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Railway transition zones present a major challenge in railway track design mainly
due to abrupt jumps in stiffness and differential settlements that result from
crossing stiffer structures such as bridges or culverts. Despite numerous efforts to
mitigate these transition effects at both the superstructure and substructure
levels, a comprehensive solution remains elusive. Substructure-level
interventions have demonstrated some effectiveness but are often cost-
prohibitive and challenging to implement in existing operational railway
transition zones. In contrast, mitigation measures at the superstructure (rail,
sleepers, rail-pads, under-sleeper pads) level can be easily installed but have
shown limited improvement in site measurements. This study evaluates the
influence of different sleeper configurations in transition zones and reduced
sleeper spacings on the operation-driven dynamic amplifications in railway
transition zones, employing a recently proposed criterion based on the total
strain energy in the track-bed layers (ballast, embankment, and subgrade). In
addition to this, the influence of the loss of contact between sleepers and ballast
(i.e., hanging sleepers), which typically results from the differential settlement, is
studied. The first part of the paper provides useful insights regarding the
interventions (and/or initial design) in the sleeper configuration and spacing,
whereas the second part of the work highlights the need for interventions to deal
with the loss of contact between sleeper and ballast. A 2-dimensional finite
element model of an embankment-bridge transition was used for the analysis.
The results show that it is not possible to mitigate the transition effects
completely using the interventions involving sleeper spacing and configuration.
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1 Introduction

Railway transition zones (RTZs) are regions of inhomogeneity in railway tracks where the
track crosses stiffer structures, such as bridges or culverts. This inhomogeneity (Jain et al.,
2023a) results in an abrupt jump in stiffness experienced by the moving load, causing
significant dynamic amplification (Ognibene et al., 2019; Paixão et al., 2021; Charoenwong
et al., 2023) and eventually contributing to differential settlement in RTZs. In addition to this,
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the differential settlement in transition zones is also due to differences
in autonomous settlement of the foundations of the stiff and soft parts.
Operation-driven dynamic amplifications in RTZs are the subject of
this paper. These dynamic amplifications may not be very prominent
when considering kinematics but can be clearly seen in terms of the
strain energy of the trackbed layers (Jain et al., 2024a). Despite
numerous attempts to alleviate these transition effects by gradually

increasing stiffness at both the superstructure (rail, rail pads, sleepers,
under-sleeper pads) and substructure levels (ballast, sub-ballast,
embankment, subgrade), a comprehensive solution remains elusive.

Mitigation measures at the substructure level, including approach
slabs (Laco and Borzovič, 2016; Varandas et al., 2016; Heydari-
Noghabi et al., 2017a), transition wedges (Paixão et al., 2013;
Paixão et al., 2014; Paixão et al., 2015; Ribeiro et al., 2017; Palomo
et al., 2021), glued ballast, geotechnical improvements (Hu et al., 2019;
Chumyen et al., 2022), etc., have demonstrated some effectiveness;
however, their cost-effectiveness ratio is unfavourable. Additionally,
these measures are difficult to implement in existing, operational
railway transition zones. In contrast, mitigation measures at the
superstructure level (Heydari-Noghabi et al., 2017a; Heydari-
Noghabi et al., 2017b; Chumyen et al., 2022; Fărăgău et al., 2023)
can be easily installed for both old and new transition zones. Although
the existing literature involving analytical/numerical evaluations
suggests that these measures may be efficient to some extent
(Namura and Suzuki, 2007; Jain et al., 2023b), site measurements
have not exhibited significant improvements from these interventions
(Sañudo et al., 2016; Indraratna et al., 2019).

Common superstructure-level interventions include auxiliary
rails (Heydari-Noghabi et al., 2017b; Chumyen et al., 2022;
Fărăgău et al., 2023), under-sleeper pads, and large (Shahraki
et al., 2015; Shahraki and Witt, 2015; Wilk et al., 2015) or closely
spaced sleepers (National Academies of Sciences, Engineering, and

TABLE 1 Mechanical properties of the track components.

