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Information on bridge condition rating is critical to make decisions regarding
rehabilitation or replacement of bridges. Currently, bridge components’ condition
ratings are evaluated manually using inspection reports. Markov chain and Petri
net models are most commonly used for predicting future values of bridge
parameters, however, applicability of these models for a regional or statewide
portfolio of bridges may be limited. The existing data based models have low
prediction accuracy. Hence, a data and machine learning based approach is
presented herein for predicting the future condition values of major
components—deck, superstructure and substructure—in a portfolio of bridges
with an objective to develop a more accurate approach. National Bridge Inventory
(NBI) was used to get information on current and past bridge components’
condition from year 1992–2019 along with other parameters such as
ownership, maintenance responsibility and age. After selecting important
parameters, this data was used to train three RUSBoost based random forest
models for predicting future values of deck, superstructure, and substructure
conditions, respectively. The prediction accuracy of the developed models were
found above 93%, thereby addressing the limitation of poor prediction accuracy of
the existing studies. Additionally, the uncertainties associated with the random
forest based predictions were quantified at the regional level and for individual
bridges. On-system concrete pre-cast slab units and steel I-beam bridges in
Louisiana were selected to demonstrate the proposed approach and predict
bridge components condition ratings for years 2020 and 2021.
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1 Introduction

Almost 40% of all bridges in the United States are at least 50 years old and 9.1% are
considered as structurally deficient (ASCE, 2017). As a result, maintenance of these bridges
has become a great challenge for federal, state and local governments. Therefore, to identify
needs for maintenance, rehabilitation and replacement of bridges, transportation agencies
collect data on bridge condition. Generally, all bridges located on public roads with length
more than 20 feet (6.1 m) are inspected at least once in every 2 years (Pallepogu, 2022) and
data on 116 National Bridge Inventory (NBI) items are reported annually. The National
Bridge Inspection Standards (NBISs) that were implemented by Federal Highway
Administration in 1968 (Lichtenstein, 1993) forms the basis of bridge inspection in the
United States. As a part of these inspections, three major bridge components--deck,
superstructure and substructure-- are assessed and rated by bridge inspectors. These NBI
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condition ratings are measured on a scale of 0–9 as per the NBI
coding guide. These condition ratings serve as inputs for load
posting decisions and resources allocation for the short and long
term management of bridges.

A review of existing literature reveals that numerous studies
have been conducted worldwide in predicting bridge condition
ratings. Some researchers developed models to predict condition
ratings for the bridge CoRe elements (deck, superstructure,
substructure and culvert), and some developed models that
predicted ratings of the bridges. Previous research included
models using traditional statistical analysis, Markov chain, fuzzy
logic, logistic regression, neural network, ensemble learning
algorithm. Markov chain has been commonly used to predict
future condition rating of bridge structural components (Jiang
et al., 1988; Norris and Norris, 1998; Morcous, 2006; Fernando
et al., 2013; Hong et al., 2013; Le and Andrews, 2013; Wellalage et al.,
2015; Jamalipour et al., 2017; Mohammed Abdelkader et al., 2019;
Goyal et al., 2020; Srikanth and Arockiasamy, 2020). Markov chains
are state-based models where the future state of a stochastic variable
is only dependent on its present state and are relatively easy to
construct with fast solutions (Le and Andrews, 2015). However,
Markov chains have some drawbacks such as: a) high quality
deterioration data is needed to develop transition probability
matrices and b) assumptions on constant deterioration rates that
are not feasible. These drawbacks have been addressed by several
methods, e.g., semi-Markov models have been used for predicting
future condition of bridge components (Kleiner, 2001; Mishalani
and Madanat, 2002; Yang et al., 2009; Sobanjo et al., 2010; Mašović
and Hajdin, 2014; Fang and Sun, 2019; Furtado and Ribeiro, 2023).
Such semi-Markov models use a Weibull distribution for modeling
the residence time in different states in order to model increasing
deterioration rates. However, this approach experiences an
exponentially increasing number of model states as the model
complexity increased (Andrews, 2013). More recently, Collins
(2023) developed a framework utilizing state based Markov
chain, time based Weibull and Mechanistic based models to
predict future condition of bridge components. Their multiple-
model approach showed good accuracy, however, only 3 years
data (2008–2010) were used from the NBI database for the
development of proposed deterioration modeling. Another
method that addressed the drawbacks of Markov chain model is
Petri nets known as PT nets which offers a flexible and efficient
method to model deterioration and maintenance processes. Le et al.
(2017) used Petri nets to model condition states of bridges with
variable deterioration rates incorporating effects of bridge
inspection, maintenance and correlated component performance.
However, their proposed approach was limited to railway bridge
only. There are some other studies available on Petri nets (Yianni
et al., 2017; Dean et al., 2018; Fecarotti and Andrews, 2020; Calvert
et al., 2021; Ferreira et al., 2022), but applicability of this method for
a regional and statewide portfolio of bridges may be limited.

