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The model updating procedures employed in vibration-based health monitoring
need to be reliable and computationally efficient. The computational time is a
fundamental task if the results are used to evaluate, in quasi-real-time, the safe or
the unsafe state of strategic and relevant structures. The paper presents an
efficient two-step procedure for the identification of the mechanical
parameters and for the assessment of the corresponding uncertainty in model
updating problems. The first step solves a least squares problem, providing a first
estimate of the unknown parameters. The second (iterative) step produces a
refinement of the solution. Moreover, by exploiting the error propagation theory,
this article presents a direct (non-iterative) procedure to assess the uncertainty
affecting the unknown parameters starting from the experimental data covariance
matrix. To test the reliability of the procedure as well as to prove its applicability to
structural problems, the methodology has been applied to two test-bed case
studies. Finally, the procedure has been used for the damage assessment in an
existing building. The results provided in this article indicate that the procedure
can accurately identify the unknown parameters and properly localize and
quantify the damage.
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1 Introduction

In recent years, vibration-based monitoring methods have been widely used for the
evaluation of the dynamic performance and damage assessment of a wide scenario of
civil structures (Doeb et al., 1998; Zhang, 2007; Fan et al., 2010; Zheng et al., 2015). They
represent powerful tools in the civil engineering field because they are able to provide
real-time information on the structural health state during the structural life or after a
catastrophic event (e.g., earthquake, hurricane). For this aim, it is evident that the
numerical procedures used to obtain the possible damage state must be reliable and
efficient in time-demand, especially for buildings that have strategic or relevant
functions (such as hospitals and schools). Finite Element (FE) model updating
techniques based on ambient or forced vibrations are tools able to identify and/or
localize the damage as a change in the structural stiffness starting from the vibration
response measurements (Teughels et al., 2002; Bursi et al., 2014; Bursi et al., 2018; Zarate
and Caicedo, 2008). In the field of vibration-based dynamic identification procedures,
several methodologies have been proposed for the evaluation of the unknown
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parameters in civil structures (Mottershead and Friswell, 1993;
Teughels and De Roeck, 2004; Christodoulou and Papadimitriou,
2007; Caicedo and Yun, 2011; Vincenzi and Gambarelli, 2017;
Ponsi et al., 2021). Typically, these methodologies use an iterative
process to find the optimal parameters (i.e., the parameters
providing the best fit between numerical and experimental
quantities) which might lead to a considerable time-
consuming rate even in problems with a limited number of
parameters. The time needed to find the solution is important
if the results and the damage assessment are to be obtained in
real-time or almost real-time as for health monitoring systems
adopted to evaluate the unsafe state of a building in the aftermath
of a catastrophic event. Furthermore, the uncertainty assessment
of the identified parameters is of significant relevance especially
when the decision-maker has to decide to close a bridge or a
building in order to prevent any effect of a possible collapse of the
structure. In fact, the evaluation of the parameter uncertainty is
essential to have information on the reliability of the updated
parameters and the seriousness of the structural damage state and
to avoid making awkward or improper decisions based on
indicators affected by large uncertainties.

Recent interest has arisen in determining the uncertainty of the
identified parameters of structural systems using the Bayesian
probabilistic approach (Beck and Katafygiotis, 1998; Degrauwe et al.,
2009; Goller and Schueller, 2011; Simoen et al., 2013; Nguyen et al.,
2019; Ponsi et al., 2022). The parameter uncertainty can be quantified in
the form of probability distribution in Bayesian inference and with the
use of the likelihood function. The most likely vector of the parameters
is obtained by maximizing the posterior probability density function
(PDF) or by minimizing the objective function which is the negative
logarithm of the posterior PDF. Its robustness in dealing with
uncertainties is widely explored and it shows its applicability and
feasibility for structural health monitoring (Nguyen et al., 2019;
Ponsi et al., 2022). However, Bayesian model updating needs to
solve multidimensional integration problems and it requires the
solution of a nonlinear optimization problem (Ching and Beck,
2004; Vahedi et al., 2018). This often requires considerable
computational time and could be unusable in real-time or near-real-
time damage detection. Moreover, a priori probability of the structural
statemust be assumed. The priori probability is case dependent,must be
evaluated by an expert and it can significantly change the results of the
uncertainties evaluation (Goller and Schueller, 2011; Nguyen et al.,
2019; Ponsi et al., 2022).

The present article presents the general frame of an efficient
and fast procedure for the evaluation of unknown parameters and
related uncertainties in the context of dynamic identification
problems. Two main steps constitute the methodology. The first
step finds a first estimate of the unknown parameters directly
(i.e., without iterative procedures) from the eigenvalue problem,
while the second step produces a refinement of the solution if the
set of parameters obtained from the first step does not reach a
prescribed tolerance. Moreover, by exploiting the error
propagation theory, a direct procedure is presented for
assessing the uncertainty of parameters starting from
experimental data uncertainties. To test the reliability of the
method as well as to prove its applicability to structural problems,

the methodology is applied to two (numerical) case studies. These
structures are expressly simple because the authors aimed to
show perfectly controlled mechanical case studies where the
exact solution is known, and the uncertainties of identified
parameters can be also compared with those calculated via
Monte Carlo simulation. Finally, to prove that the procedure
can be applied to real cases, the procedure is applied for the
damage assessment of a three-story building. The structure is a
reinforced concrete (RC) framed building with masonry infill
panels and was built in 1920 in El Centro (California,
United States). The building was tested at three different
damage levels, introduced by the destruction of some
perimetral infills (Yousenfianmoghadam et al., 2015). The aim
of the procedure is the identification of the progressive damage of
the infills.

2 Two-step procedure for unknown
parameters assessment

The two-step procedure adopts an updating algorithm in
order to reach the solution with the desired precision level. The
first step directly solves an inverse problem by means of the least
squares method that minimizes residuals of the eigenvalue
problem. The second step iteratively improves the solution,
obtained in the first step, using a standard gradient-based
algorithm. Figure 1 shows the flowchart of the two-step
procedure. To apply the procedure, the stiffness matrix KT of
a system with m degrees of freedom is decomposed in the
following way:

KT � K0 +∑q

s�1asK s (1)

where: q is the number of elements whose stiffnesses are to be
identified; K s ∈ Rm×m are the stiffness matrices providing the
contribution to the global stiffness of the elements affected by
damage; as (with s = 1, 2, . . ., q) are the multipliers of the Ks

matrices; K0 ∈ Rm×m is the stiffness matrix of the system, obtained
excluding the contribution of the q elements before described. The
decomposition performed in Eq. 1 is possible only if substructures
can be considered as in parallel stiffnesses and each multiplier refers
to an independent substructure.

Analogously, the mass matrix MT of the whole system can be
decomposed as:

MT � M0 +∑N

s�q+1asMs (2)

where: as (with s = q+1, q+2, . . .,N), are the parametric multipliers of
the mass matricesMs ∈ Rm×m andM0 ∈ Rm×m is the part of the mass
matrix considered fixed (i.e., not updated) in the procedure.

2.1 First step

The standard dynamic eigenvalue problem (Clough et al., 1995)
is written and a set of residuals ν1, ..., νn, to be minimized in a least
squares problem, IS defined as:
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p1 K0 +∑q

s�1 asK s( ) − ω2
1M0 − ω2

1∑N

s�q+1 asMs( )[ ]φ1 � ν1

..

.

pi K0 +∑N

s�1 asK s( ) − ω2
iM0 − ω2

i∑N

s�q+1 asMs( )[ ]φi � νi

..

