Learning

74 Zhao et al. (2022) Fast R-CNN

(Continued on following page)
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UNet: UNet is a convolutional neural network architecture designed
for biomedical image segmentation. Its U-shaped architecture
enables precise segmentation of crack regions, making it well-
suited for crack detection and localization.

ResNet (Residual Network): ResNet is a deep convolutional neural
network architecture known for its ability to mitigate the vanishing
gradient problem in deep networks. ResNet-based models have been
effective in capturing intricate features within crack images.

Rsef: Residual Network with Feature Shrinking (Rsef) is a
variant of ResNet that incorporates feature shrinking to reduce
the computational complexity of the network. It has been used for
efficient and accurate crack detection.

Ensemble Learning: Ensemble learning techniques, such as
combining predictions from multiple models, have been
employed to enhance crack detection accuracy and robustness,
demonstrating improved performance over individual models.

CrackNet: CrackNet is a specialized architecture designed explicitly
for crack detection. It employs convolutional and pooling layers to
capture crack patterns and structural features, resulting in high accuracy.

Mask RCNN and Fast RCNN: These architectures extend CNNs
to perform instance segmentation, enabling accurate identification
and localization of individual cracks within images.

Inceptionv3, IterLUNet, VGG, MobileNet, Xception,
GoogleNet, ShuffleNet, and Omni-Dimensional Dynamic
Convolution: These deep learning architectures have been
explored to optimize feature extraction and crack detection
performance, leveraging their unique design principles.

Pixel-intensity resemblance measurement (PIRM), CTCD-Net,
and DeepLab: Specialized techniques have been developed to assess
pixel-level resemblance and semantic segmentation, allowing for
detailed and fine-grained crack detection.

Adversarial Network and STRNet: Adversarial networks and
architecture variants like STRNet have been used to enhance
model robustness and generalization, contributing to more
reliable crack detection. In Table 6 we can see the main
methods which mentioned above, with the papers that they
use them. The comprehensive details and utilization of these

algorithms in the surveyed papers can be found in Table 7
providing valuable insights into their specific applications and
performance in crack detection tasks.

3 Results and discussion

3.1 Results

The “Results” section of a crack detection study is a critical
component that showcases the performance and effectiveness of
the proposed methodologies. It provides a quantitative
assessment of how well the developed algorithms and models
perform in detecting and classifying cracks in various structures.
This section serves as a validation of the proposed solutions,
allowing researchers to evaluate their contributions and compare
them to existing methods.

3.2 Metrics for evaluating results

To objectively evaluate the performance of crack detection
algorithms, researchers employ a variety of metrics that assess
different aspects of model performance. These metrics provide
insights into the accuracy, precision, recall, and overall
effectiveness of the methods. Let’s explore some of the commonly
used metrics in crack detection research:

Accuracy: Accuracy measures the proportion of correctly
predicted crack and non-crack instances among all predictions. It
provides an overall assessment of the model’s correctness but might
be skewed in imbalanced datasets.

Precision: Precision determines the proportion of accurate
positive forecasts to all instances of positive predictions. It
indicates the model’s ability to correctly identify positive cases,
minimizing false positives.

Recall (Sensitivity): The ratio of accurate positive predictions to
all actual positive cases is calculated using recall. It highlights the

TABLE 7 (Continued) Algorithms used in 85 articles.

# Paper Algorithm

75 Jing et al. (2022) AR-UNet based on UNet

76 Gharehbaghi et al. (2022) FastCrackNet

77 Yuan et al. (2022) Generative adversarial network

78 Paramanandham et al. (2022) Alexnet, VGG16, VGG19 and ResNet-50

79 Quqa et al. (2022) CNN

80 Ji et al. (2022) U-Net. ResUNet, VGGU-Net, and EfficientU-Net.

81 Chen et al. (2022) Enhanced graph network branch

82 Yadav et al. (2022) Multi-scale feature fusion (3SCNet + LBP + SLIC)

83 Golding et al. (2022) Deep learning-based autonomous crack detection method using CNN

84 Li et al. (2022a) Dense boundary refinement network (DBR-Net)

85 Wang et al. (2022a) Several semantic segmentation models were explored, including Fully Convolutional Network (FCN), Global Convolutional
Network (GCN), Pyramid Scene Parsing Net- work (PSPNet), UPerNet, and DeepLabv3+. These models were coupled with various
backbone architectures, including VGG, ResNet, and DenseNet, to investigate their performance
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model’s capacity to identify all positive cases, minimizing
false negatives.