Material Elasticity modulus Density Poisson’s ratio Rayleigh damping

E [N/m2] ρ [kg/m3] ] α β

Steel (rail) 21 × 1010 7850 0.3 - -

Concrete (sleepers) 3.5 × 1010 2400 0.15 - -

Ballast 1.5 × 108 1560 0.2 0.0439 0.0091

Sand (embankment) 8 × 107 1810 0.3 8.52 0.0004

Clay (subgrade) 2.55 × 107 1730 0.3 8.52 0.0029

USP 1 × 106 500 0.1 - -

FIGURE 1
Comparison of the total strain energy in the ballast layer using a
2-D and a 3-D model.

FIGURE 2
Geometric details of the embankment-bridge transition under study.
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FIGURE 3
Study cases of different sleeper configurations (A). config 1, (B). config 2, (C). config 3, (D). config 4, (E). config 5, and (F). config 6) around the
transition interface (the red layer represents the under-sleeper pads on the stiff side).

FIGURE 4
Time history of total strain energy (left) and percentage increase (right) of maximum total strain energy in AZ relative to OT for config.1-6 in ballast
(A), embankment (B), and subgrade (C).
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Medicine, 2006; Galván Giménez, 2011; Sañudo et al., 2016;
Indraratna et al., 2019) made from modified materials (Transit
Cooperative Research Program, 2006; Raj et al., 2023). Sleepers
are typically constructed from wood or reinforced concrete, with the
latter requiring a C50/60 strength class as defined by the Eurocode,
which specifies the Elastic modulus of 38 GPa and a Poisson’s ratio
of 0.2 (EN 1992-1-1, 2009). Alternative materials, such as plastic,
rubber, and composites, have also been utilized in transition zones,
with wood proving to be the most effective among them (Nicks,
2009). The average sleeper dimensions are 2.6 m × 0.24 m x 0.24 m,
and a standard spacing of 0.6 m (Sañudo Ortega et al., 2021; Sañudo
et al., 2022) is commonly employed in railway tracks, including in
transition zones. Large (Namura et al., 2004; Shahraki et al., 2015;
Shahraki and Witt, 2015) or closely spaced sleepers (Galván
Giménez, 2011; Sañudo et al., 2016; Indraratna et al., 2019) have
been implemented in transition areas to reduce the abrupt change in
track stiffness. These modifications have been effective in decreasing
ballast settlement and improving the distribution of the contact
force between sleeper and ballast over a larger area, but they have not
reduced dynamic load amplification in transition zones. Various
sleeper configurations have been analyzed (Sañudo et al., 2017) to
evaluate track support separation and to maintain optimal track
performance, as assessed by sleeper vertical displacements and stress
on ballast. Efforts have also been made to minimize the maximum
wheel-rail contact force and stress between the sleeper and foundation,
seeking themost efficient distributions of sleeper spacing (Sañudo et al.,
2017) adjacent to the transition. However, previous studies have not
clearly stated the reasons behind the unsatisfactory performance of
these solutions, nor have they assessed the broader implications of these
measures on the degradation of ballast, embankment and subgrade.
A recent study (Jain et al., 2024a) presents a criterion based on total
strain energy in the track bed layers as an indicator of potential
irreversible permanent deformations, which can be employed to
assess the influence of these solutions on the onset of degradation in
different trackbed layers. A detailed analysis of all the track components

was performed in (Jain et al., 2024a) by analysing the kinematic
responses, stresses, and kinetic and strain energies, concluding that
the strain energy is the most comprehensive quantity to evaluate the
railway transition as it comprises both distortional and volumetric
components of strain energy, while Von Mises stress for instance only
captures the distortional component of energy. The details of the
criterion can be found in (Jain et al., 2024a) and a valid application
of this criterion can be found in a related study (Jain et al., 2023b).

In this paper, the influence of various sleeper configurations and
spacing on the dynamic behaviour of railway transition zones are
investigated and the need for interventions to mitigate the loss of
contact between sleepers and the ballast layer is highlighted, using the
recently proposed criterion (Jain et al., 2024a) based on total strain energy
in trackbed layers. Firstly, the influence of the specific position of the first
sleeper on both sides of the transition interface and the effect of overall
and localised (i.e., only in the approach zone) reduced sleeper spacing is
studied for the ideal geometric track profile. Secondly, the influence of
non-ideal geometry (as a consequence of differential settlement) which
entails the loss of contact (Stark and Wilk, 2015; Siahkouhi et al., 2023)
between sleepers and ballast on the total strain energy distribution is
investigated. The first part of the paper concerns the interventions (and/
or design choices) at the superstructure level to avoid dynamic
amplifications in transition zones, whereas the second part highlights
the need for mitigation measures to deal with the loss of contact.

