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With the COVID-19 pandemic still ongoing, there is a need to ensure that people
are not subjected to the risk of getting infected with the disease. Since COVID-19
is airborne, engineering controls must be provided to monitor and mitigate the
spread of the disease in the air. One of themeasures is to ensure proper ventilation
within indoor spaces where superspreader events were previously documented in
poorly ventilated spaces. CO2 levels reflect the rate at which the used air within is
replaced and, therefore, can be used as a proxy for COVID-19 risk. This study
developed economical CO2 monitors which are deployed across indoor spaces
and public transportation, such as air-conditioned jeepneys, to communicate the
risk. Using the least squares method on the first-order ODE of mass balance, a
multivariate method is devised for deriving the occupancy and the ventilation rate
from the recorded CO2 levels. Using the multivariate method, the ventilation rates
of different indoor spaces are determined and used for the subsequent
computations using the Wells–Riley model to derive the respective infection
risk, particularly of COVID-19.
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1 Introduction

At the onset of the ongoing COVID-19 pandemic, indoor spaces are identified to have
higher infection rates than outdoor spaces (Qian, et al., 2021). Poor ventilation has been
attributed to many of the superspreader events (Miller, et al., 2021). Because of the low air
changes due to poor ventilation, SARS-CoV-2, the virus that causes COVID-19, is found to be
deposited on ventilation ducts and other surfaces with greater distances which cannot be
explained by droplet transmissions (Nissen, et al., 2020). A literature review on droplet
transmission shows no direct evidence for ballistic droplets as the route of transmission of any
diseases (Chen, et al., 2020). Inhalation of the suspended pathogenic aerosols is determined to
have been causing COVID-19 infections (Greenhalgh, et al., 2021) as confirmation that SARS-
CoV-2 is detected within particulate matter captured in the air (López, et al., 2021). As a result,
medical insights on respiratory virus transmission and the subsequent infection control
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programs have been undergoing a paradigm shift in acknowledging
airborne transmissions (Klopmas, et al., 2021) despite historical
resistance (Jimenez, et al., 2022).

Initially for measles, which was then identified as an airborne
disease (Wells, 1955), an epidemiological model was developed to
estimate its infection risk in classrooms (Riley, et al., 1978). The
application of the model has been extended to tuberculosis
(Gammaitoni and Nucci, 1997) and then to COVID-19
(Buonnano, et al., 2020). This enables readily quantifying the
practical infection risk by compiling all the previous
superspreader events due to shared room air transmission (Peng,
et al., 2022) and using CO2 as the relative risk indicator (Bazant,
et al., 2021; Peng and Jimenez, 2021).

However, the formulation of using CO2 as a relative risk indicator
mainly assumes that the recorded CO2 level has been the steady-state
level.When not in steady-state conditions, the ventilation ratemust be
derived from the prior knowledge of the occupancy. Such a condition
is true for buildings with a low supply of outdoor air, provided that the
rate does not vary in time (Rudnick and Milton, 2003). This study
aims to develop a multivariate technique for deriving occupancy and
ventilation rates simultaneously. In addition, this study also aims to
create a low-cost CO2 monitor which will cover the physical
measurement of the CO2 concentration. These will enable the
study to determine the infection risk of COVID-19, the disease
that is being closely monitored due to the ongoing pandemic, over
indoor spaces such as classrooms and the common modes of
transportation present in the Philippines.

2 Materials and methods

2.1 Multivariate technique on deriving
occupancy and ventilation

This study assumes a well-mixed indoor room where the CO2

emissions from the occupants are evenly distributed across the room

while air is constantly replaced by outdoor air with a uniform
outdoor CO2 concentration. This results in a first-order ordinary
differential equation:

dC
dt

� E
V
− C − Coutdoor( )λ (1)

where C is the CO2 concentration, E is the CO2 emission rate, V is
the volume of the room, and Coutdoor is the uniform outdoor CO2

concentration.
This study will focus on the differential equation given in Eq. 1.

The first-order ODE is discretized and restated as

Ci − Ci−1
Δt � E

V
− Ci − Coutdoor( )λ (2)

where Ci is the CO2 level measured at the present time, Ci−1 is
the previously measured CO2 level, and Δt is the time between the
CO2 readings.