.

pn K0 +∑N

s�1 asK s( ) − ω2
nM0 − ω2

n∑N

s�q+1 asMs( )[ ]φn � νn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where: ωi and φi are respectively the i-th experimentally
identified circular frequency and mode shape; n is the
number of considered modes; pi are the weight coefficients.
Each one of the n equations in Eq. 3 contains m scalar
equations, where m is the degree-of-freedom number. These
scalar equations are not linearly independent among them. For
this reason, they constitute a redundant system. If the exact
frequencies and mode shapes are introduced in Eq. 3, all the
residuals are null vectors. Considering instead an experimental
set of modal parameters identified from vibration records in an
existing structure, typically the components of the residuals are
not zero due to signal measurements noise and model errors
(i.e., approximations introduced by numerical models).
Therefore, the system of Eq. 3 is usually over-determined.

The multiplier values as can be calculated to obtain the best
fit between experimental and numerical results.

Then, in the first step, the well-known linear least squares
problem can be applied and the multiplier values are obtained by
minimizing the objective function H(as):

as � argmin H as( )( )
with:

H as( ) � ∑n

i�1 vi‖ ‖2 (4)

In Eq. 3, weight factors pi have been introduced in order to
drive the solution to a reliable mechanical interpretation taking
into consideration the whole available experimental natural
modes set (also including those having less influence in the
definition of the global structural behavior). Furthermore, to
improve the precision of numerical outcomes, mode shapes
should be scaled to obtain residuals with the same order of
magnitude among different vibrating modes. The scaling could
be done, for instance, by using the mass-normalized mode
shapes.

In order to achieve an explicit relation, the least squares problem
is written as:

FIGURE 1
Flowchart of the two-step procedure proposed for the evaluation of unknown parameters in model updating problems.
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Ba � c (5)
where a is the column vector of the unknown multipliers of
dimensions N × 1:

a � a1, ..., as, ..., aN[ ]T (6)
c is a vector of dimensions n × 1:

c �

p1 ω2
1M0 − K0( )φ1

...
pi ω2

iM0 − K0( )φi

...
pn ω2

nM0 − K0( )φn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

and B is the coefficient matrix of dimension n·m × N:

B � Q,R[ ] (8)
In Eq. 8 Q is an n·m × qmatrix, R is an n·m × N-qmatrix. They

are respectively defined as:

Q �

p1K1φ1 ... p1K sφ1 ... p1Kqφ1

... ... ... ... ...
piK1φi ... piK sφi ... piKqφi

... ... ... ... ...
pnK1φn ... pnK sφn ... pnKqφn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

R �

−p1ω2
1Mq+1φ1 ... −p1ω2

1Msφ1 ... −p1ω2
1MNφ1

... ... ... ... ...
−piω2

iMq+1φi ... −piω2
iMsφi ... −piω2

iMNφi

... ... ... ... ...
−pnω2

nMq+1φn ... −pnω2
nMsφn ... −pnω2

nMNφn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

An estimate â of the unknown multipliers a, is obtained by
inverting the system in Eq. 5:

â � B+c (11)
in which B+ is the pseudo-inverse of matrix B:

B+ � BTB( )−1BT (12)
Regarding the validity of the solution of Eq. 11, the matters

related to the well-posedness condition of the identification problem
and the evaluation of the maximum number of identifiable
parameters are discussed in Sections 2.3, 2.4.

Alternatively, the system in Eq. 3 can be conveniently
reformulated in the following way:

~A a � ~b (13)
where: ~A is aN × N symmetric and positive-definite matrix and ~b is
a N × 1 vector whose components are estimated by Eq. 14 and Eq.
15 respectively.

As1 ,s2 �

~K s1 ~φ( )T ~K s2 ~φ( ) if  1≤ s1, s2 ≤ q

~K s1 ~φ( )T ~Ms2 ~φ( ) if  1≤ s1 ≤ q and q + 1≤ s2 ≤N

~Ms1 ~φ( )T ~K s2 ~φ( ) if  q + 1≤ s1 ≤N and 1≤ s2 ≤ q

~Ms1 ~φ( )T ~Ms2 ~φ( ) if  q + 1≤ s1, s2 ≤N

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (14)

bs �
~K s ~φ( )T ~ψ if  1≤ s≤ q

~Ms ~φ( )T ~ψ if  q + 1≤ s≤N

⎧⎪⎨⎪⎩ (15)

Denoting with Φ ∈ Rm×n the eigenvector matrix of the n
experimentally identified vibrating modes, the vector ~φ can be
defined as follows:

~φ � vec Φ( ) (16)
Moreover, the vector ~ψ and the matrices ~K s, ~K0, ~Ms, ~M0 are

defined as:

~ψ � ~M ~φ − ~K0 ~φ (17)
~K s � diag pi( ) ⊗ K s (18)
~K0 � diag pi( ) ⊗ K0 (19)

~Ms � diag −piω
2
i( ) ⊗ Ms (20)

~M0 � diag piω
2
i( ) ⊗ M0 (21)

The symbol “⊗” indicates the Kronecker product and diagmeans
a diagonal matrix with the i-th value equal to the argument (pi or
piω2

i ). ~A is symmetric and, for the uniqueness condition, it is a
positive-definite matrix. More information about the derivation of
Eqs 5–21 can be found in Tondi (Tondi, 2018). Finally, with the use
of the new terms defined above, the assessment of the vector â, which
contains the structural parameter multipliers as, is explicitly
obtained as in the following:

â � ~A
−1~b (22)

It is worth noting that Eqs 11, 22 directly provide the values of
the unknown stiffness multipliers without the need for any iterative
process. The solution of the system in Eq. 3 in common applications
can provide a good fit with the experimental mode shapes, even in
the case of noisy data. Nevertheless, it could assess the natural
frequency values poorly.

2.2 Second step

Even though, in some applications, only the first step is needed,
the second step improves the accuracy of the identified parameters
in the case the natural frequencies are assessed with low precision or
in general with an error higher than the required tolerance. In this
study, if all the relative errors (RE) in terms of frequency values reach
the prescribed tolerance, i.e.,:

REf,i � fi − �fi

�fi

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣< consti (23)

the first step is considered satisfactory and then sufficient to reach a
suitable assessment. In Eq. 23 fi, and �fi are respectively the
numerical and the experimental frequencies and consti are the
prescribed tolerance values. In the examples described in the
following, const has been assumed constant for all frequencies
and equal to 0.02.

If the relative errors do not satisfy Eq. 23, an improvement,
i.e., the second step, is introduced in order to better fit the
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experimental frequency values. In the second step, a second block
of equations is merged with the system in Eq. 3 as follows:

p1 K0 +∑N

s�1 asK s( ) − ω2
1M0 − ω2

1∑N

s�q+1 asMs( )[ ] · φ1 � ν1

..

.

pi K0 +∑N

s�1 asK s( ) − ω2
iM0 − ω2

i∑N

s�q+1 asMs( )[ ] · φi � νi

..

.

pn K0 +∑N

s�1 asK s( ) − ω2
nM0 − ω2

n∑N

s�q+1 asMs( )[ ] · φn � νn

p1

w1
det K0 +∑N

s�1 asK s( ) − ω2
1M0 − ω2

1∑N

s�q+1 asMs( )[ ] � r1

..

.

pi

wi
det K0 +∑N

s�1 asK s( ) − ω2
iM0 − ω2

i∑N

s�q+1 asMs( )[ ] � ri

..

.

pn

wn
det K0 +∑N

s�1 asK s( ) − ω2
nM0 − ω2

n∑N

s�q+1 asMs( )[ ] � rn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(24)

The second equation block explicitly involves the null value of
the determinants only if the exact eigenvalues are introduced. As
a result, the system of Eq. 24 is even more redundant than the
system of Eq. 3 and, consequently, mathematically more
constrained. Due to the non-linearity introduced by the
second block, it is not possible to obtain directly
(i.e., explicitly) the improved solution, and then the second
step introduces an iterative process.