F1 Score: The harmonic mean of recall and precision is the
F1 score. It balances the trade-off between precision and recall,
providing a single metric to assess the model’s performance.

Intersection over Union (IoU): IoU calculates how much of the
expected and actual bounding boxes or masks overlap. It is
commonly used in object detection and segmentation tasks.

Mean Average Precision (mAP): The average precision across
various confidence threshold levels is determined bymAP. It is often
used in object detection tasks to evaluate the precision-recall curve.

Receiver Operating Characteristic (ROC) Curve: The true
positive rate versus the false positive rate at different
categorization criteria are plotted on the ROC curve. A popular
statistic used to evaluate the effectiveness of models is the area under
the ROC curve (AUC-ROC).

Precision-Recall (PR) Curve: The PR curve illustrates the trade-
off between the two metrics by plotting recall against precision at
various categorization levels.

Dice Coefficient: The Dice coefficient measures the similarity
between the predicted and ground truth segmentation masks.

Matthews Correlation Coefficient (MCC): MCC offers a
balanced statistic for binary classification tasks by accounting for
true positive, true negative, false positive, and false negative
predictions.

These metrics collectively offer a comprehensive view of a crack
detection model’s performance. Researchers select the appropriate
metrics based on the specific objectives of their study and the nature
of the crack detection problem.

Supplementary Table S1 presents a detailed overview of the
results obtained from the 85 reviewed papers. The table offers
insights into the performance of various crack detection
algorithms across different metrics, providing a comprehensive
analysis of their effectiveness in real-world scenarios. The
subsequent sections delve into the specific findings and trends
observed in the evaluated papers, shedding light on the
advancements and challenges in crack detection technologies.

3.3 Discussion

The field of crack detection has witnessed significant
advancements owing to the integration of deep learning
techniques. In this discussion, we delve into the collective
insights, contributions, and limitations presented across a diverse
range of recent research papers. As we navigate through the
reviewed studies, we categorize them based on their innovative
approaches and the identified gaps or limitations.

The introduction of the “Custom YOLOv7” model by Ashraf
et al. (2023) marks a substantial stride in crack detection. This
model achieves exceptional accuracy on both the RDD2022 dataset
and a custom dataset. While the model’s performance is
remarkable, opportunities lie in refining its efficiency and
exploring pixel-level segmentation strategies. Yang et al.
(2023)’s “AttentionCrack” network presents a promising
solution to enhance crack detection accuracy by addressing
inaccuracies in boundary localization. The model demonstrates
impressive F1 scores on benchmark datasets. However, the authors

highlight potential areas of exploration, such as attention
mechanisms and dilated convolution modules, to further
enhance performance. Kim Y. et al. (2023)’s “Rsef-Edge,” built
upon the U-net architecture, stands out for achieving an accuracy
rate of 97.36%. The paper suggests the implementation of an edge
computing-based crack detection system. Nevertheless, challenges
and potential advantages related to distributed deep learning form
an essential part of the ongoing discussion. The “Stacking
Ensemble Model” proposed by Lee et al. (2023) offers a novel
approach to crack segmentation by leveraging ensemble learning.
This model achieves an Intersection over Union (IoU) of 0.74,
significantly outperforming FCN-8s. The focus on stacking
ensemble learning and its impact on performance opens
avenues for further investigation. Zhang J. et al. (2023)’s
“Automated Yolo v4” introduces a method that emphasizes
precision, recall, and F1 scores, showcasing a compelling
alternative to existing approaches. The paper highlights the
model’s efficiency and compactness, making it a viable solution.
However, addressing the challenges posed by imbalanced data
remains a crucial direction for future research.

