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The COVID-19 pandemic has shown that infection prevention actions need to be
more efficient in public indoor environments. In addition to SARS-CoV-2, the
cause of COVID-19, many pathogens, including other infectious viruses,
antibiotic-resistant bacteria, and premise plumbing pathogens, are an invisible
threat, especially in public indoor spaces. The indoor hygiene concept for
comprehensive infection prevention in built environments highlights that the
indoor environment should be considered as a whole when aiming to create
buildings with increased infection prevention capacity. Within indoor
environments, infections can indirectly spread through surfaces, air, and water
systems. Many methods, such as antimicrobial technologies and engineering
solutions, targeting these indoor elements are available, which aim to increase
the hygiene level in indoor environments. The architectural design itself lays a
foundation for more efficient infection prevention in public buildings. Touchless
solutions and antimicrobial coatings can be applied to frequently touched
surfaces to prevent indirect contact infection. Special ventilation solutions and
air purification systems should be considered to prevent airborne infection
transmissions. Proper design and use of water supply systems combined with
water treatment devices, if necessary, are important in controlling premise
plumbing pathogens. This article gives a concise review of the functional and
available hygiene-increasing methods—concentrating on indoor surfaces, indoor
air, and water systems—to help the professionals, such as designers, engineers,
and maintenance personnel, involved in the different stages of a building’s
lifecycle, to increase the infection prevention capacity of public buildings.
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Introduction

Despite the development of medicine, humankind still suffers from numerous infectious
diseases. Emerging zoonotic viruses, drug-resistant bacteria and fungi, as well as well-known
older pathogens, such as Legionella pneumophila and influenza viruses, are a concern
(Kanarek et al., 2022; Mohapatra and Menon, 2022; Rehman, 2023). As attempts to treat
infections have often turned out to be expensive and insufficient, more attention should be
paid, in advance, to preventing infections.
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The indoor environment plays an important role in mediating
infections because people generally spend a lot of time indoors.
Many infections can be transmitted through indoor environments,
and the possible transmission routes are fomite transmission caused
by touching contaminated surfaces, airborne transmission caused by
breathing contaminated air, and waterborne transmission caused by
being exposed to contaminated water (Dai et al., 2017).

Green building has gained much attention to achieve energy
efficiency and low greenhouse gas emissions in construction (Doan
et al., 2017; Udomiaye et al., 2022). However, few design and
engineering-based measures have been employed to limit
infection transmissions in public buildings, excluding healthcare
facilities (Morawska et al., 2021). Thus, there is a need for designing,
constructing, and renovating healthier buildings that can limit
infection transmissions within built environments. Public

buildings where many people pass through, such as public
transport terminals and shopping centers, and buildings
accommodating people with low immunity, such as nurseries and
rest homes, should be the focus. Implementing solutions for
infection prevention in indoor environments, such as
antimicrobial materials, increases building costs, but it will also
prevent economic losses in the form of medical treatment and sick
leaves (Cutler and Summers, 2020; Falkinham, 2020; Abraham et al.,
2021; Morawska et al., 2021).

We have previously introduced the indoor hygiene concept,
summarized in Figure 1, which establishes a comprehensive
infection prevention framework for built environments (Salonen
et al., 2022). Creating healthy and hygienic buildings requires
technical knowledge from the professionals, involved in different
phases of the building’s lifecycle, on how to improve the infection-
prevention capacity of indoor environments. To meet this challenge,
the current review summarizes the available methods, which have
capacity to decrease the spread of infections in indoor environments,
concentrating on antimicrobial technologies and solutions targeted
to indoor surfaces, indoor air, and water systems.

Infection-preventing building design

Construction engineering decisions influence the building’s
infection-prevention capacity throughout its lifecycle. Health-
related choices are made in the architectural, spatial, internal
facilities, premise plumbing system, and HVAC (heating,
ventilating, and air-conditioning) design.