It is worth noting that residuals from the eigenvalue equations
block (i.e., the second block in Eq. 24) typically have values greater
than those obtained from the eigenvector equations block (i.e., the
first block in Eq. 24). As a consequence, a set of weight parameterswi

(with i = 1, 2, . . ., n) is introduced in Eq. 24 to ensure that the first
and second equation blocks provide residuals with analogous order
of magnitude. They do not have a physical means, but their
introduction allows to achieve the solution at a higher rate of speed.

In the second step, the objective function to minimize is thus
defined as the sum between the second-norm of the residuals vector
νi and the sum of squared residuals ri:

H as( ) � ∑n

i�1 νi‖ ‖2 + ri
2( ) (25)

The solution of Eq. 25 is obtained in the present proposal by
using a standard gradient-based optimization algorithm
(Coleman and Li, 1996; Conn et al., 2000), for which the
solution â of Eq. 22, i.e., the solution obtained from the first
step, is assumed as the initial value for the second step. The
(iterative) solution of the complete system leads to an
improvement in the assessment of the frequency values
without affecting the accuracy of the estimated mode shapes.
The two-step procedure described here has been introduced as a
routine in the MATLAB (MathWorks, 2023) environment
following the flowchart shown in Figure 1.

2.3 Maximum (theoretical) number of
identifiable parameters

Starting from the dynamic eigenvalue/eigenvector problem, it is
possible to prove that the maximum theoretical number (Nmax) of
identifiable parameters is:

Nmax � n · m + 1( ) −∑n

i�1i (26)

where n is the number of considered vibrating modes and m is the
number of degrees of freedom. The proof and demonstration of Eq.
26 is reported in Appendix. This value provides important
information because it represents the upper bound of the
practical maximum number of unknowns identifiable with the
available dataset.

2.4 Uniqueness of the solution

The uniqueness of the solution for the linear system in Eq. 13 is
ensured if:

det ~A( ) ≠ 0 (27)

Reasoning on the contrary, for the sake of simplicity, the
uniqueness of the solution is not guaranteed in the case that the
determinant has a null value. After some trivial mathematical
operations, the null value of the determinant can be achieved if
there exists a set of parameters a = (α1, α2, . . . , αN)∊RN whereby:

α1 ~K1~φ + α2 ~K2~φ + . . . + αq ~Kq~φ + αq+1 ~Mq+1~φ + . . . + αN ~MN~φ � 0

(28)
Equation 27 is therefore satisfied if and only if the vectors

~K1~φ, ~K2~φ, . . . , ~Kq~φ, ~Mq+1~φ, . . . , ~MN~φ are linearly independent
and if:

~Ks~φ≠ 0 (29)
for s = 1, 2, . . ., q, associated with:

~Mt~φ≠ 0 (30)
for t = q+1, q+2, . . ., N. These conditions are N + 1 in total. The
reader could refer to Tondi (Tondi, 2018) for a detailed
mathematical demonstration.

2.5 Definiteness of the Hessian matrix

Computing the second derivatives of the objective function
H(as) (Eq. 4) with respect to the multipliers as, the Hessian
matrix ~H of the problem can be computed. After some
mathematical calculations, not reported here for the sake of
brevity, the Hessian matrix can be expressed in the following way:

~H � 2~A (31)
Exploiting the definition of definiteness itself, the following

relation can be found:
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x1 x2/xn[ ] · ~H ·
x1

x2

..

.

xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 2 · x1
~K1~φ + x2

~K2~φ + . . . + xn
~MN ~φ

���� ����2 ≥ 0

(32)
∀x1, x2,/, xN ∈ R

Therefore, the Hessian matrix ~H as the coefficient matrix ~A are
semi-positive definite. Since ~A is a semi-positive definite matrix, it
has eigenvalues greater than, or at least equal to, zero. Therefore, it is
possible to write:

det ~A( )≥ 0 (33)

which is a generalization of the Cauchy-Schwarz inequality. Then, a
unique stationary point associated with a positive DEFINITE
Hessian matrix represents a global minimum point for the target
function (Tondi, 2018).

3 Uncertainty assessment

Model updating problems are inverse problems based on the
minimization of an objective function. In real case applications, due
to the presence of both measurement and modeling errors, the
unknown parameters are unavoidably affected by uncertainty. Then,
the assessment of the unknown parameter uncertainty allows to
establish the robustness of the decision-making process usually
based on the updated model. If the uncertainties Ce of the modal
characteristics, i.e., natural frequencies and mode shapes, are known
[see for instance the procedure proposed by Reynders et al. (2008)]
the procedure described in this subsection allows us to directly
estimate the standard deviations of the structural parameters. The
problem has been approached by using the error propagation theory
(Taylor, 1997). Therefore, the covariance matrix Ca of the obtained
structural multipliers a is evaluated by means of the equation:

Ca � JaCeJ
T
a (34)

where Ja is the Jacobian matrix collecting the partial derivatives of
the multipliers a1–aN, with respect to the natural frequencies ω1–ωn,
and the mode shapes components φ11–φmn:

Ja �

∂a1
∂φ11

/
∂a1
∂φji

/
∂a1
∂φmn

∂a1
∂ω2

1

/
∂a1
∂ω2

i

/
∂a1
∂ω2

n

..

. ..
. ..

. ..
. ..

. ..
.

∂as
∂φ11

, /
∂as
∂φji

, /
∂as
∂φmn

,
∂as
∂ω2

1

/
∂as
∂ω2

i

/
∂as
∂ω2

n

..

. ..
. ..

. ..
. ..

. ..
.

∂aN
∂φ11

, /
∂aN
∂φji

, /
∂aN
∂φmn

,
∂aN
∂ω2

1

/
∂aN
∂ω2

i

/
∂aN
∂ω2

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(35)

and Ce is the covariance matrix of experimental circular frequency
squares ω2

i and mode shape components φji:

Ce �

σ2φ11 / cov φ11 ;φji( ) / cov φ11 ;φmn( ) cov φ11 ;ω2
1( ) / cov φ11 ;ω2

i( ) / cov φ11 ;ω2
n( )

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

cov φji ;φ11( ) / σ2φji / cov φji ;φmn( ) cov φji ;ω2
1( ) / cov φji ;ω2

i( ) / cov φji ;ω2
n( )

..

. ..
. ..

.
1 ..

. ..
. ..

. ..
. ..

. ..
.

cov φmn ;φ11( ) / cov φmn ;φji( ) / σ2φmn
cov φmn ;ω2

1( ) / cov φmn ;ω2
i( ) / cov φmn ;ω2

n( )
cov ω2

1 ;φ11( ) / cov ω2
1 ;φji( ) / cov ω2

1 ;φmn( ) σ2ω2
1

/ cov ω2
1 ;ω2

i( ) / cov ω2
1 ;ω2

n( )
..
. ..

. ..
. ..

. ..
. ..

.
1 ..

. ..
. ..

