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One of the challenges in livestock production is the significant volume of manure
generated, which must be appropriately managed to mitigate its environmental
impacts. Untreated manure poses a potential hazard to soil, surface water,
groundwater, and human and animal health. Based on the life cycle
assessment (LCA) method, the research aims to evaluate the ecological load of
composted-pelletized poultry litter (CPPL) in maize and winter wheat production.
Furthermore, the environmental loads of CPPL applications are compared with
those of other N, P, and K fertilizers. The research study utilized the openLCA
software with the Agribalyse 3.1 database to calculate eleven impact categories. In
the case of maize, only ozone depletion has higher emissions. For winter wheat
production, scenarios where the P fertilizer was MAP had lower impacts for NPK
combinations. While for the CPPL, fuel was the main contributor to loads, for the
NPK fertilizer scenarios, energy use for fertilizer production contributedmore. The
results can be relevant to the burdens of using different nutrient replacement
products and creating diverse feed mixtures. The application of CPPL promises to
reduce the burden of crop production and, consequently, feed production.
Additionally, it allows for the recovery of manure not useable by the livestock
industry.
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1 Introduction

One of the objectives of the GreenDeal for agriculture (EuropeanUnion, 2023) is to reduce
fertilizer usage and promote the use of organic fertilizers. Although chemical fertilizers provide
nutrients to plants quickly and easily, their use can negatively affect soil health. Chemical
fertilizers contribute to soil erosion, acidification, soil structure degradation, and loss of organic
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matter (EEA, 2004). The change in the nitrogen cycle is the most
significant environmental problem affecting the soil. Intensive food
production has significantly reduced the natural nitrogen content of
soils. In contrast, nitrogen from artificial sources has increased (Sainju
et al., 2018). Inappropriate fertilization practices can significantly
impact surface and groundwater, leading to pollution from
phosphates and nitrates (Savci, 2012; Khan et al., 2018; Tamás
et al., 2022). Nitrate in groundwater also risks human health, as it
can harm health if drinking water is extracted (Ward et al., 2018;
Rahman et al., 2021). Regarding air pollution, CO2 and N2O emissions
are primarily associated with crop production processes. This is
primarily attributed to electricity consumption, fuel usage by
agricultural machinery, and land use change (Aguilera et al., 2016;
Ahmed et al., 2020). The production of nitrogen fertilizers and their
raw materials also emits CO2, N2O, and NOx, as does their use,
resulting in NH3 and N2O emissions (Mbonimpa et al., 2014;
Nyamadzawo et al., 2014; Dhadli et al., 2016). Reducing and
replacing chemical fertilizers is becoming increasingly important
from an environmental perspective. The by-products of livestock
production, such as manure and other organic materials (e.g.,
compost, meat, bone, and feather meal, etc.), can play a significant
role in replenishing soil resources and can even serve as a suitable
alternative to chemical fertilizers (Tamás, 2010; Mézes et al., 2015; He,
2020; Gorliczay et al., 2021). It also makes livestock production a
significant source of soil fertility (Moyo and Swanepoel, 2010;
Magnusson, 2016). Recently, the livestock sector, particularly broiler
chicken production (Chia et al., 2019), has gained increasing
importance in the food industry (Kasule et al., 2014; Enahoro et al.,
2018; VanHarn et al., 2019). As a result, the issue of effectively utilizing
growing quantities of manure has become more pressing. Poultry
manure can be used directly as an organic fertilizer. However, it is
recommended to treat it before application due to its high nitrogen,
phosphorus, moisture, and fibre content. Due to its high nitrogen,
phosphorus, moisture, and fiber content, it is recommended to treat it
before application. Composting effectively treats and utilizes solid
organic wastes (and by-products under aerobic conditions) and
various manures (Masters, 1997; Wang and Dalal, 2015). The
Hosoya composting plant is a three-phase system consisting of two-
phase aerobic fermentation and one-phase final drying (Georgakakis
and Krintas, 2000; Hosoya and Co. Ltd, 2020), where the product is
CPPL. Considering the impact of composting plants, it is essential to
analyse their environmental impacts. LCA is one of the helpful
methods for estimating potential environmental burdens and is
mainly used for the construction industry (Buyle et al., 2013;
Bahramian and Yetilmezsoy, 2020), grinding processes
(Kruszelnicka, 2020; Mannheim and Kruszelnicka, 2022; Mannheim
and Kruszelnicka, 2023); plastic manufacturing (Civancik-Uslu et al.,
2018; Baldowska-Witos et al., 2019; Alhazmi et al., 2021; Mannheim,
2021), and waste management (Brancoli and Bolton, 2019; Alwaeli and
Mannheim, 2022; Cano-Londoño et al., 2022; Rimantho et al., 2022;
Avató and Mannheim, 2022; Mannheim, 2022). In the last decade, the
environmental impacts associated with livestock and crop production
have become increasingly significant. Previous research (Kiss et al.,
2021) shows that the environmental impact of CPPL (53% broiler
manure and litter, 27% manure layer and litter, and 20% chicken and
bone meal) production is more favourable than the most used fertilizer
combinations. This study aimed to evaluate the environmental impact
of CPPL as a potential alternative to chemical N, P and K fertilisers in