The emission rate E can be expressed as a function of the
number of occupants n. The breathing rate and exhaled CO2

concentration are assumed as an average value of 0.65 m3/hr
(Buonnano, et al., 2020; 38000ppm Bazant, et al., 2021
38000ppm). The average value of both the breathing rate and
the exhaled CO2 concentration are considered because of the
limitation of the computational power of the microcontroller unit
used in the developed CO2 monitor. The reader is pointed to the
studies of Persily and de Jonge (2018) and Yang et al. (2020) for CO2

generation that varies with age, gender, body mass, and the nature of
physical activity.

The whole Eq. 2 is multiplied with Δt, which is expressed in
terms of seconds, therefore needing conversion. This results in the
Eq. 3 below:

36V Ci − Ci−1( ) � 24700Δt n − Ci − Coutdoor( )QΔt (3)
This study assumes that CO2 readings from the CO2 sensors are

measured at regular intervals, although it can also work for readings at
irregular intervals. As this study maintained that only integers will be

FIGURE 1
Solution stability on a sample case.
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used to simplify computations for the target ESP32 microcontroller,
Δt, which is also an integer, is kept at the right-hand side of Eq. 3.

Eq. 3 will then have two unknowns, namely, the estimated
occupancy n and ventilation rate λ. To determine the two
unknowns from the given time history of CO2 levels
containing N number of datapoints, a multivariate regression
analysis will be performed, resulting in Eqs 4, 5 with two
unknowns:

n
10000
3600V

∑N
i�1

247( )2+λ 247
36

∑N
i�1

Coutdoor − Ci( ) � 24700∑N
i�1

Ci − Ci−1( )
Δt

(4)
λ

1
3600

∑N
i�1

Coutdoor − Ci( )2 + n
247
36V

∑N
i�1

Coutdoor − Ci( )

� ∑N
i�1

Ci − Ci−1( ) Coutdoor − Ci( )
Δt (5)

FIGURE 2
Components of the CO2 monitor device.

FIGURE 3
Indoor spaces and public transportation subject in CO2 monitoring.
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With a known volumeV in the room, the number of occupants n
can be estimated simultaneously with the ventilation rate λ.

To determine the stability of the solution, the analytical solution
of the first-order ODE is derived:

C t( ) � E
λV

+ Cout[ ] − E
λV

+ Cout − C0[ ]e−λt (6)

Substituting the analytical solution to the discrete first-order
ODE and simplifying will result in the relationship between the time
step and ventilation rate in a stable solution:

e−λ Δt( ) − 1
Δt

� −λ (7)
E
λV

+ Cout − C0[ ] e−λ Δt( ) + λ Δt( ) − 1[ ] ∈ 0, 1.5( ) (8)

Given that the sensor transmits integer values for the CO2

levels, for the solution to remain stable, the following relation
must be satisfied as values less than zero reflect that the
computed ventilation rates are negative, while values greater
than 1.5 reflect that the time scale for the temporal averaging is
reducing the resolution of the solution. Figure 1 shows a sample
time history of ventilation rate estimates over different given
time steps.

Alternatively, if the number of occupants n is already known, the
regression equation can be used to estimate the average ventilation
rate.

λ �
24700∑N

i�1
Ci−Ci−1( )

Δt − n 10000
3600V ∑N

i�1
247( )2

247
36 ∑N

i�1
Coutdoor − Ci( )

(9)

2.2 Wells–Riley model

Using the derived ventilation rates and occupancy, the infection
risk due to airborne diseases can be computed using the Wells–Riley
model.

P� 1−exp −QiB0fit( ) (10)
where P is the infection risk, B0 is the breathing rate, t is the
duration of exposure, fi is the inward filtration efficiency of the
mask, and Qi is the quanta concentration. This study assumes that
the room is a well-mixed environment where the quanta
concentration is uniform and is determined by a first-order
ODE in Eq. 11 below:

dQi

dt
� qifo

V
− Qi λ[ ] (11)

where qi is the quantum generation rate and fo is the outward
filtration efficiency of the mask. This study assumes an
asymptomatic case with the upper-bound quantum generation
rates of 165 quanta/hr for the Alpha variant, 935 quanta/hr for
the Delta variant, and 2345 quanta/hr for the Omicron variant. The
inward and outward efficiencies of masks are established as 50% for
surgical masks and 90% for medical-grade N95 masks (Dai and
Zhao, 2023).