Numerous studies have modeled the deterioration rates of
bridge components’ using machine learning. Contreras-Nieto
et al. (2018) used logistic regression, decision trees, gradient
boosting, support vector machine and neural network to predict
deficiency of bridge superstructure. Logistic regression was reported
to be themost effective model; however, their research was limited to
steel superstructure. Assaad and El-adaway (2020) used artificial

neural networks (ANNs) and k-nearest neighbors to evaluate and
predict current bridge deck deterioration conditions. Neural
network model was reported to be the most accurate with an
accuracy of 91.44%. However, their model was limited to bridge
deck only. Similarly, a convolutional neural network (CNN) was
developed by Liu and Zhang (2020) to predict future condition of
bridge deck, superstructure and substructure component with
prediction accuracy of about 85%. Martinez et al. (2020)
compared different classification models (k-nearest neighbors
(k-NN), decision trees (DTs), linear regression (LR), artificial
neural networks (ANNs), deep learning neural networks (DLNs)
to predict Bridge Condition Index (BCI) for the bridges in Ontario,
Canada. From their study, decision tree model was found most
accurate model for the prediction of BCI. More recently, Rajkumar
et al. (2023) developed an autoencoder-random forest model (AE-
RF) to predict the condition rating of bridge components, however,
the prediction accuracy were 79%, 78% and 77% for deck,
superstructure and substructure condition ratings, respectively.

Researchers also used NBI data to assess current condition of
bridge components’ for better management of bridges (Kim and
Yoon, 2010; Bektas et al., 2013; Bektaş, 2017; Saeed et al., 2017).
Bektas et al. (2013) developed a new methodology to estimate NBI
condition ratings from element condition data using classification and
regression trees (CARTs). However, R2 values from their study were
low (approximately 0.40) and the predicted condition rating values
always remained above 5 on a scale varying from 0 to 10 (Bektaş,
2017). The low R2 values were due to the severe skewness in the NBI
data as bridges with poor condition rating only constitute a tiny
fraction of NBI database (Contreras-Nieto et al., 2018). Therefore,
better models are needed to predict bridge condition rating
considering this deficiency and skewness in the NBI database. Li
and Song (2022) developed an ensemble basedmodel to predict bridge
deck defect condition. Six ensemble learning models (Random Forest,
Extra Tree, AdaBoost, GBDT, XGBoost, and LightGBM) were
developed and superstructure condition was reported to be the
most important factor for deck defect prediction. Although they
extensively investigated the use of ensemble learning methods, it
was limited to bridge deck. Similarly, Rashidi Nasab and Elzarka
(2023) also used several machine learning models to predict bridge
deck deterioration and found ensemble methods, such as random
forests, to have the highest accuracy. However, they did not predict the
future condition of other bridge components. Alipour et al. (2017)
used random forests to identify load posted bridges using NBI data,
but they did not predict the future condition ratings of bridges.

The above discussion shows that several studies have assessed
the future condition of bridge components. Some researchers used
Commonly Recognized (CoRe) data and developed machine
learning models, however, CoRe data are not publicly available.
Hence, the available approach in existing studies have limitations to
use since state level CoRe data may not be available to other state
agencies. Furthermore, there are limited studies that predict the
future values of condition ratings of all the three major bridge
components (deck, super-structure, and sub-structure), and the
prediction accuracy of these studies were low. So, there is a scope
to improve the prediction accuracy. Furthermore, none of the
existing studies have assessed the uncertainties associated with
their predictions, which is important to make decisions,
especially using machine learning models.
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Therefore, the objective of this study is to develop a data and
machine learning based approach to predict future values of deck,
superstructure and substructure condition ratings for next year using
publicly available NBI data. The reason for using publicly available
data were twofold. 1) Use of publicly available data facilitates regional
level application of the methodology without needing to gather
additional information on bridges; thereby reducing the effort to
apply the proposed model. Moreover, additional information on
bridges may not always be available for all bridges in a region
since agencies are not always mandated to record additional data,
beyond what is reported in public datasets. 2) Use of non-public data,
which may be specific to a state, can limit the applicability of the
proposed approach to other states and regions. Therefore, publicly
available data was used in this study. Herein, RUSBoost based random
forest models were developed. RUSBoost algorithm is well suited to
handle highly imbalanced data (Blackard and Dean, 1999; Seiffert
et al., 2010; Mounce et al., 2017; Kinoshita et al., 2020; Park and Mun,
2023) which is the case of NBI database. Furthermore, herein,
uncertainties associated with the prediction of the data-based
models was also quantified. Herein, on-system concrete pre-cast
slab units (COPCSS) and steel I-beam (CONIBM) bridges in
Louisiana were selected to demonstrate the applicability of the
proposed approach. COPCSS was selected as a representation of
concrete slab bridges and CONIBM for steel beam bridges. In
Section 2, the methodology for data collection and preparation,
feature selection and model development are presented. Section 3
shows the application of the proposed approach with COPCSS and

CONIBM on-system Louisiana bridges. In Section 4, the prediction
uncertainties at portfolio and bridge level were analyzed
corresponding to years 2020 and 2021. Finally, Section 5 presents
the conclusions.