maize and winter wheat production. Environmental impacts were
compared with those of common chemical fertiliser combinations:
ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea,
triple superphosphate (TSP), monoammonium phosphate (MAP), and
potassium chloride (KCl). Possible resultsmay also help identify critical
points in the cultivation technology for harvesting 1 ton of maize (Zea
mays L.) and winter wheat (Triticum aestivum L.).

2 Materials and methods

2.1 Life cycle assessment and life cycle
inventory

The LCA structure and its four main phases are based on the ISO
14040:2006 standard (International Organization for Standardization,
2006a; International Organization for Standardization, 2006b), which
include goal and scope, life cycle inventory, life cycle impact
assessment, and interpretation of the results (Gabathuler, 2006).
LCA was conducted using the openLCA software (OpenLCA
Nexus, 2022). The two most essential field crops grown in Europe
and Hungary are, maize (Zea mays L.) and winter wheat (Triticum
aestivum L.), which were used as the basis for the LCA of crop
production, where the material and energy flows necessary for
producing one tonne of each crop were determined. The CPPL
was supplemented with different N, P, and K fertilizers
combinations. The Agribalyse 3.1 French database contained a
substantial amount of data for all the necessary analyses (Colomb
et al., 2015; Koch and Salou, 2020; Asselin-Balençon et al., 2020;
OpenLCA Nexus, 2022). The LCI includes field operations such as
tilling, nutrient replenishment, basic tillage, soil smoothing, seedbed
preparation, sowing, crop protection, and harvesting. It also
encompasses the machinery required for these operations and all
inputs like seeds, CPPL, and pesticides. In the provided database, the
selected ‘Process’ displays the duration of processes in hours and
calculates the material and energy inputs required for the process and
the necessary machinery. The process also considers emissions from
fuel combustion. The system boundary is “from harvest to harvest”,
but it does not consider post-harvest processes such as drying or
storage, even though these operations are conducted on the farm.
Irrigated production has been considered for maize cultivation since
the sample farm and another farm, which also provides fodder crops
to the sample farm, cultivate maize under irrigated conditions.

2.2 Life cycle impact assessment method

In Europe, the EcoIndicator, ReCiPe, ILCD, and CML approaches
are commonly used as impact assessment methods (Guinée et al.,
2002; Gabathuler, 2006; Kabakian et al., 2015; Lamnatou and
Chemisana, 2015). This research uses the CML 2001 method,
which assumes that emissions with similar effects can be
summarized across different media. It also employs an impact-
oriented classification of material and energy flows for impact
assessments. The impact of emissions and consumption on the
environment is illustrated through eleven categories (Gaidajis and
Kakanis, 2021; Baldini et al., 2018). The calculated potentials include
the abiotic depletion potential for elements (ADPe), abiotic depletion
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potential for fossil fuels (ADPf), acidification potential (AP),
eutrophication potential (EP), global warming potential (GWP),
ozone layer depletion potential (ODP), photochemical oxidation
potential (POP), freshwater aquatic ecotoxicity potential (FAETP),
human toxicity potential (HTP), marine aquatic ecotoxicity potential
(MAETP), and terrestrial ecotoxicity potential (TETP). Kiss et al.
(2021) describe the impact categories in more detail.