.

cov ω2
i ;φ11( ) / cov ω2

i ;φji( ) / cov ω2
i ;φmn( ) cov ω2

i ;ω2
1( ) / σ2ω2

i
/ cov ω2

i ;ω2
n( )

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 ..
.

cov ω2
n ;φ11( ) / cov ω2

n ;φji( ) / cov ω2
n ;φmn( ) cov ω2

n ;ω2
1( ) / cov ω2

n ;ω2
i( ) / σ2ω2

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(36)

Then, the standard deviation σa,s of each unknown parameter
as can be computed using the following expression:

σa,s �
����������
∇asT Ce∇as

√
(37)

where s = 1, 2, . . ., N and:

∇as � ∂as
∂φ11

, ..., ∂as
∂φmn

, ∂as
∂ω2

1
, ..., ∂as

∂ω2
n

[ ]T (38)

The Jacobianmatrix Ja has to be computed before calculating the
covariance matrix Ca. The partial derivatives of the unknown
parameters with respect to the experimental outcomes are
denoted as:

∂a
∂φji

� ∂a1
∂φji

, ..., ∂aq
∂φji

,
∂aq+1
∂φji

, ..., ∂aN
∂φji

[ ]T (39)

∂a
∂ω2

i

� ∂a1
∂ω2

i
, ..., ∂aq

∂ω2
i
, ∂aq+1

∂ω2
i
, ..., ∂aN

∂ω2
i

[ ]T (40)

and after some mathematical calculations, it is possible to express
the partial derivatives as:

~A · ∂a
∂φji

� ~lji (41)

~A · ∂a
∂ω2

i

� ~ri (42)

where: i = 1, 2, . . ., n and j = 1, 2, . . .,m. Moreover, we can define the
vectors:

~lji � ~l1,ji, ... ~lq,ji, ~lq+1,ji, ... ~lN,ji[ ]T (43a)
and:

~ri � ~r1,i, ... ~rq,i, ~rq+1,i, ... ~rN,i[ ]T (43b)
both with dimensions N×1 and whose components are defined in
the following way:

~ls,ji � −∑q

k�1ak
~K

i−1( )m+j
s( )T ~Kk ~φ( ) + ~K

i−1( )m+j
k( )T

~K s ~φ( )[ ]
−∑N

k�q+1ak
~K

i−1( )m+j
s( )T

~Mk ~φ( ) + ~M
i−1( )m+j
k( )T

~K s ~φ( )[ ]
+ ~K

i−1( )m+j
s( )T

~ψ + ~M
i−1( )m+j

0 − ~K
i−1( )m+j
0( )T

~K s ~φ( )
(44)

~rs,i � −∑N

k�q+1ak
~K s ~φ( )T ~Mk,i ~φ( ) + ~K s ~φ( )T ~M0,i ~φ( ) (45)

for s = 1, 2, . . ., q and:
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~ls,ji � −∑q
k�1

ak ~M
i−1( )m+j
s( )T

~Kk ~φ( ) + ~K
i−1( )m+j

k( )T
~Ms ~φ( )[ ]

− ∑N
k�q+1

ak ~M
i−1( )m+j

s( )T
~Mk ~φ( ) + ~M

i−1( )m+j
k( )T

~Ms ~φ( )[ ]
+ ~M

i−1( )m+j
s( )T

~ψ + ~M
i−1( )m+j
0 − ~K

i−1( )m+j
0( )T

~Ms ~φ( ) (46)

~rs,i � −∑N

k�1ak
~Kk ~φ( )T ~Ms,i ~φ( )

− ∑N
k�q+1

ak ~Ms ~φ( )T ~Mk,i ~φ( ) + ~Mk ~φ( )T ~Ms,i ~φ( )[ ] + ~Ms,i ~φ( )T ~ψ
+ ~Ms ~φ( )T ~M0,i ~φ( )

(47)
for s = q+1, q+2, . . ., N.

The superscript (i–1)m + j indicates the column of the matrix to
be selected. Furthermore, ~Ms,i and ~M0,i are block diagonal matrices
defined as:

~Ms,i �

0 0 / 0 / 0
0 0 / 0 / 0
..
. ..

.
1 ..

.
/ ..

.

0 0 / −piMs / 0

..

. ..
.
/ ..

.
1 ..

.

0 0 / 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (48)

~M0,i �

0 0 / 0 / 0
0 0 / 0 / 0
..
. ..

.
1 ..

.
/ ..

.

0 0 / piM0 / 0

..

. ..
.
/ ..

.
1 ..

.

0 0 / 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (49)

Finally, the partial derivatives are achieved starting from Eqs 41,
42 by inverting ~A, so obtaining:

∂a
∂φji

� ~A
−1 · ~lji (50)

∂a
∂ω2

i

� ~A
−1 · ~ri (51)

The diagonal terms of the Ca matrix represent the assessment of
the variance of each unknown parameter.

The assessment of the unknown parameter uncertainty
described in this subsection can be applied using both the first
estimate of the unknown parameters (provided by the first step of
the proposed procedure) or the refined solution (available after the
application of the second step). In the example of the following
section, the uncertainty evaluation is conducted on the final values of
the identified parameters.

4 Numerical applications to test-bed
case studies

The procedure proposed in this article has been tested by
performing the assessment of the stiffness values of the 2D and
3D frames selected as test-bed case studies. It is worth noting that the
selected case studies are particularly simple because the authors

aimed at selecting case studies where the exact solutions are known,
the mathematical processes are perfectly controllable and the
uncertainties of the selected parameters can be compared with
those coming from a Monte Carlo simulation. In Section 5, an
application to a full-scale real building (i.e., more complex and
affected by both modeling and measurement errors) will be
reported.

4.1 Case study 1: 2D three-story frame

4.1.1 Evaluation of multipliers in the case of exact
input data

The first test-bed case study is a 2D shear-type three-story frame
with three degrees of freedom (DOFs) and with two mechanical
parameters to estimate. The first and the second parameters to be
identified are the stiffness of the columns of the first two stories and
the stiffness of the columns of the third story respectively (see
Figure 2). Only the first natural frequency and the associated mode
shape are assumed as input in the procedure.

The numerical example is then performed by introducing the
following three stiffness matrices:

K0 �
2 −1 0
−1 2 −1
0 −1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦; K1 �
2 −1 0
−1 1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦; K2 �
0 0 0
0 1 −1
0 −1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The mass matrix M0 is assumed known and the same value of

mass M = 0.02 for each floor is considered, so obtaining:

M0 �
0.02 0 0
0 0.02 0
0 0 0.02

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The reference (exact) values for the parameters in order to

compute the first circular frequency and the corresponding mode
shape are:

a1,ref � 25, a2,ref � 15

The reference circular frequency and mode shape are
respectively:

FIGURE 2
Case study 1: 2D frame with indication of the two unknown
parameters a1–a2.
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ω1,ref � 15.50 rad/s
φ1,ref �

2.130
3.865
5.525

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
Now, it is supposed that multipliers a1 and a2 are unknown and

the procedure described in Section 2 is applied to obtain their values.
The comparison between the obtained values and the reference ones
is then performed. First, the matrices ~K s, ~K0, ~Ms, ~M0 and the vector
~φ are computed. In this particular case, with only one available
mode, they are:

~φ � φ1,ref; ~K s � K s; ~K0 � K0; ~Ms � −ω2
1,refMs; ~M0 � ω2

1,refM0

Then, the vector ~ψ is also evaluated:

~ψ � ~M~φ − ~K0 ~φ � ω2
1M0φ1,ref − K0φ1,ref �

9.841
18.50
24.89

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The matrix ~A and the vector ~b are then computed according to

Eqs 14, 15:

~A � K1φ1,ref( )T K1φ1,ref( ) K1φ1,ref( )T K2φ1,ref( )
K2φ1,ref( )T K1φ1,ref( ) K2φ1,ref( )T K2φ1,ref( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

� 3.168 −2.881
−2.881 5.509

[ ]
~b � K1φ1,ref( )Tψ

K2φ1,ref( )Tψ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ � 35.99
10.61

[ ]
Finally, the unknown structural parameter multipliers can be

obtained by means of Eq. 22:

â � ~A
−1~b � 25.00

15.00
[ ]

By the comparison between values obtained by using the present
procedure and reference values, it is possible to observe a perfect
agreement between the two pairs of values. In the absence of errors
(modeling errors, measurement errors, truncating errors, etc.), the first
step of the procedure is sufficient to reach the reference exact value.