2 Finite element model of an
embankment-bridge transition

A two-dimensional (2-D), plane-strain finite element (FE)model of
an embankment-bridge transition was created using ABAQUS, mainly
comprising of ballasted track (soft side) of 60 m in length and a
ballastless track (stiff side) of 20 m length. The main components of
the system under study as shown in Figure 2 namely, rail, railpads,
sleepers, under sleeper pads, ballast layer (0.3 m deep), embankment

FIGURE 5
Sleeper layouts under study: (A) SL1, (B) SL2, (C) SL3.
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layer (1 m deep), subgrade (1 m deep), and a concrete bridge (2.3 m
deep). The sleeper, ballast, embankment, subgrade, and bridge were
meshed using linear plane strain quadrilateral elements (CPE4R), and
the rail was discretized using two-node linear beam elements (B21).
Materials for all components mentioned above were characterized by
elastic properties (Elasticity modulus, Poisson’s ratio, density, and
Rayleigh damping factors) as tabulated in Table 1 (Jain et al.,
2023b). Material properties tabulated in Table 1 have been adopted
based on a detailed evaluation and design limits proposed in (Jain et al.,
2024b). A static analysis was performed to tune the elastic properties of
a thin layer of material under the sleepers referred to as under-sleeper
pads (USP) on the stiff side, ensuring the same static vertical rail

displacements throughout the track. It is to be noted that these are not
conventional under sleeper pads but a way to insure the same static
deformations throughout the track in order to study only dynamic
effects of the moving load. The key interface and boundary conditions
used in themodel included vertical springs and dashpots connecting the
rail and sleeper midpoint, surface-to-surface tie constraints between the
sleeper-ballast, ballast-embankment, and embankment-subgrade, and a
hard contact linear penalty method to define the normal behaviour
combined with a Coulomb friction model for tangential behaviour at
the vertical interface between the ballasted and the ballastless track.
Firstly, a static analysis was performed to establish the initial stress
state under self-weight, followed by a dynamic analysis (full

FIGURE 6
Time history of total strain energy (left) and percentage increase (right) of maximum total strain energy in AZ relative toOT for SL 1-3 in (A) ballast, (B)
embankment, and (C) subgrade.

FIGURE 7
The embankment-bridge transition under study showing the locations of (A) one hanging sleeper and (B) two hanging sleepers marked in blue.
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Newton-Raphsonmethod) for a single moving axle load of 90 kN and a
velocity of 144 km/h, using a DLOAD subroutine in ABAQUS
(ABAQUS/Standard User’s Manual, 2009). Only one axle load and
speed (sub-critical) has been adopted as the main objective of this work
is to compare the performance of different configurations (see Section
3) under study and capture the main mechanisms governing the
dynamic amplifications under the simplest loading conditions and
thus in the cleanest possible manner, to provide insight regarding
efficiency or inefficiency of the superstructure level interventions. The
effects are expected to be amplified for higher speeds and axle loads. The
2-D model used in this paper has been validated against a 3-D model
and the details can be found in (Jain et al., 2024a; Jain et al., 2024b). An
ideal geometric track profile is used for evaluation of all the cases as the
aim is to study the mechanisms (in isolation of other mechanisms)
associated to the initial state of the track subjected to operation-induced
loads. The strain energy distribution was found to be very similar in
both 2D and 3Dmodels (see Figure 1). For the purpose of this work, 2-
D models are used as the cost of computation using the same resources
was much higher for one iteration using a 3-D model (approximately
8 h) compared to 2-D models (approximately 40 min). Moreover, the
criterion (Jain et al., 2024a) used for evaluation in this work claims to
predict the onset of damage in non-linear models based on energy
amplification in models with linear elastic materials.