2.3 Interpretation methods

Since CPPL is a complex nutrient supplement containing all the
macronutrients in one product, the cropproduction scenario assumed the
combined application of NPK fertilizers. The application rate of CPPL
was determined at 1.5 t/ha, as suggested by the manufacturer and
researchers (Szabó et al., 2019) (Supplementary Material S1). This

amount corresponds to 82.5 kg N/ha, which aligns with the
recommendation of Kátai (2011) that 80 kg N/ha is the minimum
nitrogen requirement for soils with a low to medium N supply. In
addition to the environmental impact of crop production processes, the
production of CPPL and chemical fertilizers has also been considered.
Based on dividing the difference between the maximum and minimum
impact category values into three equal intervals, three categories (low,
medium, and high burden) were established. Finally, normalization and
weighting methods were used to compare the categories: CML-IA
baseline, EU25 + 3, and 2000.

3 Results

This work estimates eleven environmental impacts of the CPPL,
N-, P-, and K fertilizers. Table 1 summarizes the calculated LCA

TABLE 1 Results of maize and winter wheat production with various nutrient supplements.

Name CPPL NPK1 NPK2 NPK3 NPK4 NPK5 NPK6

Total quantity per hectare (t/ha) 1.5 0.404 0.363 0.461 0.415 0.338 0.305

Impact categories of maize production (functional unit: 1 tonne) - Scenario 1 (S1)

ADPe (kg Sb-Eq) 1.53 × 10−3 1.77 × 10−3 1.82 × 10−3 1.82 × 10−3 1.87 × 10−3 1.74 × 10−3 1.79 × 10−3

ADPf (MJ) 4857 5571 5443 5571 5443 5643 5486

AP (kg SO2-Eq) 9.06 15.28 15.19 15.28 15.19 15.2 15.11

EP (kg PO4-Eq) 8.79 10.46 10.42 10.47 10.42 10.44 10.39

GWP (kg CO2-Eq) 644.7 928.4 924.5 928.6 926 975.5 972.9

ODP (kg CFC-11-Eq) 1.56 × 10−4 1.54 × 10−4 1.53 × 10−4 1.54 × 10−4 1.53 × 10−4 1.54 × 10−4 1.53 × 10−4

POP (kg C2H4-Eq) 0.071 0.079 0.076 0.08 0.076 0.08 0.076

FAETP (kg 1,4-DB-Eq) 175.9 183 183.9 184.5 185.6 181.8 182.5

HTP (kg 1,4-DB-Eq) 303.2 317.8 319.9 320.3 322.6 316 317.9

MAETP (kg 1,4-DB-Eq) 160000 182857 184286 185714 187143 180000 181429

TETP (kg 1,4-DB-Eq) 2.30 2.36 2.36 2.37 2.37 2.35 2.35

Impact categories of winter wheat production (functional unit: 1 tonne) - Scenario 2 (S2)

Name CPPL NPK1 NPK2 NPK3 NPK4 NPK5 NPK6

ADPe (kg Sb-Eq) 4.46 × 10−4 6.59 × 10−4 7.01 × 10−4 6.94 × 10−4 7.44 × 10−4 6.33 × 10−4 6.71 × 10−4

ADPf (MJ) 777.5 1387.5 1262.5 1362.5 1275 1450 1300

AP (kg SO2-Eq) 4.21 4.10 4.01 4.09 4.01 4.02 3.94

EP (kg PO4-Eq) 3.34 3.36 3.32 3.36 3.33 3.34 3.29

GWP (kg CO2-Eq) 233.78 271.02 266.53 270.12 268.36 264.91 262.03

ODP (kg CFC-11-Eq) 2.00 × 10−5 1.88 × 10−5 1.75 × 10−5 1.75 × 10−5 1.75 × 10−5 1.88 × 10−5 1.75 × 10−5

POP (kg C2H4-Eq) 0.012 0.019 0.016 0.019 0.016 0.019 0.016

FAETP (kg 1,4-DB-Eq) 191.91 197.88 198.78 199.33 200.39 197.07 197.65

HTP (kg 1,4-DB-Eq) 45.17 56.36 58.3 58.64 60.95 55.14 56.63

MAETP (kg 1,4-DB-Eq) 29250 48500 49750 51625 53250 47125 47500

TETP (kg 1,4-DB-Eq) 77.82 77.87 77.87 77.87 77.80 77.86 77.87

Light blue = low environmental impact; yellow = medium environmental impact; red = high environmental impact.
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values for maize and winter wheat productions. It shows that ozone
layer depletion and acidification (in the case of S2) are slightly higher
for CPPL than for NPK combinations. However, there were very
slight differences in the ODP of maize; it was only 1.9%–1.3%
between CPPL and chemical fertilizers. The differences in wheat
ODP were slightly more significant, ranging from 6% to 12.5%,
between CPPL and NPK combinations. For the AP, differences
ranging from 2.6% to 6.8% were observed in wheat cultivation when
comparing the use of CPPL with NPK combinations. In the case of