4.1.2 Evaluation of multipliers in the case of noisy
input data

To evaluate the effects of noisy data on the procedure, the frame
story stiffnesses have been identified starting from the so-called
pseudo-experimental input data. The pseudo-experimental data are
obtained by adding some statistical scattering to the “exact” values of
the input data. In particular, they are obtained by multiplying the
exact values of frequencies and mode shape components by
uncorrelated coefficients extracted from a normal probability
distribution with mean value equal to 1.0 and coefficient of
variation (CoV) equal to 5%. Therefore, the new pseudo-
experimental (identified in the following with the subscript “PS”)
input data used for the calibration of the story stiffnesses are:

ω1,ref,PS � 15.29 rad/s
φ1,ref,PS �

2.183
3.686
5.626

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

The procedure shown in Section 4.1.1 allows us to find the value
of the multipliers:

â � 23.91
10.98

[ ]
The parameters a1 and a2 are then introduced in the dynamic

eigenvalue/eigenvector problem and the modal parameters are then
estimated. The assessment of the circular frequency ω̂1 and themode
shape components are:

ω̂1 � 14.79 rad/s
φ̂1 �

1.994
3.637
5.727

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The first natural frequency result was about 3.3% lower than the

reference value ω1,ref,PS and so, according to the criterion reported
in Eq. 23, the second step of the procedure must be performed. A
standard gradient-based optimization algorithm is used and, after
three iterations, the new multiplier vector has been obtained. It
results in:

â � 25.70
11.81

[ ]
The improved frequency value and mode shape components

respectively are:

ω̂1 � 15.30 rad/s
φ̂1 �

1.999
3.646
5.719

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
The final first natural frequency value, after the two steps, is

practically equal to the reference value (i.e. 15.29 rad/s). This simple
example shows that, in practical problems faced with input data
affected by experimental errors, the second step is fundamental to
reach a high level of accuracy for the frequency value.

4.1.3 Uncertainty assessment
In this subsection, the standard deviation of the unknown

parameters, i.e., the structural multipliers, are computed
following the procedure described in Section 3. A CoV equal
to 5% was assumed for the frequency f1 and for the mode shape
components. Then, the variances of the four modal
parameters are:

σ2ϕ11 � 0.0113, σ2ϕ21 � 0.0374, σ2ϕ31 � 0.0763, σ2ω2
1
� 578 rad2/s2

Firstly, the partial derivatives with respect to φ11, φ21, φ31 and ω
2
1

are computed.

• Partial derivatives with respect to ϕ11:

~A

∂a1
∂φ11

∂a2
∂φ11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ~l1,11
~l2,11

[ ]
with:
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~l1,11 � −2a1 K1
1( )T K1ϕ( ) − a2 K1

1( )T K2ϕ( ) − a2 K1
2( )T K1ϕ( )

+ ω2
1M

1
0 − K1

0( )T K1ϕ( ) + ψT K1
1( )

~l2,11 � −2a2 K1
2( )T K2ϕ( ) − a1 K1

1( )T K2ϕ( ) − a1 K1
2( )T K1ϕ( )

+ ω2
1M

1
0 − K1

0( )T K2ϕ( ) + ψT K1
2( )

and where the superscript indicates the selected column of the matrix.

• Partial derivatives with respect to ϕ21 :

~A

∂a1
∂φ21

∂a2
∂φ21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ~l1,21
~l2,21

[ ]
with:

~l1,21 � −2a1 K2
1( )T K1ϕ( ) − a2 K2

1( )T K2ϕ( ) − a2 K2
2( )T K1ϕ( )

+ ω2
1M

2
0 − K2

0( )T K1ϕ( ) + ψT K2
1( )

~l2,21 � −2a2 K2
2( )T K2ϕ( ) − a1 K2

1( )T K2ϕ( ) − a1 K2
2( )T K1ϕ( )

+ ω2
1M

2
0 − K2

0( )T K2ϕ( ) + ψT K2
2( )

• Partial derivatives with respect to ϕ31:

~A

∂a1
∂φ31

∂a2
∂φ31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � ~l1,31
~l2,31

[ ]
with:

~l1,31 � −2a1 K3
1( )T K1ϕ( ) − a2 K3

1( )T K2ϕ( ) − a2 K3
2( )T K1ϕ( )

+ ω2
1M

3
0 − K3

0( )T K1ϕ( ) + ψT K3
1( )

~l2,31 � −2a2 K3
2( )T K2ϕ( ) − a1 K3

1( )T K2ϕ( ) − a1 K3
2( )T K1ϕ( )

+ ω2
1M

3
0 − K3

0( )T K2ϕ( ) + ψT K3
2( )

• Partial derivatives with respect to ω2
1:

~A

∂a1
∂ω2

1

∂a2
∂ω2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � K1φ( )T M0φ( )
K2φ( )T M0φ( )[ ]

The numerical values of the various partial derivative vectors of
the multipliers are:

∂a1
∂φ11

∂a2
∂φ11

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 2.400
−6.578[ ] ; ∂a1

∂φ21

∂a2
∂φ21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � −4.911
13.46

[ ]; ∂a1
∂φ31

∂a2
∂φ31

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 2.511

−6.880[ ]; ∂a1
∂ω2

1

∂a2
∂ω2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0.1082
0.0666

[ ]
After the computation of the partial derivative vectors, and

starting from the knowledge of the standard deviation for the modal
parameters, the standard deviation of the unknown parameters is
finally computed in the following way:

σa1 �

���������������������������������������������������
∂a1
∂φ11

( )2

· σ2φ11 +
∂a1
∂φ21

( )2

· σ2φ21 +
∂a1
∂φ31

( )2

· σ2φ31 +
∂a1
∂ω2

1

( )2

· σ2
ω2
1

√√
� 2.866

σa2 �

���������������������������������������������������
∂a2
∂φ11

( )2

· σ2φ11 +
∂a2
∂φ21

( )2

· σ2φ21 +
∂a2
∂φ31

( )2

· σ2φ31 +
∂a2
∂ω2

1

( )2

· σ2
ω2
1

√√
� 3.665

To verify the obtained values, a time-consuming statistical
Monte Carlo simulation is performed, and a statistical analysis of
the results is carried out. The Monte Carlo simulation is
conducted by using the pseudo-experimental input data
discussed in the previous subsection. The data are obtained by
adding to the “exact” value of frequencies and mode shape
components a scattering value that is statistically generated
and simulating the possible experimental error measurements
(Vincenzi and Simonini, 2017). A draw of 1,000 normally
distributed scattering values is realized for each one of the
four modal parameters (i.e., the first natural frequency and the
three story-displacement components of the first mode shape),
generating an input data set of 1,000 realizations. For each
simulation, first, the unknown parameters are identified by
using the procedure described in Section 2 and then the
variance of each parameter is statistically evaluated. For
comparison, the variance values obtained by means of both
methods, i.e., the Monte Carlo simulation and the procedure
proposed in this paper, are listed in Table 1. As far as the Monte
Carlo simulation is concerned, the mean values of the parameters
are reported. As expected, they are almost coincident with the
“exact” parameter values. With reference to the results obtained

TABLE 1 Case study 1: comparison between values and standard deviations of the unknown parameters obtained by means of the procedure proposed here and
Monte Carlo simulations.

Unknown parameter [-] Indicator Monte Carlo simulation Procedure proposed

After step #1 After step #2

a1 Identified value 25.00 23.79 24.99

Standard deviation 2.87 3.11 2.85

a2 Identified value 15.00 15.03 15.02

Standard deviation 3.66 3.89 3.68
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by means of the procedure proposed here, both the outcomes
after step #1 and step #2 are provided in the table. The results
show, for both the parameters a1 and a2, an excellent agreement
among the standard deviations resulting from the different
procedures. Again, it is worth recalling that in the case of
noisy data, step #2 is also required to obtain a reliable
assessment of the parameter values.