Scenario the worst case, which is the exposure to the steady-state
condition, by substituting the analytical solution for the mixing
equation of quanta in Eq. 11 and substituting theWells–Riley Model
in Eq. 10 yield Eq. 12 for the infection risk as a function of time,
volume, ventilation rate, room volume, and the reduction factors of
the respiratory protection:

P t,V , λ, qi, f o, f i,B0( ) � 1 − exp −qif of iB0

λV
t( ) (12)

Three infection risk cases are then explored for each variant in
each setting: 1) with the occupants not wearing masks, 2) two-way
masking with surgical masks, and 3) two-way masking with
N95 masks.

2.3 CO2 monitoring

This study deployed these CO2 monitors, shown in Figure 2, in
classrooms of the UP Institute of Civil Engineering. This study has
also tackled making a reliable yet economical CO2 monitor for
potential mass distribution. Winsen MH-Z19E NDIR sensors are
used, which are connected to an ESP32 module which then
transmits the CO2 readings through the internet of things (IoT)
using its built-in Bluetooth and WiFi module. The readings and the
estimates on ventilation rates will be displayed through a connected
LCD module.

This study deployed these CO2monitors in classrooms of the UP
Institute of Civil Engineering. Four scenarios were tested: when
people are occupying the room while the room is enclosed for air-
conditioning (stale air seeps out through leaks), when the room is
occupied by the one conducting the measurement, when there is
one-way ventilation, and when there is two-way ventilation. This
study has also deployed these CO2 monitors in public transportation
during operation. The list and the details of the public transportation
are shown in Figure 3.

3 Results and discussion

3.1 Classroom

The CO2 levels in the first classroom (Volume: 154 m3) were
monitored during class, as shown in Figure 4. The algorithm has
estimated a lower occupancy rate of eight people while estimating a
ventilation rate of 0.1 ACH. This is because of the lower breathing
activity rate in the classroom due to the students listening only to the
lecture, resulting in lower CO2 levels. Artificially, plugging the actual
number of occupants of 20 using Eq. 9 gives a ventilation rate of
3.2 ACH, which does not fit the ventilation rates of a typical fully
enclosed room.

On the other hand, the measurements in Room 409A were
conducted right after the students had vacated the room at CO2

levels of 1797 ppm. Eqs 4, 5 struggled to determine occupancy and
ventilation rates on downward trends as the equations gave negative
values, so Eq. 9 was used instead, as shown in Figure 5.

Room 409A has an adjacent room that was separated by a
removable barrier which can introduce more leaks for the stale air
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FIGURE 4
ICE Room 408 CO2 readings.

FIGURE 6
CO2 levels at a traditional jeepney. (A) Derivation of the ventilation rate when the jeepney was stationary and (B) derivation of the ventilation rate
when the jeepney was in motion.

FIGURE 5
ICE Room 409A CO2 readings when air only exits through the leaks (dark blue), when windows are opened (light blue), and when two-way
ventilation is implemented (green).
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FIGURE 7
CO2 levels at the modern jeepney.

FIGURE 8
Derivation of the ventilation rate on MRT-3 trains at the first leg of the northbound trip (A) and mid-journey of the southbound trip (B).

FIGURE 9
Estimation of ventilation rates from CO2 levels within LRT-2 trains.

Frontiers in Built Environment frontiersin.org06

Agar et al. 10.3389/fbuil.2023.1306072

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1306072


FIGURE 10
Estimation of the ventilation rates from CO2 levels within LRT-1 trains.

FIGURE 11
Estimation of ventilation rates from CO2 levels within EDSA Carousel buses. (A) Northbound and (B) southbound.