ADPe, applying CPPL and NPK5 resulted in the lowest impacts in
both scenarios. NPK5 was the only NPK combination that could
have a medium environmental load, while the other NPK
combinations had a significant ecological impact. Maize
production with CPPL has an 11%–14% lower impact, and
winter wheat production with CPPL has at least a 30%–40%
lower impact. In the case of ADPf, fuel consumption and heavy
machinery were the main contributors to emissions. This value is
14%–56% lower when using CPPL. The main contributors to

FIGURE 1
The examined phases of the Life Cycle Assessment with the system boundaries, the detailed Life Cycle Inventory data and the results of the
environmental impact assessment.
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acidification were winter wheat production using CPPL and maize
production using NPK1 fertilizer. In the case of maize production,
acidification was 40% lower when using CPPL. The value of
eutrophication is 2–3 times lower for S2 than for S1. In the EP
values concerning NPKs, there are no significant differences. In the
case of EP, the two most important contributors were field
operations (N2O and CO2 emissions) and fuel consumption.
Using CPPL, global warming is almost three times higher for
S1 and, on average, 66%–87% lower for the CPPL scenario
compared to NPK combinations. In the case of S2, although the
production of CPPL itself represents only 1.5% of winter wheat
production with CPPL, in production systems where NPK fertilizers
were used, this means, on average, 9.7%. For the POPs,
combinations 2, 4, and 6 of NPK can have a medium
environmental impact, while combinations 1, 3, and 5 can be
classified as having a high environmental impact in both cases.
POP values are the lowest for CPPL’s application. For toxicity
potentials, the emissions were 3%–5% lower for FAETP, 11%–
15% lower for MAETP, 2%–3% lower for TETP, and 4%–5%
lower for HTP when CPPL was applied. The highest values were
observed for the MAETP, followed by the FAETP as the second
highest and the TETP as the third most significant impact category.
While higherMAETP and FAETP values were more related to CPPL
and NPK fertilizer production, the TETP values were linked to
cultivation technology. Figure 1 shows the main phases of the LCA
with the system boundaries, the detailed LCI data and the results of
the environmental impact assessment.

4 Discussion

4.1 Discussion about maize production

According to previous research studies (Holka et al., 2017; Taki
et al., 2018), the environmental impacts depend mainly on the
heavy machinery used for each field operation and the types of
nutrient supplements. According to this research, the ADPe
primarily relates to the processes preceding crop production,
such as the extraction and production of raw materials. It
explains why emissions were higher in those crop cultivation
systems due to the production of various fertilizers. In addition,
transport also contributes to ADPe, as demonstrated by Holka and
his co-authors (Holka et al., 2017) determined during an analysis
of maize production on two Polish farms. Their results showed no
difference between the two farms, and the estimated value of
0.001 kg Sb-Eq was similar to this study. In the case of AP, they
estimated 6.6 and 7.9 kg SO2-Eq. For POP values, fuel
consumption and heavy machinery are the primary contributors
to emissions, along with the use of pesticides, both in this study and
in Holka et al. (2017) research. Some scientific literature (Whitman
et al., 2011; Holka et al., 2017) is available on GWP, where the
values are highly variable and lower than those measured in the
present study. However, most studies have considered non-
irrigated conditions. In their studies, Whitman et al. (2011)
found values of 320 and 488 kg CO2-Eq/t for maize,
respectively. Their research concluded that the primary sources
of greenhouse gas emissions were losses in soil organic carbon
(40%–61%), followed by NO2 emissions (10%–31%) and finally,

field operations, with harvesting processes being the main
contributor (14%–22%). Holka and co-authors (Holka et al.,
2017) measured 297 and 331 kg CO2-Eq when comparing two
maize production systems in Poland. Another study (Holka and
Bieńkowski, 2020) compared the CO2-Eq emissions of reduced
tillage and no-tillage systems. Their results showed no significant
differences between the systems (values ranged from 178 to 190 kg
CO2-Eq/t). Jayasundara and colleagues (Jayasundara et al., 2014)
measured 243–353 kg CO2-Eq, while Supasri and co-researchers
(Supasri et al., 2020) estimated 351 kg CO2-Eq. Comparing
irrigated and non-irrigated maize production, Wettstein and his
colleagues (Wettstein et al., 2017) found that non-irrigated systems
emit 490 kg CO2-Eq. In contrast, the emissions were higher in
irrigated systems, ranging between 530 and 800 kg CO2-Eq.
Ghasempour and Ahmadi (2018) estimated the ODP at 2.05 ×
10−5 kg CFC-11. According to their research, nitrogen fertilizers
and pesticides were the primary contributors to ozone depletion.
No literature on maize production regarding impact categories
expressed in kg 1,4-DB equivalent, such as FAETP, MAETP,
TETP, and HTP, is available.