2 Methodology

This section used ON-system, i.e., bridges maintained by state
department of transportation, COPCSS and CONIBM bridges in
Louisiana to describe the proposed methodology to develop models
that can predict the future values of bridge components’ condition
ratings. Herein, a machine learning based approach was used for
predicting future values of bridge components’. It is important to
note here that data collected from National Bridge Inventory (NBI)
database were highly imbalanced and skewed. In this research, the
condition ratings that need to be estimated were discrete variables,
i.e., poor, fair and good. Nevertheless, these discrete variables were
converted to numeric values of 0, 1 and 2, respectively, and linear
regression was tried but its performance, measured by accuracy, was
poor since it is better suited for continuous outputs and not discrete
data. So, multinomial logistic regressionmodel was tried, which is an
extension of binary logistic regression. Like logistic regression,
multinomial logistic regression uses maximum likelihood
estimation to maximize the overall accuracy. However, this
approach does not work well if the data are highly imbalanced
(Maalouf and Siddiqi, 2014; Zhang et al., 2022) because the resulting

FIGURE 1
Approach for preparing dataset.
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models will tend to be biased to the majority class. Regular random
forest model was also tried; however, the testing accuracy was not
good enough due to the high skewness in data. Previous researchers
(Blackard and Dean, 1999; Seiffert et al. 2008; Seiffert et al., 2010;
Mounce et al., 2017; Kinoshita et al., 2020; Malek et al., 2022; Park
and Mun, 2023) have mentioned the effectiveness of RUSBoost

based random forest models to handle highly imbalanced data.
RUSBoost uses a combination of RUS (random under sampling) and
the standard boosting procedure AdaBoost in order to better model
the minority class by under sampling the majority class data points.
Hence, three RUSBoost based separate random forest models were
developed to predict the future values of deck, superstructure and

TABLE 1 Recategorized ADT and ADTT values (Hearn, 2014).

ADT in NBI database ADTT in NBI database Recategorized ADT and ADTT value

<400 0 or not reported 1

400–999 1–19 2

1,000–4,999 20–99 3

5,000–9,999 100–499 4

10,000–49,999 500–4,999 5

>50,000 >5,000 6

FIGURE 2
Flowchart for random forest model development.
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substructure condition ratings using bridge data from the National
Bridge Inventory. The following explains the steps involved in the
development of RUSBoost based random forest models and
quantification of the uncertainties associated with the predictions.

2.1 Data preparation

Figure 1 illustrates the steps for data preparation followed in this
study. Data on bridges in Louisiana were collected from the NBI
database from years 1992–2019 resulting in 303723 bridges records,
i.e., data points. Since “ON” system bridges maintained by Louisiana
department of transportation and development (LADOTD) were
considered in this study, preliminary filtering (first diamond box in

Figure 1) resulted in 196004 “ON” service bridge data points.
Currently, visual inspection technique is most commonly used
for the condition rating of bridges in United States where bridge
inspectors gather a large amount of information and define the
condition rating of bridge elements. Thus, bridge data is prone to
numerous human errors. For instance, some bridges were found
missing and not consistent through 1992 to 2019. As a result, only
bridges that had data for all the years from 1992 to 2019 were used
for the RUSBoost based random forest development. Any bridges
that were missing in any year from 1992 to 2019 were discarded.
Also, during pre-processing, it was found that some bridges did not
have any records on bridge components condition ratings. Hence,
bridges that had missing data in the bridge components’ condition
ratings and year of construction were discarded as well. After these

TABLE 2 Important features from NBI database.