FIGURE 12
Estimation of the ventilation rates from CO2 levels within a provincial bus.
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TABLE 1 Summary of infection risk due to the Alpha variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h
(%)

2 h (%) 3 h (%) 4 h
(%)

Traditional jeepney (stationary) 12 47.56 No mask 8.97 17.13 31.33 43.09 52.84

Surgical
mask

2.32 4.59 8.97 13.15 17.13

N95 mask 0.09 0.19 0.38 0.56 0.75

Traditional jeepney (moving) 12 151.54 No mask 2.91 5.73 11.13 16.22 21.01

Surgical
mask

0.73 1.46 2.91 4.33 5.73

N95 mask 0.03 0.06 0.12 0.18 0.24

Modern jeepney 29.16 1.23 No mask 97.36 99.93 100.00 100.00 100.00

Surgical
mask

59.68 83.74 97.36 99.57 99.93

N95 mask 3.57 7.01 13.53 19.59 25.22

EDSA Carousel bus (stationary) 66 2.29 No mask 29.87 50.82 75.81 88.10 94.15

Surgical
mask

8.49 16.26 29.87 41.27 50.82

N95 mask 0.35 0.71 1.41 2.11 2.80

EDSA Carousel bus (moving) 66 4.92 No mask 15.22 28.13 48.34 62.87 73.32

Surgical
mask

4.04 7.93 15.22 21.94 28.13

N95 mask 0.17 0.33 0.66 0.99 1.31

LRT-1 199.73 3.62 No mask 7.15 13.79 25.67 35.92 44.75

Surgical
mask

1.84 3.64 7.15 10.53 13.79

N95 mask 0.07 0.15 0.30 0.44 0.59

LRT-2 838.8 15.34 No mask 0.42 0.83 1.65 2.47 3.28

Surgical
mask

0.10 0.21 0.42 0.62 0.83

N95 mask 0.00 0.01 0.02 0.03 0.03

MRT-3 158.6 2.77 No mask 11.49 21.66 38.63 51.92 62.34

Surgical
mask

3.01 5.92 11.49 16.73 21.66

N95 mask 0.12 0.24 0.49 0.73 0.97

Provincial bus 69 2.49 No mask 26.81 46.43 71.31 84.63 91.77

Surgical
mask

7.51 14.45 26.81 37.39 46.43

N95 mask 0.31 0.62 1.24 1.86 2.47

UP ICE Room 408 154 0.1 No mask 96.93 99.91 100.00 100.00 100.00

Surgical
mask

58.13 82.47 96.93 99.46 99.91

N95 mask 3.42 6.73 13.00 18.85 24.31

UP ICE Room 409A (closed windows) 145.53 1.8 No mask 18.51 33.60 55.91 70.72 80.56

(Continued on following page)
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within to pass through. As a result, a ventilation rate of 1.8 ACH
was determined. However, opening the windows on just one side
of the room results in the ventilation rate increasing to 9.54 ACH.
Moreover, opening the door on the other side of the room to
facilitate two-way ventilation results in the ventilation rate
increasing further to 14.26 ACH.

3.2 Traditional jeepney

CO2 levels were also measured in a traditional jeepney.
Traditional jeepneys are windowless public transport vehicles,
with both sides open. Their typical seating capacity ranges from
12 to 18 for short type and up to 26–32 for long type. A short-type
jeepney was considered in this study.

The jeepney initially was stationary as it waited for passengers to
fully board. As shown in Figure 6A, the ventilation rate was
determined to be 47.56 ACH. As the jeepney started to move,
the ventilation rate further increased to 151.54 ACH, as shown in
Figure 6B.

The algorithm programmed to the microcontroller units resets
its multivariate analysis once it detects an inflection point as this
indicates a change in the occupancy and/or the ventilation rate. For
example, at the time frame shown in Figure 6A, the jeepney was
stationary. After that, the jeepney began moving, resulting in a
change in ventilation rates.

3.3 Modern jeepney

Air-conditioned minibuses, also known as the “Modern
Jeepneys,” were also subjected to CO2 measurements. Unlike air-
conditioned commuter vehicles such as buses or trains, these
modern jeepneys follow the operation of traditional jeepneys,
i.e., they stop and open the doors randomly whenever a
passenger gets on or off. This scenario creates imperfect mixing.

Their typical seating capacity is 23, with up to five people standing
on the aisle.

As shown in Figure 7, due to the imperfect mixing within the
modern jeepneys, Eqs 4, 5 estimated high emission rates and high
ventilation rates. So, Eq. 9 was instead used, using the known
occupant count of 26 people, resulting in a ventilation rate of
1.23 ACH.