4.2 Discussion about winter wheat
production

There is more literature on life cycle assessment for winter
wheat than for maize. Williams and his colleagues (Williams et al.,
2010) estimated the AP at 3.3 kg SO2-Eq per 1 tonne of wheat, while
Holka et al. (Holka et al., 2016) estimated it at 4.6–6.6 kg SO2-Eq.
Taki et al. (Taki et al., 2018), comparing irrigated and non-irrigated
cropping technologies, noted 8.99 kg SO2-Eq. for the former and
11.9 kg SO2-Eq. for the latter. According to their study, microbial
oxidation of fertilizers is the primary acid-forming reaction.
According to the results of Holka and Bienkowski (Holka and
Bieńkowski, 2020), the AP of conventional, reduced, and no-tillage
systems were 2.7, 3.5, and 5.1 kg SO2-Eq., respectively. In the
present research, the EP values are 2.9 kg PO4-Eq. These values
are close to those estimated by Williams et al. (Williams et al., 2010)
and Taki et al. (Taki et al., 2018), who recorded 3.1 kg and 2.2 kg
PO4-Eq for irrigated areas, and 3.2 kg PO4-Eq for non-irrigated
areas. For EP, regardless of the nutrient amendment, field
operations were the main contributors to the leaching (NO3 to
groundwater, NH3 to air, PO4 to surface water, N2O and NOx to
air). Hoshyar and Grundman (Hoshyar and Grundmann, 2017)
also reported that the main parameters influencing EP were field
operations, seed production, and nitrogen fertilizer application
were the main parameters influencing EP. They found that
eutrophication was significantly impacted by NOx and
NH3 deposition (Potting et al., 2001). As with maize, most of
the literature on winter wheat is based on GWP. Biswas and his co-
authors (Biswas et al., 2008) estimated GHG emissions for wheat
cultivation to be 308–487 kg CO2-Eq. Based on their research,
fertilizer production represents 35% of total emissions, 27% of field
operations, and 12% of transport processes. Similar results were
recorded by Holka et al. (Holka et al., 2016), with 324–404 kg CO2-
Eq per tonne of winter wheat. Taki et al. (Taki et al., 2018) estimated
318 kg CO2-Eq for irrigated areas and 380 kg CO2-Eq for non-
irrigated areas.
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5 Conclusion

Whether it is the cultivation of maize or winter wheat, the
primary environmental impact is caused by field operations
(including the use of pesticides), electricity (mainly the release of
Cr(VI) into the air and the toxicity due to the release of copper), and
fuel consumption (resulting in emissions of CO2, N2O, SO2, CH4,
and NOx into the air, primarily contributing to the formation of
POP, GWP, ODP, EP, and AP) from both CPPL and NPK fertilizers.
There are negligible amounts of CPPL and NPK fertilizers. However,
when considering acidification, eutrophication, and global warming,
the main contributors to the environmental burden are the
environmental impacts caused by cultivation technology.
However, for GWP, we observed lower emissions of 11.1%–14%
in maize cultivation and 30.1%–33.9% in winter wheat cultivation
when nutrient replenishment was managed with CPPL. For the
acidification in CPPL wheat production, field operations had the
highest environmental impact due to NH3 and NOx emissions,
followed by CPPL production and heavy machinery fuel. In the case
of NPK1-6 combinations, field operations are the main contributors
to acidification, fuel usage, and the extraction and production of raw
materials for chemical fertilizer manufacturing. The environmental
burden was lower for the toxicity categories when nutrient
replenishment was applied using CPPL. Marine aquatic
ecotoxicity was the most significant impact on winter wheat
production, followed by human toxicity as the second most
significant, and terrestrial ecotoxicity as the third most
significant. Based on the results, implementing CPPL can reduce
the environmental burden associated with meat production.
Furthermore, CPPL could be a potential alternative to fertilizers,
provided that complex fertilization is considered. Thus, substituting
fertilizers also fulfils the ambition of the European Green Deal.
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