No. Attribute name—NBI number Type Unit

1 Agea Numeric Year

2 Deck condition ratings—58 Nominal —

3 Superstructure condition ratings—59 Nominal —

4 Substructure condition ratings—60 Nominal —

5 ADT—29 — —

6 Log (ADT)a — —

7 ADTT—109 — —

9 Skew angle—34 Numeric Degrees

10 Sine(skew angle)a Numeric Degrees

11 Deck geometry evaluation—68 Nominal —

12 Functional classification—26 Nominal —

13 Kind of highwaya Nominal —

14 Design load—31 Nominal —

15 Base highway network—12 Nominal —

16 Scour—113 Nominal —

17 Maintenance responsibility—21 Nominal —

18 Historical significance—37 Nominal —

19 Bridge roadway width—51 Numeric Meters

20 Bridge median—33 Nominal —

21 Number of spans—45 Numeric —

22 Structure length—49 Numeric Meters

23 Maximum span length—48 Numeric Meters

24 Structure flared—35 Nominal —

25 Service type—42A Nominal —

26 Deck width—52 Numeric Meters

27 Traffic direction—102 Nominal —

28 Deck structure type—107 Nominal —

29 Climate zonea Nominal —

aThis feature was not originally in the NBI database and was defined using one or more other NBI items.
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pre-processing steps, concrete pre-cast slab units (COPCSS) and
steel I-beam (CONIBM) bridges in Louisiana were selected to
demonstrate the applicability of the proposed approach. So, the
filtering (second diamond box 2 in Figure 1) resulted in
20597 COPCSS and 4460 CONIBM bridge data records/points.
Herein, a data point represents a bridge in a particular year. National
Bridge Inventory (NBI) consists 116 items, however, some items
such as bridge name, bridge identification number, traffic safety
features, etc. have no relevance to condition ratings. Thus, these
parameters were discarded initially based on judgements. After that,
feature selection was carried out and significant parameters were
selected which can be found in Section 2.2. Data on the remaining
relevant parameters collected from NBI were further processed/
filtered, if necessary, for use in the machine learning based approach
(refer to “Filtering needed?” box of Figure 1). For instance, NBI
condition ratings for deck, superstructure and substructure were
rated on a scale of 0–9 according to the specifications in the
Recording and Coding Guide (FHWA, 1995). For analysis, these
ratings were recategorized as poor (<5), fair (=5) and good (>5)
following the recommendation of the AASHTO Manual for Bridge
Inspection (AASHTO, 2018). Functional classifications (NBI item
26) categorizes bridges as rural or urban based on the location of
roadway and it was labelled as arterial road, collector road, or a local
road. Kind of Highway was not originally in NBI and defined in this
study using Functional classification (Item 26) and categorized as
Roads, State and Interstate. Maintenance responsibility (NBI item
21), which originally consisted of 29 categories, was recategorized as
federal, state, local and other. Similarly, design loads were labelled as

heavy, light and other. Scour critical ratings (NBI Item 113) were
labelled from 0 to 9 based on severity. In case of age, 2019 NBI data
set was used as a starting point for the analysis. So, age of a bridge
was calculated as Age � 2019 − year built. If any bridge was
reconstructed then Age � 2019 − year reconstructed was used to
determine the age. Average daily traffic (ADT) and average daily
truck traffic (ADTT) were labelled as per the study of Hearn (2014)
shown in Table 1.

In addition, log (ADT) and sine of skew angle were created as
these gave better performance than the original attributes (Alipour
et al., 2017). Also, to represent the climate at a bridge’s location, its
“climatic zone” was added as another attribute based on NOAA’s
climatic divisions in Louisiana. Thus, data from 1992–2019 were
collected to use in development of RUSBoost based random forest
models.

Finally, to facilitate the use of machine learning techniques,
categorical variables such as functional classification, kind of
highway, maintenance responsibility, base highway network,
historical significance, bridge median, structure flared, service
type—42A, traffic direction, scour and climate zone were
replaced using dummy coding (Daly et al., 2016).

2.2 Feature selection

Feature selection was a significant step in this study since the
prepared dataset from NBI has many variables and features. Selecting
most significant features would reduce the overall complexity of the

TABLE 3 Hyper-parameters used in random forest models.

Bridge type Component Number of cycles Learning rate Cost Weight

COPCSS Deck 1,000 0.9 0.0 11.0 2.0 Not used

0.1 0.0 1.0

1.0 1.0 0.0

Superstructure 1,000 0.9 0.0 11.0 2.0 Not used

0.1 0.0 1.0

1.0 1.0 0.0

Substructure 1,000 0.1 0.0 1.0 1.0 Not used

1.0 0.0 1.0

1000.0 1000.0 0.0

CONIBM Deck 1,000 0.1 0.0 11.0 2.0 200

1.0 0.0 1.0

1.0 1.0 0.0

Superstructure 1,000 0.1 0.0 30.5 10.5 200

0.1 0.0 1.0

1.0 1.0 0.0

Substructure 1,000 0.1 0.0 11.0 2.0 200

0.1 0.0 0.1

1.0 1.0 0.0
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final model (refer to “Important feature selection” in Figure 2).
Random forest has become a useful feature selection algorithm
that can handle datasets with a large number of variables (Chen
et al., 2020) and was used herein. A random forest is a machine
learning technique that utilizes ensemble learning where many
classifiers are combined to provide solutions to a complex
problem. A random forest algorithm consists of many decision
trees and a prediction is obtained by taking the average or mean
of the output from various trees. It relies on various decision tress and
every decision tree consists of decision nodes, leaf nodes and a root
node. To train a decision tree in random forest, first, a root node is
created containing all training data points. The root node is then split
in to two children nodes based on one of the input variables (bridge
parameters such as condition ratings, geometry, age, etc.) and a
corresponding threshold value. All data points which are less than
the split variable’s value will be in left child node while in right child
node, the split variable’s value will be larger than the threshold value.
The threshold and split variable are selected based on maximum
reduction in cost function. In next step, each of the child nodes are
considered as root nodes and splits are further continued. This process
continues until the nodes can no longer be split because of the
restrictions on minimum node size (minimum data points in the
node) or tree depth (number of splits) or the split does not lead to a
significant reduction in the cost function. Feature importance is
determined by combining the decrease in cost when a node is split
using a feature and the probability of reaching that node. Higher
reduction in cost or higher probability of reaching the node signifies
higher importance of the feature. These importance values from each
decision trees are aggregated to get feature importance value.