3.4 MRT-3

To capture a perfectly mixed environment for the derivation of
the ventilation rates, the CO2measurements on theMRT 3000 trains
of the MRT-3 lines are focused on the first leg of the trip before the
doors reopened on the next station, as shown in Figure 8. MRT
3000 coaches are air-conditioned, and the windows on both sides are
closed. The derived ventilation rate was 2.78 ACH.

Once the doors are opened, as shown in Figure 8B, the
ventilation rate increases to 16.04 ACH. Both the ACH reports
are done, given that the estimated number of occupants matched the
actual number of occupants.

The train direction and the time presented in Figure 8 are at a
moderately busy window of MRT-3 operations. Note that a sudden
influx of passengers due to rush hour can plummet the ventilation
rate. One way to increase the ventilation rate in commuter trains is
by opening the windows (Shinohara, et al., 2021).

3.5 LRT-2

Unlike MRT-3, the trains on LRT-2 have a continuous air-
conditioned train cabin extending from the front to the back.
The windows on both sides are also closed. As the train
accelerates, the air from the front rushes to the back of the
train, resulting in internal compartmentalization of the inside
air. As shown in Figure 9, despite Eqs 4, 5 having good estimates

TABLE 1 (Continued) Summary of infection risk due to the Alpha variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h
(%)

2 h (%) 3 h (%) 4 h
(%)

Surgical
mask

4.99 9.73 18.51 26.44 33.60

N95 mask 0.20 0.41 0.82 1.22 1.62

UP ICE Room 409A (open windows) 145.53 9.54 No mask 3.79 7.43 14.32 20.69 26.58

Surgical
mask

0.96 1.91 3.79 5.63 7.43

N95 mask 0.04 0.08 0.15 0.23 0.31

UP ICE Room 409A (two-way
ventilation)

145.53 14.26 No mask 2.55 5.04 9.82 14.36 18.68

Surgical
mask

0.64 1.28 2.55 3.80 5.04

N95 mask 0.03 0.05 0.10 0.15 0.21
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TABLE 2 Summary of infection risk due to the Delta variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h (%) 2 h (%) 3 h (%) 4 h
(%)

Traditional jeepney (stationary) 12 47.56 No mask 41.28 65.52 88.11 95.90 98.59

Surgical
mask

12.46 23.37 41.28 55.01 65.52

N95 mask 0.53 1.06 2.11 3.14 4.17

Traditional jeepney (moving) 12 151.54 No mask 15.39 28.41 48.75 63.31 73.73

Surgical
mask

4.09 8.02 15.39 22.17 28.41

N95 mask 0.17 0.33 0.67 1.00 1.33

Modern jeepney 29.16 1.23 No mask 100.00 100.00 100.00 100.00 100.00

Surgical
mask

99.42 100.00 100.00 100.00 100.00

N95 mask 18.61 33.75 56.11 70.92 80.74

EDSA Carousel bus (stationary) 66 2.29 No mask 86.61 98.21 99.97 100.00 100.00

Surgical
mask

39.51 63.41 86.61 95.10 98.21

N95 mask 1.99 3.94 7.73 11.36 14.86

EDSA Carousel bus (moving) 66 4.92 No mask 60.77 84.61 97.63 99.64 99.94

Surgical
mask

20.86 37.37 60.77 75.43 84.61

N95 mask 0.93 1.85 3.67 5.46 7.21

LRT-1 199.73 3.62 No mask 34.31 56.85 81.38 91.97 96.53

Surgical
mask

9.97 18.95 34.31 46.76 56.85

N95 mask 0.42 0.84 1.67 2.49 3.31

LRT-2 838.8 15.34 No mask 2.33 4.61 9.01 13.21 17.22

Surgical
mask

0.59 1.17 2.33 3.48 4.61

N95 mask 0.02 0.05 0.09 0.14 0.19

MRT-3 158.6 2.77 No mask 49.93 74.93 93.71 98.42 99.60

Surgical
mask

15.88 29.24 49.93 64.57 74.93

N95 mask 0.69 1.37 2.73 4.07 5.38

Provincial bus 69 2.49 No mask 82.94 97.09 99.92 100.00 100.00

Surgical
mask

35.74 58.70 82.94 92.96 97.09

N95 mask 1.75 3.48 6.83 10.07 13.19

UP ICE Room 408 154 0.1 No mask 100.00 100.00 100.00 100.00 100.00

Surgical
mask

99.28 99.99 100.00 100.00 100.00

N95 mask 17.91 32.61 54.58 69.39 79.37

UP ICE Room 409A (closed windows) 145.53 1.8 No mask 68.65 90.17 99.03 99.91 99.99

(Continued on following page)
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of the occupancy, the ventilation rate was estimated to be at
15.34 ACH.