For this study mainly two zones were studied to investigate
the dynamic amplifications in railway transition zones (RTZs),
namely, the open track (OT) and the approach zone (AZ) on
the ballasted track (soft side). Each of these zones is 15 m in

length. Figure 2 shows the zone unaffected by the transition
effects (open track) and the zone next to the transition interface
(approach zone) between the ballasted track and the concrete
structure (stiff side), where significant dynamic amplifications are
observed. The results studied in this paper are the temporal
variation of total strain energy in each of the trackbed layers
(ballast, embankment, and subgrade) for the open track and
the approach zone. In addition, a percentage increase of the
maximum total strain energy in AZ relative to the OT for each
case is also presented.

3 Results and discussion

This paper investigates six different configurations of the first
sleeper on either side of the transition interface (Figure 3) and three
different layouts of sleepers with reduced spacing (Figure 5). In the
end, the influence of the number of hanging sleepers on the total
strain energy amplification is studied. The following sections will
describe all these scenarios in detail.

3.1 Configuration of sleepers adjacent to the
transition interface

The six different sleeper configurations in the proximity of
the transition interface as shown in Figure 3 are investigated.

FIGURE 8
Time history of total strain energy (left) and percentage increase (right) of maximum total strain energy in AZ relative to OT for 0, 1, and 2 number of
hanging sleepers next to transition interface for the (A) ballast, (B) embankment and (C) subgrade.
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The six configurations can be broadly classified into two
categories; config.1-3 and config.4-6. Config.1-3 investigate
the influence of 3 different spacing configurations of the first
sleeper adjacent to the transition interface (on both sides) with
respect to the interface, on the total strain energy in AZ
compared with that in OT. Config.4-6 analyze the extreme
scenarios where the edge/mid-point of the sleeper is located
at the transition interface.

Figure 4 shows the time history of total strain energy in ballast
(A), embankment (B), and subgrade (C) for the open track and the
approach zone, and the percentage increase in the maximum of the
total strain energy in the approach zone relative to that in open track
for all 6 configurations described above and shown in Figure 3. The
results will be investigated in two broad categories of config.1-3 and
config.4-6. Figure 4 shows that config.1, 2, and 3 do not exhibit any
significant difference in the strain energy variations in ballast,
embankment, or subgrade, implying that the position (with
respect to the transition interface) of the first sleepers on both
sides of the transition interface has negligible influence on the
dynamic amplifications in RTZs. However, configurations
(config.1–3) involving one of the sleepers being placed right next
to the transition interface or on top of it do exhibit significantly
larger amplifications in the total strain energy (approx. 5–7 times
more than config. 4–6) for all track bed layers, implying that these
extreme sleeper configurations must be avoided to achieve better
performance of RTZs.

3.2 Sleeper layout

Three different sleeper layout (SL) scenarios (Figure 5) were
investigated, namely, SL1: standard sleeper spacing of 0.6 m
throughout the track (OT and AZ), SL2: reduced sleeper spacing
only in the transition zone (approach zone on the stiff and soft side
of the track) and SL3: reduced sleeper spacing of 0.3 m throughout
the track (OT and AZ).

Figure 6 shows the time history of total strain energy in the
ballast (A), embankment (B), and subgrade (C) for the open track
and the approach zone, and the percentage increase in maximum
total strain energy in the approach zone relative to that in the
open track for sleeper layouts described above and shown in
Figure 5. On the one hand, some authors (National Academies of
Sciences, Engineering, and Medicine, 2006; Galván Giménez,
2011; Sañudo et al., 2016; Indraratna et al., 2019) have
associated reduced sleeper spacing in the railway tracks with a
reduction in ballast settlement and the results shown in Figure 6A
(left) for SL3 (when compared to SL1) can verify this claim for
OT. On the other hand, the amplification of maximum total
strain energy in AZ relative to OT is higher for SL3 in comparison
to SL1 (which is the reference layout). Furthermore, although
SL2 shows no amplification of maximum total strain energy in
AZ relative to OT in the ballast layer, a significant increase is seen
in the embankment layer. This implies that reduced sleeper
spacing only in the transition zone is efficient in the reduction
of permanent deformations in the ballast layer in the proximity of
the transition interface. However, it is not an effective
intervention to deal with transition effects in general as it
leads to an increased degradation in the embankment layer

(no significant change is observed in the behaviour of the
subgrade layer for any of the sleeper layouts under study).