Following these steps, important features were selected and are
shown in Table 2. In addition to these parameters, inventory and
operating rating were also found as important features but were not
included herein since the values of these parameters in the future cannot
be ascertained preventing machine learning models from predicting
longer term future condition ratings. The data on the features in Table 2
were collected for years 1992–2019 from NBI database. During data
preparation, the component condition rating (e.g., for deck) that will be
predicted was labelled as output and corresponding data from the
preceding year was considered to be the input. This process was
followed for years 1992–2019. Similar procedure was carried out for
superstructure and substructure condition rating prediction. Details of
model development are discussed in Section 2.3.

2.3 Model development and accuracy

As mentioned earlier, due to the large number of bridges, a data
based approach was selected in this study to predict future values of

bridge components’ condition ratings. Herein, three RUSBoost
based random forest models were developed separately to predict
future values of deck, superstructure and substructure condition
ratings. These models were trained using the dataset discussed in
Section 2.1. 85% of total data was randomly chosen to train the
model and remaining 15% data was used to test the model
(“Training Set” and “Test Set” in Figure 2). The required
parameters in a random forest model such as learning cycles,
type of weak learners, weights, learning rate and cost (refer to
“Random forest hyperparameter selection” in Figure 2) were
selected using trial and error to ensure a balanced confusion
matrix (Kohavi and Provost, 1998) with high accuracy and
shown in Table 3. The diamond box in Figure 2 represents that
unless good accuracy and balanced confusion matrix were achieved,
the hyper parameters were varied to get an expected model. In
Table 3, cost matrix is a square matrix, where cost(i, j) is the cost
(penalty) associated with classifying a point into class j if its true
class is i. In the cost matrix, the rows correspond to the true class and
the columns correspond to the predicted class. Higher costs were
used to ensure that the model did not overestimate the component
conditions, i.e., originally rated as poor but predicted by model as
fair or good. In addition to misclassification cost, for CONIBM
category, weight of 200 was used to get good accuracy and balanced
confusion matrix. Herein, weight signifies that more penalties were
assigned if the model overestimated a bridge’s condition rating. For
instance, if the original rating of a bridge’s deck component is poor
but the model predicted as fair or good, more penalties were
assigned by using weight of 200, irrespective of the predicted class.

A confusion matrix is a tabular summary showing the number of
correct and incorrect predictions by a classifier. It is important to
note that in multiclass classification problems, accuracy might not
be sufficient to identify the best predictive model as a model with
high accuracy could have imbalanced predictions. A good predictive
model should have a balanced confusion matrix with minimal
off–diagonal values since these off–diagonal values represent false
positive or false negative predictions. Table 4 shows a confusion
matrix obtained in this study for deck condition rating prediction for
COPCSS bridges.

Furthermore, in case of imbalanced datasets, as is the case in this
study, the model could be biased to the class with the greatest
number of observations. As a result, the model can be considered to
be acceptable if a balanced confusion matrix with high accuracy is
achieved. The use of a confusion matrix as an evaluation criteria has
also been suggested for highly imbalanced datasets (Suresh, 2021).
As can be seen from Table 4, the confusion matrix is balanced
because the developed random forest model overestimated the
condition for 25 bridges while underestimated it for 29 bridges.
Overestimation implies that the bridge was actually poor but was
predicted as fair/good by the model and vice versa for
underestimation. Herein, 15% test data was used to check the
model’s accuracy and develop the confusion matrix.

As mentioned earlier that the data collected from NBI database
were highly imbalanced. For instance, while preparing the random
forest model for estimating deck condition rating for COPCSS
bridges, about 2.14% and 2.98% of bridges were rated to be in
poor and fair condition, respectively. On the other hand, about
94.89% of bridges were rated to be in good condition. Due to this
imbalance in the data, RUSBoost based random forest algorithmwas

TABLE 4 Typical confusion matrix (Deck condition rating—COPCSS).

Predicted values

Poor Fair Good

Actual values Poor 27 5 3

Fair 4 62 17

Good 1 24 676
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used in this study to handle high imbalance in data. Figure 2 shows
the flowchart of the process used in this study to develop the random
forest models to predict future values of condition ratings of deck,
superstructure and substructure.

Table 5 shows the prediction accuracy for the selected on-system
concrete pre-cast slab units (COPCSS) and steel I-beam (CONIBM)
bridges in Louisiana. The random forest models were highly
accurate and there was small difference between the testing and
training accuracy, which highlighted that the random forest models
were able to learn the trends that influence the following year’s
condition ratings. However, for substructure condition rating in
COPCSS bridges, the training accuracy was similar to that of other
models, but its testing accuracy was relatively lower. Nevertheless,
the model was able to predict the following year’s sub-structure
condition ratings well. Lower test accuracy for sub-structure
condition rating prediction model can be attributed to higher
levels of uncertainty in the condition ratings because several
parts of the sub-structure are not easily accessible during bridge
inspections. Similar observation was observed for deck components
in case of CONIBM. However, all three models were found to
predict future values of components’ condition ratings reasonably
well. Hence, it can be inferred that the developedmodels were able to
predict future condition rating values of individual bridges
accurately.