3.6 LRT-1

This study has also covered the modern air-conditioned trains of
the LRT-1 line. Within LRT-1, the train was divided into three
separate train wagons. The windows on both sides were also closed.
The passenger count within the train wagon was constant from the
EDSA Station to Central Station. The CO2 levels within that interval
were used in Eqs 4, 5, as shown in Figure 10.

Although doors were opening and closing during the train stops
at train stations, the drop in CO2 levels and the change in ventilation
rates were not observed as the passengers were not moving within
and passengers stood by the doors. Northbound LRT-1 trains are
typically busy at this time of the evening as they ferry people who are
working in Pasay city, Makati city, and Manila city to North Manila.
The average ventilation rate measured from the EDSA Station to
Central Station was determined to be at 3.62 ACH. Eqs 4, 5 returned
the negative values for occupancy and ventilation rate when tested
over the downward trend.

3.7 EDSA Carousel bus

The CO2 measurements were done during the rush hour when
the air-conditioned buses were queuing at the bus stops. The
windows on both sides are closed. Figure 11A shows Eqs 4, 5
being tested at the time the bus was moving at a slow pace, while
Figure 11B shows Eqs 4, 5 being tested at the time the bus was
stationary as it queued for the bus stop.

Upon Eqs 4, 5 computing the same occupancy as the actual
occupancy, the ventilation rates were determined. The ventilation
rate of the EDSA Carousel bus when stationary was 2.29 ACH, while
when in motion, the ventilation rate was 4.92 ACH.

3.8 Provincial bus

CO2 levels were measured in the first continuous leg of the
12-h journey onboard an air-conditioned provincial bus without
the doors opening. As shown in Figure 12, upon Eqs 4, 5
computing the same number of people as with the actual
number of people, the ventilation rate was determined to be
equal to 2.49 ACH.

3.9 COVID-19 infection risk

With the ventilation rates derived, the infection risks are
determined in Tables 1, 2, and 3 for the Alpha, Delta, and
Omicron variants, respectively.

Due to the inverse relationship between ventilation rates and
infection risks, infection risks are determined to be higher in
indoor spaces with low ventilation rates. However, having high
ventilation rates do not mean low infection risks as smaller spaces
will also have higher infection risks. The computations also show
that the better the quality of masks that were used, the lower the
infection risk.

4 Conclusion and recommendations

The study developed an economical CO2 monitoring device that
was deployed in various indoor spaces. The CO2 readings then
undergo multivariate analysis using the least squares method to
derive the ventilation rate and occupancy.

The method augments the limitation to the previous steady-
state methods in deriving the ventilation rates; however, the
method itself is incapable of deriving the ventilation rates and
occupancy when the CO2 levels presume a steady-state condition.
The method is also limited to increasing CO2 levels as it returns
negative values when tested on decreasing CO2 levels. The

TABLE 2 (Continued) Summary of infection risk due to the Delta variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h (%) 2 h (%) 3 h (%) 4 h
(%)

Surgical
mask

25.17 44.01 68.65 82.45 90.17

N95 mask 1.15 2.29 4.53 6.72 8.86

UP ICE Room 409A (open windows) 145.53 9.54 No mask 19.66 35.45 58.33 73.11 82.64

Surgical
mask

5.32 10.37 19.66 27.99 35.45

N95 mask 0.22 0.44 0.87 1.30 1.74

UP ICE Room 409A (two-way
ventilation)

145.53 14.26 No mask 13.62 25.39 44.33 58.46 69.01

Surgical
mask

3.59 7.06 13.62 19.72 25.39

N95 mask 0.15 0.29 0.58 0.87 1.16
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TABLE 3 Summary of infection risk due to the Omicron variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h (%) 2 h (%) 3 h (%) 4 h
(%)