In “CrackNet” and “CrackClassification,” Zhao Y. et al. (2023)
contribute with their novel CrackNet model and CrackClassi-
fication algorithm. The study reports average precision (AP)
scores for the CrackNet network across various datasets. The
insights from this work shed light on the potential of the
proposed methods in the context of crack detection. Maslan and
Cicmanec (2023) propose the utilization of Yolo v2 for crack
detection, resulting in an average precision (AP) of 0.89. This
work showcases the model’s competency in crack detection and
sets the stage for discussions on the selection of YOLO versions for
optimal results. Lv et al. (2023)’s “Mask R-CNN” presents a robust
solution based on the mask region-based Convolutional Neural
Network. The model achieves accuracy rates ranging from 95%
to 99% on diverse datasets. While the model’s performance is
commendable, the paper also acknowledges the need for
thorough comparative analysis and the selection of pooling
layers. Wang (2023)’s “CrackSN” system, built on the Adam-
SqueezeNet architecture, achieves an accuracy of 97.3% in
classifying cracked patches. The authors discuss the positive
aspects and limitations of their system, including its reliance on
specific datasets and the potential for improving pixel-level
accuracy. The novel proposal of “EfficientNet with Residual
U-Net” by Gooda et al. (2023) combines segmentation and
detection techniques to achieve an impressive accuracy of
99.35%. The paper’s methodology and results provide a strong
foundation for further exploration, while the discussion raises
questions about computational requirements and improvements
in the proposed methods. Kapadia et al. (2023)’s work on the
“Inceptionv3” model adds valuable insights into accuracy, cross-
entropy, precision, recall, and F-score values. The study
acknowledges the challenges posed by acquired images and
underlines the limitations of conventional algorithms in the
domain of crack detection. Ngo et al. (2023)’s deep learning
approach showcases an accuracy of 95.19% for crack detection.
This work accentuates the importance of reliable datasets and
addresses limitations in previous crack detection methods. The
study’s emphasis on dataset quality sets the stage for further
investigation.
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Chu et al. (2023)’s “Pothole Crack Detection (PCD)” model
leverages a CNN-based approach to achieve remarkable precision
and recall rates. The paper introduces a novel deep learning method
that extends beyond crack detection to address road damage and
pothole identification. The emphasis on decision support systems
and a self-collected dataset enhances the practical relevance of the
work. Bai et al. (2023)’s proposal to employ ResNet and ResNet +
UNet for crack detection results in an accuracy of 67.6%. While the
paper highlights the potential of these architectures, it also
acknowledges the need for more labeled images and explores the
utilization of benchmark datasets. The discussion reflects the
ongoing pursuit of accurate and efficient crack detection
solutions. Kolappan Geetha et al. (2023) take an innovative
approach by employing an iterative differential sliding-window-
based local image processing technique for missing crack detection.
The study’s focus on enhancing efficiency and introducing a novel
scheme for eliminating missing shallow propagating crack segments
offers new avenues for further research.