To understand the influence of different features on condition
ratings of bridge components’, a feature importance study was
conducted using the developed random forest models. It is
important to note here that Table 2 shows important features list
obtained by feature selection study and not from developed random
forest models. Among 29 features shown in Table 2, five most
important features were selected after doing feature importance
investigation from each developed random forest models and listed
here together: deck condition ratings, superstructure condition
ratings, substructure condition ratings, age, number of spans,
bridge roadway width and climatic zone. Age is significant since
as the bridge gets older, the bridge components will be deteriorating
more. The condition rating of deck, superstructure and substructure
are also important since future values of bridge components’
condition depends on the current condition rating values. For
roadway width, during discussions with officials from Louisiana
Department of Transportation and Development, it was found that
some bridges with narrow width were associated with older designs
which were more susceptible to load posting. Number of spans can
influence the condition rating values as a bridge having more spans
can lead to more loads and will deteriorate faster compared to a

bridge having less spans. Finally, significance of climatic zone can be
explained since a bridge located in a bad weather will damage more
compared to that in an excellent weather condition.

2.4 Estimating uncertainties in predictions

For decision making based on the estimates obtained from the
RUSBoost based random forest models, in addition to accuracy, an
understanding of the uncertainties associated with the predictions is
essential. To this end, the effect of bootstrap uncertainty in the
estimates of number of bridges with different component condition
ratings was estimated first. For this purpose, for each of the three
condition ratings, 100 random forest models were trained with
different initial seed (all other hyper-parameters were un-altered)
to estimate the uncertainty associated with the predictions obtained
from the random forest models. The number of bridges with good,
fair, and poor component condition ratings were determined using
the 100 random forest models. Based on the results from the set of
100 random forest models, mean and standard deviation of the
number of bridges with different component condition ratings was
quantified. This analysis quantified the uncertainty in aggregated
results obtained from the random forest models.

These aggregate uncertainty analysis results do not provide a good
understanding of the uncertainties associated with the predictions for
individual bridges. Therefore, to further understand the uncertainties
associated with predictions for individual bridges, the set of
100 random forest models developed using different bootstrap
samples were used to predict the condition ratings of the bridge
components. Therefore, for each component in all the bridges,
100 predictions for the condition ratings were obtained. The
number of times the models correctly predicted condition ratings
was divided by the total number of simulations (i.e., 100) to obtain the
probability of correctly determining the condition state of a bridge
component. This process was repeated for all components and all
bridges in a particular bridge class (such as COPCSS). Details on
application of this process for uncertainty quantification are discussed
in Section 4.

3 Application

The RUSBoost based random forest models developed using the
above mentioned approach were used to predict future values of
deck, superstructure and substructure condition ratings for years

TABLE 5 Prediction accuracy for COPCSS and CONIBM bridges.

Bridge type Condition rating Training accuracy (%) Testing accuracy (%)

COPCSS Deck 98.69 97.11

Super-structure 98.75 97.18

Sub-structure 97.03 94.25

CONIBM Deck 96.56 93.98

Super-structure 96.76 95.40

Sub-structure 96.22 96.99
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2020 and 2021. For the prediction corresponding to year 2020, actual
condition rating values and other attributes from the year 2019 were
used as the predictors. Similarly, actual condition rating values for
2020 collected from NBI database were used as inputs to obtain
condition ratings for 2021. Herein, ADT was not changed; so ADT
corresponding to 2019 was used to make predictions for years
2020 and 2021. Also, random forest models implicitly considered
maintenance as the data used to train random forest models
included maintenance performed on the bridges from 1992 to
2019. Accuracy of these models for individual bridges is shown
in Table 5. In this section, the accuracy of the results aggregated from
individual bridges is explored to understand the performance of the

random forest models at a regional level. These aggregated results on
the total number of bridges in various condition ratings could
facilitate decisions on resource allocation and maintenance
scheduling. Figure 3 compares the predictions against the actual
number of bridges in each of the three condition states for each of
the three components of COPCSS for years 2020 and 2021. Herein,
the results were obtained by aggregating the predictions made by the
random forest models for individual bridges.

In Figure 3, DCR, SupCR and SubCR represent deck,
superstructure and substructure condition ratings,
respectively. From Figure 3, it can be seen that the
aggregated results from the random forest models were able

FIGURE 3
Future condition ratings for COPCSS bridge: (A)DCRof 2020; (B)DCRof 2021; (C) SupCR of 2020; (D) SupCR of 2021; (E) SubCR of 2020; (F) SubCR
of 2021.