Traditional jeepney (stationary) 12 47.56 No mask 73.69 93.08 99.52 99.97 100.00

Surgical
mask

28.38 48.71 73.69 86.51 93.08

N95 mask 1.33 2.64 5.20 7.70 10.13

Traditional jeepney (moving) 12 151.54 No mask 34.24 56.75 81.30 91.91 96.50

Surgical
mask

9.95 18.91 34.24 46.67 56.75

N95 mask 0.42 0.83 1.66 2.48 3.30

Modern jeepney 29.16 1.23 No mask 100.00 100.00 100.00 100.00 100.00

Surgical
mask

100.00 100.00 100.00 100.00 100.00

N95 mask 40.33 64.40 87.32 95.49 98.39

EDSA Carousel bus (stationary) 66 2.29 No mask 99.35 100.00 100.00 100.00 100.00

Surgical
mask

71.65 91.96 99.35 99.95 100.00

N95 mask 4.92 9.59 18.27 26.11 33.20

EDSA Carousel bus (moving) 66 4.92 No mask 90.43 99.09 99.99 100.00 100.00

Surgical
mask

44.39 69.07 90.43 97.04 99.09

N95 mask 2.32 4.59 8.96 13.14 17.12

LRT-1 199.73 3.62 No mask 65.15 87.85 98.52 99.82 99.98

Surgical
mask

23.17 40.97 65.15 79.43 87.85

N95 mask 1.05 2.09 4.13 6.13 8.09

LRT-2 838.8 15.34 No mask 5.75 11.17 21.09 29.91 37.74

Surgical
mask

1.47 2.92 5.75 8.50 11.17

N95 mask 0.06 0.12 0.24 0.35 0.47

MRT-3 158.6 2.77 No mask 82.36 96.89 99.90 100.00 100.00

Surgical
mask

35.19 58.00 82.36 92.59 96.89

N95 mask 1.72 3.41 6.70 9.89 12.96

Provincial bus 69 2.49 No mask 98.82 99.99 100.00 100.00 100.00

Surgical
mask

67.01 89.12 98.82 99.87 99.99

N95 mask 4.34 8.49 16.26 23.37 29.87

UP ICE Room 408 154 0.1 No mask 100.00 100.00 100.00 100.00 100.00

Surgical
mask

100.00 100.00 100.00 100.00 100.00

N95 mask 39.04 62.83 86.19 94.87 98.09

UP ICE Room 409A (closed windows) 145.53 1.8 No mask 94.55 99.70 100.00 100.00 100.00

(Continued on following page)
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method could also underestimate the occupancy if the activity
rate of the occupants is less than the average.

To handle the limitations, an alternate method was used to
derive the CO2 levels with the known number of occupants as an
additional input. A camera-based people counter can be coupled to
the CO2 monitor to accurately derive the ventilation rates. As to the
activity rate, noise meters can be used to gauge human activity
within the indoor facility, which can be related to the activity rates to
adjust the parameters of the method.

The derived ventilation rates were then used to estimate the
infection risk of different indoor spaces and public transportation
modes. For most of the indoor spaces, the higher ventilation rates
indicate lower risks, apart from traditional jeepneys which may
have medium risk, especially if the jeepneys were stationary.
Masking was also determined to have attributed to most
infection risk reduction.

The developedCO2monitors, which employ themultivariatemethod
and the Wells–Riley formulations, can be a useful tool in informing
occupants of the relative risk that theymay be subjected to due to airborne
diseases transmitted through shared room air transmission.
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TABLE 3 (Continued) Summary of infection risk due to the Omicron variant.

Space Volume
(m3)

Ventilation
rate (ACH)

Mask Infection risk

30 min
(%)

1 h (%) 2 h (%) 3 h (%) 4 h
(%)

Surgical
mask

51.68 76.65 94.55 98.73 99.70

N95 mask 2.87 5.65 10.99 16.02 20.76

UP ICE Room 409A (open windows) 145.53 9.54 No mask 42.24 66.64 88.87 96.29 98.76

Surgical
mask

12.82 24.00 42.24 56.11 66.64

N95 mask 0.55 1.09 2.17 3.24 4.30

UP ICE Room 409A (two-way
ventilation)

145.53 14.26 No mask 30.74 52.02 76.98 88.96 94.70

Surgical
mask

8.77 16.77 30.74 42.35 52.02

N95 mask 0.37 0.73 1.46 2.18 2.90
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