Inam et al. (2023)’s integration of YOLOv5 and U-Net for
bridge crack detection demonstrates the potential of combining
detection and segmentation approaches. This novel combination
contributes to the field by showcasing the advantages of leveraging
both models in tandem. The study also raises considerations for
applying this approach to bridge crack detection in developing
countries. Lee et al. (2023)’s “Image Processing and Deep
Learning” method introduces a deep convolutional network
(SSD) for object detection in tunnel images. The study
compares various CNN models based on accuracy and discusses
challenges in implementation and real-world feasibility. While the
method holds promise, the paper acknowledges the need for more
in-depth discussion on implementation challenges. Guo et al.
(2023)’s adoption of a CNN (VGG16 + Focal Loss) for crack
detection and quantification presents a promising way to estimate
defect dimensions on complex structures. The paper’s validation
through gauge measurements and point cloud data opens avenues
for applying the proposed approach to diverse scenarios. Li et al.
(2023b)’s proposal of YOLOv7 with an attention mechanism for
crack detection showcases improvements in precision and recall
rates. The model’s superior performance adds to the ongoing
discourse on achieving a balance between accuracy and
inference speed. Kim J.-Y. et al. (2023)’s “Blurred and Indistinct
Concrete Crack Detection Framework” introduces a framework
for detecting challenging blurred and indistinct concrete cracks.
The paper explores the effectiveness of CNN models like AlexNet,
VGG-16, and ResNet152 in classification and highlights the
limitations of image filtering and thresholding methods. This
work emphasizes the importance of tackling complex scenarios
in crack detection. Tse et al. (2023)’s “Improved YOLOv4 with
Attention Module” showcases an enhanced YOLOv4 model with
an attention module that achieves high mean average precision
(mAP). The study’s focus on improving model efficiency and
performance underscores the dynamic nature of crack detection
research. Kao et al. (2023)’s “Combining YOLOv4 for Crack
Detection” presents an approach utilizing YOLOv4 for accurate
crack detection, validated through quantitative crack test
methodologies. This work emphasizes the significance of image
processing and edge detection techniques in achieving
reliable results.

Lee and Yoo (2023)’s “Fast Encoder-Decoder Network with
Scaling Attention” contributes a fast encoder-decoder network with
scaling attention to the field. The model’s competitive results and
focus on detecting fine-grained cracks point towards the ongoing
efforts to balance computational efficiency and precision. Zhao F.
et al. (2023)’s “U-Net-Based Crack Segmentation with
Morphological Network” introduces a novel crack segmentation
method employing a U-Net-based architecture with a
morphological network and multi-loss function. The proposed
method’s capability to improve crack segmentation performance
under polarized light conditions adds a nuanced perspective to the
field. Shim et al. (2023)’s “Stereo Adversarial Learning-Based
Balanced Ensemble Discriminator Network” unveils a novel deep
neural network with an adversarial learning-based balanced
ensemble discriminator network. The model’s performance in
terms of intersection-over-union and F1 scores presents an
intriguing avenue for addressing challenges posed by varying
environmental conditions. Li et al. (2023a)’s “Intelligent Deep
Learning for Crack Feature Extraction and Segmentation”
introduces a two-stage transfer learning approach using
ResNet50 and multilayer parallel residual attention (MPR) for
crack feature extraction and segmentation. The study’s emphasis
on improvements over the benchmark UNet model underscores the
potential of incorporating advanced neural network architectures.
Popli et al. (2023)’s integration of a robot vision system with deep
learning for road crack identification culminates in the identification
of Xception as the most accurate and predictive model among the
tested algorithms. The study’s call for comprehensive investigations
into crack detection complexities highlights the multifaceted nature
of real-world applications. Xu et al. (2022)’s comparison of Fast
RCNN, Mask RCNN, and YOLO for crack detection brings forth
insights into the performance of these models. While Fast RCNN
emerges with better results, this paper illustrates the importance of
understanding the trade-offs between different detection
architectures. Jayaraju et al. (2022)’s CNN-based approach for
high-accuracy crack detection in building structures offers an
efficient and objective solution. The paper’s focus on utilizing a
large dataset and CNN for precise detection draws attention to the
potential of data-driven approaches in enhancing accuracy. Zhang
et al. (2022)’s proposal for crack detection in earthen heritage sites
using FPN-vgg16 combines effective crack extraction and transfer
learning. The study’s engagement with challenges related to
deployment and uncertainty in crack attributes underscores the
nuanced considerations in heritage preservation.