4.2 Case study 2: uncertainty evaluation of a
3D building with infilled RC frames

The second case study is a 3D masonry-infilled reinforced
concrete (RC) building. The structure is three stories high and it
has one bay in both the two directions (denoted as X and Y in the
following). The columns have a gross cross-section of 0.4 × 0.4 m2,
the beams are 0.4 × 0.5 m2 (width × height), the interstory height
is 3.0 m, and the spans in the X and Y directions are 5.0 and
6.0 m respectively. The Young modulus E for the RC is assumed
equal to 30,000 MPa. A lumped mass equal to 5.25 t is applied at
every corner node of each story. The columns are clamped at the
base. A schematic view of the building, together with the parameters
position assumed in the study, is shown in Figure 3. The i-th infill
panel, between the columns, is introduced by means of equivalent
truss elements with cross-section area equal to ai × di × ti (with:
ai = i-th unknown parameter to be identified; ti = thickness of the
i-th panel; di = diagonal length of the i-th panel). The panels’
thickness t is assumed equal to 0.30 m and with Young modulus
equal to 3,000 MPa for all walls. The reference values assumed for
the unknown parameters are collected in the vector a:

a � 0.30, 0.28, 0.25, 0.20, 0.18, 0.13, 0.15, 0.10, 0.21, 0.26, 0.08, 0.11[ ]T

The structure has been modeled by introducing the membrane
rigid floor hypothesis for story slabs and, so, the structure has nine
DOF (two translations in X and Y respectively and one rotation
along the vertical axis Z for each story). The natural frequencies and
the corresponding modal participating mass ratios of the building
have been evaluated and summarized in Table 2.

Five different scenarios have been considered, assuming
alternatively 12, 10, 8, 6, and 4 parameters to be evaluated. For
all the scenarios, the model updating procedure is performed
alternatively adopting 2, 3, 4, 5, or 9 natural frequencies and
respective mode shapes, obtaining 25 cases in total. The CoV of
frequencies and mode shape components is assumed equal to 5%,
for all the vibrating modes. To validate the results obtained bymeans
of the two-step procedure, the different CoVs are computed. For all
the cases, a Monte Carlo simulation is performed by considering
500 realizations.

Figure 4 shows the CoV of the unknown multipliers a1 and a4
for different combinations of vibrating modes adopted in the
procedure and the number of unknown parameters to identify.

FIGURE 3
Case study 2: global view of the structure with indication of the
position of the unknown parameters a1–a12.

TABLE 2 Case study 2: natural frequencies and respective modal participating
mass ratios.

Mode Frequency [Hz] Mx [%] My [%] Mθ [%]

1 7.66 4.63 54.63 1.87

2 8.16 45.76 8.46 0.76

3 9.50 36.15 21.65 90.44

4 20.06 5.76 1.60 0.95

5 22.85 2.01 6.23 0.08

6 27.10 2.77 5.84 2.67

7 29.93 0.70 0.55 1.26

8 30.88 1.75 0.53 0.00

9 36.76 0.47 0.51 1.97

FIGURE 4
CoV for different combinations of adopted vibrating modes and
unknown parameters: results for the parameters a1 and a4 for the
scenarios considering 4, 6 and 12 unknown parameters.
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It is worth noting that the CoV of a parameter monotonically
decreases if the number of adopted modes increases. Moreover, the
uncertainty of a specific parameter is almost insensitive to the total
number of parameters introduced in the procedure. The CoV of
the unknown parameters is very high if a few modes (i.e. 2, 3) are
selected, with values ranging from 20% to 80%. With a set of data
considering more than 4 vibrating modes, the CoV is smaller than
20% for all the analyzed cases. Finally, considering 9 vibrating
modes, the CoV of parameters reaches the minimum value of
about 8%. It is worth highlighting that for some parameters, there
is a negligible improvement in the uncertainty evaluation even if
the number of considered vibrating modes is greater than 5 (see for
instance the parameter a4 in Figure 3). In any case, starting from a
typical CoV value affecting the frequencies and the mode shape
components (i.e. 5%), the CoV of unknown parameters was much
higher, showing that structural parameters give, in general, more
scattered results than the modal parameters adopted as input
(frequencies and mode shape components). Consequently, when
the procedure also aims to quantify structural mechanical

parameter values, particular attention must be paid to the input
dataset size, especially if low-sensitive parameter values are to be
evaluated.

Finally, Figure 5 shows the comparison between the values of
CoV provided by the present procedure (solid line) and Monte
Carlo (dashed line) simulation for the unknown parameter a2.
The figure confirms, also for this case study, the good agreement
of the results coming from the two different methods and, for the
case at hand, if the number of considered modes is greater than
four, the two procedures provide the same CoV values. Similar
trends are obtained for the other parameters (not shown in the
figure).

5 Damage assessment of a three-story
real building

5.1 Description of structure, induced
damage, tests, and instrumentation

The structure is an RC-framed building with masonry infill
panels constructed in the 1920s in El Centro, California. The
construction, named the “El Centro building” (see Figure 6A),
included the basement, the ground floor, and the first floor, with
plan dimensions of 27.0 m × 32.3 m. The structure had RC frames in
the North-South direction connected by arch-type joists in the East-
West direction. The structure was damaged by three major
earthquakes striking the area in 1940, 1979, and 1987 and was
retrofitted in the late 1980s. The retrofit focused on the
strengthening of the masonry infills along the perimeter frames
of the ground floor.

During the 2010 Baja California Earthquake, the first-floor
infills and the perimeter frames in the North, West, and South
sides were severely damaged while the East side did not exhibit
any visible crack or detriment. The building was tested in the
nonlinear range of response using mobile shakers at three
different damage levels, or damage states, labeled DS2, DS3,
and DS4, introduced by the additional destruction of some
perimeter infills of the first floor: three on the West side and

FIGURE 5
CoV for different combinations of adopted vibrating modes and
unknown parameters: comparison between the results provided by
the proposed procedure (solid line) and Monte Carlo simulation
(dashed line) for unknown parameter a2.

FIGURE 6
El Centro building (Yousenfianmoghadam et al., 2015). (A) Global view; (B) Picture of the building at the end of the tests after the demolition of four
infill panels at the first floor.
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one on the South side (Yousenfianmoghadam et al., 2015). All
three damaged states and the undamaged state (DS1) are
considered in this study. Figure 6B shows the building at the
end of the tests after the demolition of four infill panels in the first
story. The location and the sequence for wall removal are shown
in Figure 7A. An array of 60 accelerometers was installed close to
the four corners and at the center of the slab on each floor and
measured accelerations in three directions at every location. The
selected instrumentation allowed the identification of the
translational and torsional vibrating modes of the building.
The acceleration response of the building to ambient

excitations was recorded for 120 h using a data logger, which
could record accelerations between 0.1 mg and 2 g with a
sampling rate of 200 Hz. More information about the tests on
the structure, its design details, and in-depth details on the
response to the testing sequence can be found in
Yousenfianmoghadam et al. (2015).

The two-step procedure proposed here was adopted to
identify the in-plane stiffness of the infill panels, located on
each side of the first story resulting in four unknown
parameters to be updated.

The geometry and the material properties of structural
and non-structural elements are assumed according to
Yousenfianmoghadam et al. (2015). The numerical FE model
adopted for the numerical simulation is depicted in Figure 7B
and it is obtained with OpenSEES software (Opensees, 2016). The
structural model of the RC frames is obtained by means of mono-
dimensional beam elements. The slabs have been modeled by 4-
node shell elements with the equivalent membrane and flexural
thickness. To maintain simplicity in the numerical model as much
as possible, the masonry infills between consecutive columns are
introduced in the FE model by two equivalent diagonal truss
elements following the modeling framework proposed in Bose
et al. (2018). The parameters to identify ai are multipliers of the
axial rigidity S = a·E·A of the equivalent diagonal struts of the first
floor, arranged as illustrated in Figure 8 (where E: masonry Young
modulus; A: equivalent strut cross-section area; a: multiplier to
identify). The stiffness values of the infill panels at both the ground
and underground stories are obtained by using the methodology
proposed in Stavridis (2009). The estimated stiffness is reduced by
means of two reduction factors to take into account the openings
and existing damage in the infill panels, according to the damage
detection realized before the experimental campaign (Song et al.,
2018).