Frontiers in Built Environment frontiersin.org09

Mia and Kameshwar 10.3389/fbuil.2023.1254269

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1254269


to predict the total number of bridges in each condition rating
reasonably well for years 2020 and 2021. In 2020, for COPCSS
bridges, the actual number of bridges with poor, fair and good
deck condition ratings were 37, 102 and 686, respectively. The
results obtained by aggregating the predictions made by the
random forest models for individual bridges resulted in 39,
92 and 693 bridges in poor, fair, and good condition,
respectively. In the next year’s data from the NBI database,
four additional bridges had a poor deck condition rating,
resulting in a total of 41 bridges with poor deck condition
rating. The random forest model was able to capture this
increase as 41 bridges were predicted to have poor deck
condition based on the aggregated results from individual
bridges. In 2021, 115 bridge decks were actually rated as fair
and 669 bridges as good condition while the results obtained
using the random forest models estimates 113 bridges in fair and
669 bridges in good condition, respectively, for 2021. In case of
superstructure condition rating, actual number of bridges with
poor, fair and good condition ratings were 37, 95 and 693,
respectively. The estimates obtained by aggregating the results
from the random forest models were 97%, 88% and 99% accurate
for the prediction of poor, fair and good condition ratings in
2020 while in 2021, these were 100%, 99.1% and 99.7% accurate,
respectively. For substructure condition rating, the accuracy of
the estimates derived by aggregating the results for individual
bridges obtained from the random forest models was found to be

lower in 2020 for poor and fair condition ratings, i.e., 89.2% and
88.8%, respectively. However, the accuracy for estimating the
number of bridges with good condition rating in both years
2020 and 2021 was above 99% for the substructure. Overall, for
all three components, the random forest models facilitated
estimation of bridges with good condition ratings most
accurately (above 99%) since there were more bridges with
good condition rating in NBI database. So, the models were
trained better than poor and fair condition ratings, which is
reflected by comparison of training and testing accuracies in
Table 5.

Similar trend was observed for CONIBM bridge as well. In
2020, the actual number of bridges with poor, fair and good deck
condition ratings were 29, 36 and 167, respectively.
Correspondingly, the accuracy of prediction obtained by
aggregating the results from the random forest models for the
year of 2020 were 90%, 97% and 99%. The prediction accuracy for
the year of 2021 was slightly lower than 2020 for deck condition
rating, but still higher than 90%. Akin to the observations of
COPCSS, random forest models estimated most accurately for
good condition rating for CONIBM bridge as well. However, the
prediction accuracy obtained by aggregating results from random
forest models for CONIBM bridge was slightly lower compared to
COPCSS bridge. This reduction might be due to the lower number
of CONIBM bridges, which resulted in fewer training data.
However, for both COPCSS and CONIBM, the developed

TABLE 6 Future condition rating values.

CONIBM COPCSS

Year Component Type Actual
number

Predicted
number

Standard
deviation

Actual
number

Predicted
number

Standard
deviation

2020 Deck Poor 29 29 0.00 37 39 0.66

Fair 36 38 0.73 102 92 1.67

Good 167 165 0.73 686 694 1.73

2021 Deck Poor 29 32 0.00 41 41 1.17

Fair 41 38 0.85 115 114 2.63

Good 162 162 0.85 669 670 2.67

2020 Superstructure Poor 33 30 0.31 37 38 1.12

Fair 37 37 0.00 95 85 2.51

Good 162 165 0.31 693 702 2.56

2021 Superstructure Poor 33 32 0.39 39 40 1.18

Fair 44 37 0.00 109 110 3.45

Good 155 163 0.39 677 675 3.41

2020 Substructure Poor 26 28 0.49 157 174 0.99

Fair 32 28 0.49 179 159 1.31

Good 174 176 0.00 489 492 1.17

2021 Substructure Poor 27 27 0.47 167 178 1.06

Fair 32 32 0.49 203 173 1.55

Good 173 173 0.10 455 474 1.15
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models were found to predict future condition rating values
accurately at regional level as well.

4 Uncertainty quantification

The results from Table 5 and Figure 3 highlight the high
accuracy of the random forest models developed herein at an
individual bridge level and at the regional level. Herein, results of
the uncertainty quantification are presented. First, uncertainty in the
aggregated results from the random forest models is analyzed. The
results for CONIBM and COPCSS bridges are presented in Table 6
which lists the future estimates of the number of bridges with
components in different condition ratings obtained from
100 simulations along with actual data from NBI database and
standard deviation values associated with the predictions at regional
level.

The random forest models developed in this study were used to
predict future values of deck, superstructure and substructure
condition ratings of an individual bridge and the results were
aggregated to predict the total number of bridges in each
condition rating. This step was repeated 100 times to propagate
the bootstrap uncertainty associated with random first model

creation. Thus, 100 aggregated predictions were obtained from
100 random forest models. Mean and standard deviation were
then calculated using the 100 aggregated predictions obtained
from the random forest models. Table 6 also indicates that
uncertainties associated with the number of bridges with
components in different condition ratings are small where the
coefficient of variance up to 0.0221 for CONIBM bridge and
0.0314 for COPCSS bridge were observed. These low coefficient
of variation values indicate that for the random forest models
developed herein, one simulation is enough for the prediction of
future values.

The above discussion on accuracy and uncertainty was focused
on aggregated results obtained from the random forest models.
Therefore, next, uncertainty in the predictions for individual bridges
was analyzed using the approach presented in Section 2.4. Figure 4
shows the histogram of the probability of correctly determining poor
condition rating for all COPCSS bridges in 2020. Figure 5 shows
similar results for fair condition rating for COPCSS bridges.