Wang et al. (2022b)’s “MA-Xnet” introduces an efficient mobile-
attention X-network for crack detection. While the paper celebrates
state-of-the-art performance and attention mechanisms, it
acknowledges the need for further exploration in dataset
generalization and computational complexity analysis. Li L. et al.
(2022)’s utilization of Conv2D ResNet with an exponential
activation layer yields superior results in wall defect classification.
The study’s call for further validation and assessment across
different convolutional layers and loss functions underscores the
iterative nature of deep learning research. Islam et al. (2022)’s
“CNN-Based Transfer Learning for Crack Detection” introduces
a transfer learning approach based on CNN for robust crack
detection. The paper’s demonstration of high accuracy across
various deep learning models accentuates the importance of

Frontiers in Built Environment frontiersin.org17

Kaveh and Alhajj 10.3389/fbuil.2024.1321634

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1321634


model selection in achieving reliable results. The need for diverse
datasets and exploration of alternative neural network architectures
remains open for further investigation. Ha et al. (2022)’s assessment
of SqueezeNet, U-Net, and Mobilenet-SSD models for crack
assessment highlights their high accuracy in defect classification.
The paper’s emphasis on accurate severity assessment and
limitations involving depth information and system size draw
attention to the complexity of evaluation metrics in real-world
applications.

Loverdos and Sarhosis (2022)’s comparison of U-Net,
DeepLabV3+, LinkNet (SM), and FPN (SM) models underscores
their high accuracy in crack detection. The positive outcomes
achieved by the block-detection model and crack detection model
bring to light the significance of model selection and its impact on
accuracy. Ali et al. (2022)’s vision-transformer (ViT) classifier for
crack classification, localization, and segmentation reflects a
promising integration of advanced algorithms. The high accuracy,
precision, recall, and F1 scores achieved through this integration
affirm the potential of combining state-of-the-art techniques.
Wibowo et al. (2022)’s utilization of transfer learning with
VGG16 and ResNet50, combined with ANN and kNN, in wall
crack classification showcases a fusion of methodologies for
enhanced accuracy. The paper’s recognition of dataset quality
and variety serves as a reminder of the fundamental role data
plays in the efficacy of deep learning models. Pu et al. (2022)’s
employment of a deep convolutional neural network (DCNN) with
an encoder-decoder module for semantic segmentation and
classification accentuates the significance of accuracy
improvement. The promising outcomes demonstrated underscore
the iterative nature of model enhancement and the potential of deep
learning techniques. Munawar et al. (2022a)’s investigation into
crack detection using amodified deep hierarchical CNN architecture
and CycleGAN underscores the utility of guided filtering and CRFs
for pixel-wise segmentation. The exploration of various accuracy
metrics and techniques emphasizes the multifaceted nature of crack
detection research. Ma J. et al. (2022)’s comparative evaluation of
YOLO v3, YOLO v4s-mish, and YOLO v5s for crack detection in
ancient timber structures provides insights into the strengths of
different architectures. While YOLO v3 emerges as a strong
performer, the study’s focus on training speed speaks to the
ongoing pursuit of efficient and accurate detection methods.

Wan et al. (2022)’s combination of SSD and an eight-
neighborhood algorithm demonstrates high precision and recall
in crack detection. The paper’s recognition of challenges in
length and width identification and its reference to specific
scenarios highlight the diverse environments in which crack
detection operates. Ren et al. (2022)’s utilization of YOLOv5 for
precise pavement crack detection showcases advancements in model
accuracy. The proposed method’s ability to improve detection
performance over existing methods reiterates the iterative nature
of model development. Kang and Cha (2022)’s introduction of
STRNet, a semantic transformer representation network, achieves
high precision, recall, F1 score, and mIoU in crack segmentation.
The paper’s exploration of false positives and negatives underscores
the complexities of segmenting intricate crack patterns.
Siriborvornratanakul (2022)’s adoption of DeepLabV3-ResNet101
for damage detection addresses complex scene detection using deep
learning solutions. The paper’s identification of gaps in pixel-level

localization highlights the need for holistic crack detection
methodologies. Elghaish et al. (2022)’s development of a new
CNN model that outperforms pre-trained models presents an
exciting avenue for infrastructure maintenance. The call for
ongoing investigations serves as a reminder of the evolving
nature of crack detection research.