3.3 Loss of contact between sleeper and
ballast: Hanging sleepers

In RTZs, the difference in autonomous settlements on the soft and
stiff side of the track together with the operation-driven dynamic
amplifications lead to non-ideal geometric track configurations. As a
consequence of these configurations, one or more sleepers in the
vicinity of the transition interface typically lose contact with the ballast
layer (Stark and Wilk, 2015; Siahkouhi et al., 2023). Therefore, in this
section, the influence of the number (Paixão et al., 2021; Jain et al.,
2023a) of hanging sleepers is studied (Figure 7) and compared against
the case with no hanging sleepers. No more than 2 hanging sleepers
were analyzed as the tracks are necessarily maintained after the
occurrence of the second hanging sleeper. It is to be noted that
only extreme cases leading to complete loss of contact between the
first two sleepers next to the transition interface are investigated.

Figure 8 shows the time history of total strain energy in ballast
(A), embankment (B) and subgrade (C) for open track and approach
zone, and the percentage increase in the maximum of the total strain
energy in the approach zone relative to that in the open track for the
embankment-bridge transition with no hanging sleepers, one hanging
sleeper and two hanging sleepers, as marked in Figure 8. It can be
observed in the results that the occurrence of hanging sleepers affects
mostly the top layers (ballast and embankment) and shows a small
influence on the subgrade layer (and it does not lead to any
amplification). In the embankment layer, one hanging sleeper has
no influence, but some amplification in total strain energy can be seen
with the occurrence of the second hanging sleeper. In the ballast layer,
the presence of a single hanging sleeper in proximity to the transition
interface leads to an approximate doubling of the strain energy
amplification relative to situations without any hanging sleepers. It
is to be noted that the occurrence of a second hanging sleeper has an
even more pronounced effect, resulting in an approximately eightfold
increase in total strain energy amplification when compared to the
situation with no hanging sleepers. Thus, it can be concluded that the
impact of hanging sleepers on total strain energy amplification is not
merely additive but seemingly exponential, highlighting the need for
meticulous monitoring and management of such conditions.

4 Conclusion

Despite certain studies advocating the efficacy of superstructure-
based enhancements in railway transition zones (RTZs), site
measurements have demonstrated limited efficiency. A recently
developed energy-based criterion was used to highlight the potential
shortcomings of some of these solutions, thus providing reasoning
behind their ineffectiveness. A 2D finite element model was used to
analyze the performance of railway transition zones (RTZs) for varying
sleeper configuration in the proximity of the transition interface and
varying sleeper spacing layouts using a recently developed strain energy-
based criterion. Additionally, the loss of contact conditions (hanging
sleepers) between the sleeper and ballast layer due to non-ideal geometry
was also investigated. Firstly, various sleeper configurations around the
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transition interface were studied in terms of total strain energy
amplifications and it was observed that the positioning of the first
sleeper on both sides (soft and stiff) with respect to the transition
interface has negligible influence on the performance of the RTZs.
However, extreme positions of the sleepers (e.g., sleeper edge resting on
the transition interface) must be avoided to limit the strain energy
amplification in RTZs. Secondly, the effect of overall reduced sleeper
spacing and reduced sleeper spacing only in the approach zones (both
on the soft and stiff side) was compared with the standard sleeper
spacing configuration (0.6 m). It was observed that even though an
overall reduced sleeper spacing leads to lower total strain energy levels in
the ballast layer, it does not reduce the strain energy amplification in
approach zones with respect to the open track. Moreover, the layout
with reduced sleeper spacing only for approach zones led to the
mitigation of dynamic amplifications in the ballast layer but
eventually resulted in an amplification of the strain energy within
the embankment layer. Lastly, the study of the influence of hanging
sleepers on the performance of RTZ showed that with an increase in the
number of hanging sleepers, an exponential increase in strain energy
amplification was observed in the approach zone. This highlights the
need for interventions like adjustable sleepers (Wang and Markine,
2018), and wedge-shaped sleepers (Jia et al., 2023) to mitigate the loss of
contact between sleepers and the ballast layer. In the end, it was
concluded that optimizing the sleeper configuration (overall or in the
proximity of the transition interface) does not lead to any significant
improvement in the performance of railway transition zones in terms of
strain energy amplifications. In addition, some critical configurations
(sleeper edge on transition interface) or contact conditions (hanging
sleepers) must be avoided or mitigated to prevent extreme strain energy
amplifications in railway transition zones.
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