To obtain the matrices K s defined in Eq. 1, the following
difference is considered:

K s � �K s − K0 (52)
where: �Ks is the global stiffness matrix obtained assigning to the
s-th parameter a unitary value and zero for the other parameters,

FIGURE 8
Plan view of the first floor of the El Centro building, showing the
unknown parameters arrangement for the infill modelling.

FIGURE 7
Global view of (A) infill removal sequence associated to the different damage states DS and (B) FE model adopted for the study of the El Centro
building.
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and K0 is the stiffness matrix with all parameters set equal
to zero.

To perform the model updating procedure, the first two natural
vibrating modes are considered in this study, with the weight
parameters p1 and p2 set equal to 1.0. The mode shape components
are statically condensed, introducing the rigid diaphragm
assumption, into three components for each story,
i.e., translation in X and Y direction and rotation around
vertical axis Z, with axis reference system positioned at the
story center of mass and with Y axis coincident with North
direction. The assumption of a rigid diaphragm is justified by
the high stiffness of the existent slabs with respect to the frame, and
the low level of excitation reached during the ambient vibration
tests.

The proposed two-step procedure is applied to the four states
(DS1-DS4), allowing for the evaluation of the updated rigidity
values Si = ai·E·Ai reported in Table 3. The comparison between
experimental and numerical frequencies and mode shapes is
reported in Table 4. The modal assurance criterion (MAC)
(Clough et al., 1995) values for the different DS are higher
than 0.97. That means that there exists an almost perfect
correspondence between experimental and numerical mode
shapes. Moreover, the relative errors in the frequency

estimations were very low, proving the high reliability of the
numerical procedure.

To quantify the expected damage for the various infill
panels, the Damage Index (Tondi et al., 2019) Ei has been
defined as:

Ei DSj( ) � ai DS1( ) − ai DSj( )
ai DS1( ) (53)

where: ai (DSj) is the multiplier value identified for the i-th
unknown parameter in the j-th damage state DSj. With this
definition, the damage index Ei ranges from 0.0 (for
undamaged components) to 1.0 (for completely damaged
members). The values of the Damage Index are reported in
Table 5 for the different unknown parameters and for each
damage state DS2-DS4.

The obtained damage indices established a numerical
“virtual” scenario that matches very well with the actual
scenario of degradation, for all the increasing damage levels,
and shows the ability of the technique to properly identify the
position of the damaged infills. The damage indices associated
with multipliers a1 and a2 are close to zero for all the damage
states which is consistent with the removal procedure since no
wall was demolished on the North and East sides. Correctly, the
damage index E3 is close to zero in DS2 and DS3, and it increases
in damage state DS4 when one infill panel was demolished on the
South side. Finally, the damage index E4 of the multiplier a4
properly represents the progressive removal on the West side
where an infill panel has been removed at every damage state
from DS2 to DS4.

5.2 Parameter uncertainty assessment

The procedure presented in Section 3 has been applied to
assess the uncertainties related to the rigidity parameters S1–S4,
identified for the different damage states. The procedure

TABLE 3 El Centro building: axial rigidities Si (with S = a·E·A) of the equivalent
struts simulating the infill panels, as identified by the two-step procedure for
the different damage states DS1–DS4.

Damage state Strut axial rigidity Si (×104) [kN]

S1 S2 S3 S4

DS1 4.34 37.25 17.33 11.35

DS2 4.26 37.25 17.33 6.65

DS3 4.26 37.25 17.33 4.73

DS4 4.26 36.43 13.66 3.52

TABLE 4 El Centro building: experimental and numerical frequencies, frequency relative errors and MAC for the damage states DS1 - DS4.

Damage state Frequency MAC [-]

Experimental [Hz] Numerical [Hz] Error [%]

DS1 Mode 1 2.26 2.27 0.54 0.99

Mode 2 3.37 3.38 0.36 0.99

DS2 Mode 1 2.14 2.16 1.12 0.99

Mode 2 3.07 3.19 0.92 0.99

DS3 Mode 1 2.06 2.08 1.10 0.98

Mode 2 2.96 2.99 0.92 0.97

DS4 Mode 1 1.96 1.99 1.56 0.98

Mode 2 2.72 2.75 1.25 0.99
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suggested by Reynders (Reynders et al., 2008) has been applied
in order to calculate the covariance matrix of the experimental
modal parameters. The experimental CoV of the frequencies is
rather small, in the range of 3%–4%, while the CoV of the mode
shapes components is higher, ranging from 10% to 40%. The
main outcomes of the procedure, reported in terms of mean
value, standard deviation, and CoV values of the strut axial
rigidity containing the unknown parameters have been collected
in Table 6. The results show a very high variability for the
parameters, with CoV up to 202% in one particular case. The

wide scattering of the identified parameters is mainly due to the
large uncertainty values of mode shape components resulting
from in-situ experimental tests. Ideally, if the uncertainty
affecting the mode shape components could be reduced, the
CoV of the unknown parameters should be strongly reduced. For
instance, if we assume for the mode shape components an ideal
CoV value equal to 8%, the new scenario would become the one
shown in Table 7. In the ideal condition, the maximum CoV of
the unknown parameters should be reduced from the original
202%–35%, and in general, the new ideal results show a
moderate parameter variability with CoV in the range 9%–35%.

Therefore, in the mechanical parameter uncertainty
evaluation, great importance is attributed to the mode shape
uncertainties. For the case investigated here, a little variation in a
mode shape produces high modification to both in-plane and
elevation story stiffness distribution and, therefore, a large
variability of the strut rigidity values. This real case study
confirms that the unknown parameters of a structure (i.e., the
output of the procedure), governing the dynamic behavior of the
building, are much more scattered than the considered modal
parameters (i.e., the input in the procedure).

TABLE 5 Evaluation of the Damage Index for increasing damage levels (DS2-
DS4) calculated for each unknown parameter.

Damage state Damage index

E1 E2 E3 E4

DS2 0.017 0.00 0.00 0.41

DS3 0.017 0.00 0.00 0.58

DS4 0.017 0.022 0.21 0.69

TABLE 6 Mean values, standard deviations, and CoVs of the four equivalent strut rigidities S1-S4 calculated for the El Centro building for damage states DS1 and
DS4, starting from the experimental data available for the El Centro building.

Damage state Strut axial rigidity Si (×104)

S1 S2 S3 S4

DS1 Mean 4.34 37.25 17.33 11.35

Standard deviation [kN] 6.02 22.75 5.25 5.13

CoV [%] 138.6 61.07 30.31 45.23

DS4 Mean [kN] 4.26 36.43 13.66 3.52

Standard deviation [kN] 2.68 73.41 20.07 6.36

CoV [%] 62.80 201.5 146.9 180.8

TABLE 7 Mean values, standard deviations, and CoVs of the four equivalent strut rigidities S1–S4 calculated for the El Centro building for damage states DS1 and
DS4, starting from the experimental data of frequencies assuming a CoV value equal to 8% for the mode shape components.