Wu et al. (2022)’s exploration of FCN architectures for crack
detection showcases the ongoing pursuit of improving accuracy and
handling complex crack patterns. The challenges posed by factors
like illumination and the desire for precise part detection underscore
the dynamic nature of detection techniques. Liu et al. (2022)’s
incorporation of domain adaptation into DDACDN for crack
detection highlights the model’s high accuracy. The call for
quantitative evaluation, active learning, and consideration of
multi-scale objects acknowledges the intricacies of real-world
implementation. Nomura et al. (2022)’s evaluation of YOLOv2 +
VGG16 for damage detection emphasizes the importance of
improving recall and addressing challenges related to over-
detection. The paper’s recognition of the need for automating
detection processes aligns with the drive for efficiency in
detection methodologies. Yu et al. (2022)’s contributions to
intelligent performance improvements in DeepLabV3+ and
YOLOv5 demonstrate the potential of these techniques in various
contexts. The discussion of dataset scaling, new loss functions, and
filtering methods invites further exploration and refinement.
Munawar et al. (2022b)’s exploration of a CNN architecture
coupled with CycleGAN for crack detection showcases the
potential of guided filtering and offers insights into global
accuracy, class average accuracy, intersection of union, precision,
recall, and F-score metrics. The focus on CNN architecture and
CycleGAN exemplifies the synergy between different techniques in
enhancing crack detection. Kun et al. (2022)’s Deep Bridge Crack
Classification (DBCC)-Net presents a unique approach by
converting target detection from regression to binary
classification. The paper’s emphasis on achieving higher Miou
while acknowledging limitations in reasoning time and available
research data underscores the importance of innovative strategies.
Mohammed et al. (2022)’s semi-supervised learning model for crack
detection provides an avenue for reducing the need for labeled data
while maintaining accuracy. The paper’s alignment with efficient
data utilization and training time optimization contributes to the
ongoing exploration of deep learning techniques. Hammouch et al.
(2022)’s comparative analysis of CNN and transfer learning models
highlights the differential performance in detecting alligator cracks
and longitudinal cracks. The paper’s call for expanding longitudinal
crack datasets underscores the significance of robust training data.
Lee and Huh (2022)’s development of a mobile mapping system
(MMS) for capturing real-time RGB and IR images of asphalt
pavement surfaces showcases a fusion of sensor technology and
deep learning. The paper’s focus on diverse surface types and more
expansive image data adds depth to the discussion of real-world
applications. Lu et al. (2022)’s multi-scale crack detection network
(MSCNet) with texture enhancement and feature aggregation
demonstrates precision and recall rates. The paper’s commitment
to improving crack detection performance and inference speed
aligns with the quest for accurate and efficient methodologies.
Kim et al. (2022)’s Deep Bridge Crack Classification (DBCC)-Net
introduces a novel approach with implications for improving Miou.
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The study’s recognition of limitations involving reasoning time and
research data availability encourages ongoing exploration and
validation.

As we conclude our journey through these papers, we embrace
the diverse methodologies, insights, and advancements presented.
From deep learning architectures and transfer learning to novel
fusion techniques and real-world applications, this discussion
underscores the multidimensional nature of crack detection
research. As the field continues to evolve, these papers
collectively provide a foundation for future exploration and
innovation, inspiring researchers and practitioners to address
challenges, bridge gaps, and strive for accurate and efficient crack
detection solutions. To summarize this journey, we can say that the
crack detection methodology described in the paper employs a
diverse range of tools and techniques, primarily centered around
deep learning algorithms and associated frameworks. These
tools include.

1. Deep Learning Frameworks: The study utilizes various deep
learning frameworks such as YOLO (You Only Look Once),
UNet, ResNet (Residual Neural Network), Rsef, and others.
These frameworks serve as the backbone for developing and
training crack detection models, leveraging their
capabilities in feature extraction, classification, and
segmentation tasks.