The histograms in Figures 4, 5 are bimodal with the two models
centered around 5% and 95%. This observation shows that across
random forest models obtained from different bootstrap samples,
bridges are consistently classified correctly or incorrectly, indicating
that there is low uncertainty in the predictions for individual bridges.

FIGURE 4
Uncertainty quantification for individual bridges from random forest models for poor condition rating in 2020: (A) deck; (B) superstructure; (C)
substructure.
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Furthermore, it can be seen from Figure 4 that very few bridges were
misclassified frequently and most of the bridges were rated correctly.
Similar trends were also observed for good condition rating as well.
Although not shown herein, for good condition rating, less than 1% of
bridges were misclassified by developed models in case of deck and
superstructure condition ratings. For substructure good condition
rating, this number was less than 4%. It can be attributed to the large
number of bridges with good condition rating. As a result, the random
forest models were trained with more data as compared to poor and
fair condition ratings. For fair condition ratings, Figure 5 shows
approximately 20% chance of misclassification across random
forest models obtained from different bootstrap samples. This
increase in uncertainty in predictions can be attributed to relatively
less data on bridges with fair condition ratings. In case of substructure
component, the error was highest, but still the accuracy of the
developed model was above 85%. Thus, one simulation is enough
for the prediction of future values herein.

A similar trend was also observed for CONIBM bridges where
bimodal histograms with the two modes centered around 5% and
95% were observed. Also, most of the bridges were rated correctly
for deck, superstructure and substructure components. However,
like COPCSS bridges, maximum error was observed for
substructure component. Approximately 12% probability of
misclassification across random forest models was found in case

of substructure component condition ratings for different
bootstrap samples. The higher uncertainty can be attributed to
higher levels of uncertainty in the condition ratings because several
parts of the sub-structure are not easily accessible during bridge
inspections. It is important to note that one of our objectives was to
develop random forest models to predict future condition ratings
with high prediction accuracy. Although training and testing
accuracy of the developed models were above 93% (please refer
to Table 5 in the manuscript), still these models were not 100%
accurate and some bridges were classified incorrectly during
training. Since the hyperparameters were not varied for
propagating uncertainties in bootstrap sampling, these errors
propagated to the 100 random forest models that were created
using different bootstrap samples. Consequently, these errors were
also observed in the predictions of condition ratings for years
2020 and 2021. However, the consistency of the misclassification
indicates low uncertainties and structural variations due to
bootstrap sampling.

5 Conclusion

Information on bridge component condition rating is essential
for policymakers to take decisions on rehabilitation, repair, and

FIGURE 5
Uncertainty quantification for individual bridges from random forest models for fair condition rating in 2020: (A) deck; (B) superstructure; (C)
substructure.
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resource allocation. Although there are some studies on bridge
condition and deterioration rates, however, there are very few
studies on predicting the future condition rating of bridge
components’. In this context, the major contribution of this
paper is the development of a data based approach to predict
the future values of deck, superstructure and substructure
condition ratings. Herein, concrete pre-cast slab units
(COPCSS) and steel I-beam (CONIBM) on—system bridges of
Louisiana were selected to demonstrate the applicability of the
proposed approach. Data was collected from National Bridge
Inventory (NBI) and was processed and labelled to make it
suitable for use with machine learning methods. Next, feature
selection was carried out to select the important parameters.

Results indicated that age, bridge geometry parameters, traffic
information, previous year’s condition ratings, scour and climate
conditions are the important features. Three RUSBoost based
random forest models were developed to predict future (i.e., next
year’s) deck, superstructure and substructure condition ratings,
respectively. These models were found to have high prediction
accuracy. The predicted models were used to predict condition
rating values for years 2020 and 2021. The developed models
were found to be accurate when compared against actual
condition rating values.

Another major contribution of this study is the quantification
of uncertainty associated with random forest models’ predictions.
For this purpose, herein, 100 random forest models were trained
with different initial seed to propagate uncertainties in bootstrap
sampling. Uncertainties associated with the predictions based on
aggregated results obtained from the random forest models were
quantified. Additionally, uncertainties associated with the
predictions for individual bridges were also investigated using
the set of 100 random forest models developed using different
bootstrap samples. For random forest models trained using the
proposed approach, uncertainty analysis revealed that
uncertainties associated with the number of bridges with
components in different condition ratings are small, and
therefore, one simulation is enough to estimate the total
number bridges with a given component condition rating in the
future. Finally, uncertainties associated with the predictions for
individual bridges indicated that there is low uncertainty in the
predictions for individual bridges and very few bridges were
infrequently misclassified. Again, highlighting that one
simulation is enough.

The outcomes of this research can help stakeholders
identify potential maintenance and rehabilitation actions
and allocation of resources based on anticipated future
condition of bridges. In addition, missing data on
components’ condition can be filled out using the proposed
approach. Although the prediction accuracy of the developed

machine learning models were satisfactory, however, further
studies are suggested to improve the accuracy, and thus
minimize the misclassified number of bridges.
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