Damage state Strut axial rigidity Si (×104)

S1 S2 S3 S4

DS1 Mean [kN] 4.34 37.25 17.33 11.35

Standard deviation [kN] 1.49 7.32 1.58 1.75

CoV [%] 34.36 19.66 9.10 15.45

DS4 Mean [kN] 4.26 36.43 13.66 3.52

Standard deviation [kN] 0.85 12.34 1.73 0.65

CoV [%] 19.90 33.86 12.64 18.45
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6 Conclusion

This article presents an efficient and fast two-step procedure for
the evaluation of unknown parameters and their uncertainties in the
context of dynamic model updating. In the first step, the least square
problem is solved in order to obtain an estimate of the mechanical
parameters governing the behavior of the structural system. The target
function is composed of the residuals of the dynamic eigenvalues
problem and the input parameters are the natural frequencies and
mode shape components of the structures. A second iterative step
improves the final solution if the first step does not achieve the
prescribed desired tolerance. Moreover, by exploiting the error
propagation theory, a direct procedure is also presented in order
to assess the parameter uncertainty starting from the covariance
matrix of the considered frequencies and mode shape components.

The computational effort needed to obtain a reliable numerical
solution is important if the results and the damage assessment are
required in real-time or quasi-real-time, as for health monitoring
systems adopted to evaluate the unsafe/safe state of a structure
during its service life or in the aftermath of a catastrophic event.
Moreover, the assessment of the unknown parameter uncertainty
has significant relevance especially if the decision-maker has to
decide to close a bridge or a building to prevent human losses in case
of structural collapse.

The first step of the proposed methodology allows one to
immediately find a reliable estimate of the unknown parameters
and the corresponding uncertainties so that the decision-maker can
immediately have information on the structural health. Moreover, if
needed, the second step produces a more refined solution in terms of
both unknown parameters and corresponding uncertainty values.

The methodology was applied to two numerical examples to test
the reliability of themethod. Then the procedure was adopted for the
damage assessment of a three-story full-scale existing building,
experimentally tested by introducing progressive damage to the
masonry infill panels. As expected, the results show that starting
from a limited number of available vibrating modes, even if the COV
of the modal parameters is low, the uncertainties of the mechanical/
geometrical parameters to assess are much higher. The results
highlight that the unknown structural parameters are much more
scattered than the modal data used as input. Consequently, when the
model updating procedure is aimed to quantify the parameter values
governing the structural system, particular attention must be paid to

the uncertainties in input data and especially to the mode shape
components.
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Appendix

In order to prove Eq. 26, the eigenvalues/eigenvectors dynamic
problem is considered in its standard form:

K − ω2
iM( )φi � 0 (A1)

with: K ,M ∈ Smxm,D+ are symmetric and positive definite matrices,
ω2
i is the i-th square circular frequency (i.e., i-th eigenvalue) and

ϕi ∈ Rm is the i-th mode shape vector. The system Eq. A1 can be
rewritten as follows:��

M
√ ����

M−1
√

K
����
M−1

√
− ω2

i I
mxm[ ] ��

M
√( )φi � 0∀i (A2)

where: Imxm is the identity matrix of order m. After:����
M−1

√
K

����
M−1

√
− ω2

i I
mxm[ ]φ̂i � 0∀i (A3)

where: φ̂i �
��
M

√
φi. Then, it is stated that:

K̂ �
����
M−1

√
K

����
M−1

√
(A4)

where: K̂ is a positive definite and symmetric matrix (Lang, 2002;
Lang, 2005). Thus, the problem Eq. A1 can be rewritten as:

K̂ − ω2
i I

mxm[ ]φ̂i � 0∀i (A5)

Equation A5 represents a standard eigenvalues problem. Using
the Spectral Theorem (Lang, 2002; Lang, 2005), the matrix K̂ can be
decomposed using its eigenvectors and eigenvalues:

K̂ � P̂ΛP̂
−1

(A6)
in which: P̂∈ Rmxm is the matrix whose columns represent the
eigenvectors φ̂i; Λ ∈ Rmxm is a diagonal matrix collecting the
eigenvalues in its leading diagonal:

Λ �
ω2
1 0 / 0
0 ω2

2 / 0

..

. ..
.

1 0
0 0 0 ω2

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A7)

The matrix K̂ is symmetric and, for the Spectral Theorem, the
matrix P̂∈ Omxm is an orthogonal matrix. Thus, it is possible to
impose the following normalization:

φ̂T
i φ̂j � δij (A8)

where δij is the Kronecker delta. Therefore, Equation A8 can be
rewritten as: ��

M
√

φj( )T ��
M

√
φj( ) � δij (A9)

with ��
M

√
φ1{ ,

��
M

√
φ2,/,

��
M

√
φm} (A10)

representing a base of the subspace Rm. Then, from Equation A4,
the stiffness matrix can be expressed in the following form:

K � ��
M

√
P̂ΛP̂

T ��
M

√
(A11)

Changing the notation with:

P̂ � ��
M

√
P (A12)

where: P ∈ Rmxm is the matrix whose i-th column represents the
eigenvector of the original generalized eigenvalues/eigenvectors
problem, Equation A11 can be posed in the form:

K � MPΛ MP( )T (A13)
From Eq. A13 it is possible to evaluate the maximum number of

identifiable parameters for a problem having a size equal to m when
n eigenvalues/eigenvectors are available. If only n pairs of
eigenvalues and eigenvectors are available, with 1≤ n≤m:

ω2
1,φ1( );/; ω2

n,φn( ) (A14)
The quantity: ��

M
√

φ1{ ,
��
M

√
φ2,/,

��
M

√
φn} (A15)

represents a base of the subspace Rn. In order to complete the base
of the space of order m, a set of m-n vectors must be defined. This
can be done in the following way:��

M
√

φ1,
��
M

√
φ2,/,

��
M

√
φn,

��
M

√
φn+1′,/,

��
M

√
φ′
m{ }

Thus, the matrices P̂ and Λ can be rewritten as:

P̂ � ��
M

√
φ1,

��
M

√
φ2,/,

��
M

√
φn

∣∣∣∣ ��
M

√
φn+1′,/,

��
M

√
φ′
m[ ] (A17)

Λ � Λn 0
0 Λm−n′[ ] (A18)

in which:

Λn �
ω2
1 0 / 0
0 ω2

2 / 0

..

. ..
.

1 0
0 0 0 ω2

n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A19)

Λm−n′ ∈ S(m−n)x(m−n) is a positive definite symmetric matrix. The
stiffness matrix K can be expressed as:

K � ��
M

√
P̂

Λn 0
0 Λm−n′[ ]P̂T ��

M
√

(A20)

or, alternatively:

K � ��
M

√
P̂

Λn 0
0 0

[ ]P̂T ��
M

√ + ��
M

√
P̂

0 0
0 Λm−n′[ ]P̂T ��

M
√

(A21)

Therefore, K represents an affine subspace having order o =
(m−n)·(m−n+1)

2 , that is the same order of unknowns in matrix Λm−n′.
Following the procedure described in Section 2, matrix K can be
decomposed as follows:

K � K0 +∑N

s�1asK s (A22)

that is an affine subspace of order N. Introducing the theorem on
affine spaces (Berger, 1987; Lang, 2002; Lang, 2005), the following
relation between subspaces (Eqs A20, A21) can be set:

N + m − n( ) · m − n + 1( )
2

− m · m + 1( )
2

> 0 Infinite solutions
� 0 Exact solution
< 0 Optimal solution

⎧⎪⎨⎪⎩
(A23)

Frontiers in Built Environment frontiersin.org17

Tondi et al. 10.3389/fbuil.2023.1272252

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1272252


where: m·(m+1)
2 is the number of parameters in a symmetric matrix of

orderm. Therefore, themaximumnumberN of identifiable parameters is:

N � m · m + 1( )
2

− m − n( ) · m − n + 1( )
2

(A24)

or:

N � n · m + 1( ) −∑n
i�1
i (A25)
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