2. Metrics and Evaluation Tools: To assess the performance of
crack detection algorithms, the study employs a variety of
metrics such as accuracy, precision, recall, F1 score, IoU
(Intersection over Union), mAP (Mean Average Precision),
ROC (Receiver Operating Characteristic) curve, PR (Precision-
Recall) curve, Dice coefficient, and MCC (Matthews
Correlation Coefficient). These metrics provide insights into
the accuracy, robustness, and efficiency of the models.

3. Custom Model Implementations: The paper describes the
development and implementation of custom models such as
Custom YOLOv7, AttentionCrack, Rsef-Edge, Stacking
Ensemble Model, Automated YOLO v4, CrackNet,
CrackClassification, Mask R-CNN, EfficientNet with
Residual U-Net, and others. These custom models
incorporate novel architectures, attention mechanisms, and
ensemble learning techniques to enhance crack detection
accuracy and efficiency.

4. Data Processing and Annotation Tools: In addition to deep
learning frameworks, the study may utilize various data
processing and annotation tools for preprocessing raw data,
labeling crack instances, and augmenting datasets. These tools
ensure the quality and diversity of the training data,
contributing to the robustness of the crack detection models.

5. Model Training and Optimization Tools: Model training and
optimization are critical components of the crack detection
methodology, requiring tools for hyperparameter tuning,
optimization algorithms, and training pipelines. These tools
help fine-tune model parameters, improve convergence speed,
and enhance overall performance.

In summary, the crack detection methodology outlined in the
paper leverages a combination of deep learning frameworks,
evaluation metrics, custom model implementations, data

processing tools, and model training techniques to achieve
accurate and efficient crack detection results. These tools
collectively enable researchers to develop, evaluate, and
optimize crack detection algorithms for various real-world
applications.

4 Conclusion

In this comprehensive survey paper, we embarked on a journey
through the landscape of crack detection methodologies, datasets,
algorithms, and results. The evolution of crack detection
technologies has been remarkable, driven by the integration of
cutting-edge machine learning and deep learning techniques. Our
exploration revealed a diverse array of strategies, methodologies, and
advancements that collectively contribute to the enhancement of
structural health assessment.

As we traversed through the realms of crack detection, it became
evident that traditional approaches have taken a backseat in favor of
innovative and state-of-the-art methods. A prevailing trend among the
surveyed articles was the utilization of contemporary variants of
algorithms, such as the latest versions of YOLO, UNet, ResNet, Rsef,
and more. This signifies a dynamic shift towards harnessing the full
potential of modern techniques to address the complex challenges of
crack detection.

A striking observation in this survey was the prevalent use of
multiple algorithms within a single study. Many researchers adopted
a holistic approach by combining various algorithms, with one
focused on crack detection and another dedicated to
segmentation. This synergy enables a more comprehensive
analysis, leveraging the strengths of different methods to achieve
more accurate and robust results.

Furthermore, several papers demonstrated ingenuity by devising
hybrid architectures that amalgamate basic and expert models. This
innovative approach capitalizes on the strengths of each model type,
potentially yielding enhanced performance and adaptability in crack
detection scenarios.

Authors across various papers showcased a penchant for
pioneering methods and technologies in both data collection and
algorithm development. This inventive spirit has led to the
construction of novel datasets, precise annotations, and ingenious
models tailored to the intricacies of real-world crack detection
challenges.

As we peer into the future, the survey highlights the potential for
further exploration and innovation. Emerging technologies like
Vision Transformers (ViT) hold promise in the realm of crack
detection, offering new avenues for enhancing model performance
and adaptability. The integration of ViT and other groundbreaking
algorithms presents exciting opportunities for researchers to push
the boundaries of crack detection capabilities.

In conclusion, the amalgamation of advanced algorithms,
diverse datasets, and pioneering methodologies showcased in this
survey underscores the dynamic nature of crack detection
research. The journey through the diverse facets of this field
not only offers a deeper understanding of its current state but also
inspires new horizons of exploration. As the cracks in our built
environment continue to challenge us, this survey paper serves as
a roadmap for researchers and practitioners, guiding them
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towards the next era of innovation and excellence in crack
detection technologies.
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