The architectural design can support infection prevention by
prioritizing compact, clear, and easy-to-clean structures and flexible
design solutions to cope with changing demands. Adequate spacing
is required to support social distancing when needed. Decreasing
opportunities for close social interactions, for example, by designing
private offices instead of densely populated open offices, lessens the
probability of infection transmissions (Dietz et al., 2020; Udomiaye
et al., 2020; Shepley et al., 2021). Building design can be utilized to
control the flow of people and supply traffic. Separating dirty areas
from clean ones should be carefully designed to prevent cross-
contamination. Cleaning and maintenance rooms should be
centrally located and easily accessible.

Spatial planning can support adequate ventilation, especially
when utilizing natural ventilation, by avoiding closed-end corridors,
lobbies, and waiting areas. In areas of abundant sunlight, adequate
windows can allow daylight to reach the indoor space decreasing the
spread of pathogens (Udomiaye et al., 2022).

High hygiene in furnishing and equipment can be pursued, for
example, by choosing antimicrobial and antifouling materials and
utilizing touchless technologies. When installing any product, the
accumulation of dirt on the product’s surface should be minimal,
and the product and its surroundings should be easily cleanable.
Maintaining hand hygiene should be made easy, such as by
appropriately locating hand sanitizer dispensers and hand
washing points (Stiller et al., 2016; Clancy et al., 2021).

The next sections will discuss how to improve the infection
prevention capacity of indoor surfaces, ventilation, and water
systems. The available and functional infection-preventing
technologies and solutions are summarized in Table 1.

FIGURE 1
Simplified presentation of the indoor hygiene concept for
creating hygienic indoor environments. All the elements of the indoor
environment—surfaces, air, and water system—should be considered
for infection prevention because of the different habitats of
micro-organisms and different routes of infection transmission.
Efficient infection prevention in built environments includes
appropriate infection prevention methods targeted at all these
elements. A hygienic indoor environment is created throughout a
building’s lifecycle, starting from defining the hygiene objectives at an
early stage, continuing to choose suitable solutions, and then
implementing and maintaining them. A building’s lifecycle starts from
the needs assessment and design stages and continues to
construction, commissioning, and use (Salonen et al., 2022). The icons
in the figure are downloaded from Icons8 (Icons8, 2023).
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TABLE 1 The available and functional antimicrobial technologies and solutions for indoor surfaces, HVAC, and water systems for establishing hygienic indoor
environments with increased infection-prevention capacity. Determining the hygiene requirements for the indoor environment in question helps to select the
appropriate solutions. The list of references is not fully comprehensive.

Antimicrobial
technology or
solution

Description Advantages Disadvantages References

Surfaces

Release active surfaces Surfaces are preloaded with biocides
that need to be released to destroy
micro-organisms. Surface-released
biocides can damage different
components in microorganisms,
such as outer membranes, proteins,
and nucleic acids. In addition, they
can generate ROS that kill microbes.
For example, copper, silver, and
zinc-containing coatings, fabrics,
and paints are available

+The oldest and most
studied group of
antimicrobial surface
materials

-Effectiveness can depend on
environmental factors (e.g.,
humidity)

Taylor et al., 2009; Verbič et al.,
2019; Mitra et al., 2020; Pietsch
et al., 2020; Lara et al., 2020;
Abraham et al., 2021; Blomberg
et al., 2022+Many applications

available

-Possible release of antimicrobial
agents to the environment
-Possible increase of microbial
resistance or tolerance to metals or
co-selection of antibiotic resistance

Contact active surfaces Biocides are permanently bound to
surfaces and destroy micro-
organisms when they meet the
surface. For example, a strong
positive charge attracts
microorganisms and interferes with
their genomic content or structural
units causing disintegration.
Polycations, such as
polyethyleneimines, can be applied,
for example, through painting.
Specific antimicrobial surface
nanopatterns have also been shown
to damage microbes

+No release of biocides to
surroundings

-Novel approach, not yet many
applications available for indoor
surfaces

Kaur and Liu, 2016; Zubris et al.,
2017; Modaresifar et al., 2019;
Imani et al., 2020+Antimicrobial properties

are permanent
+Development of resistance
is unlikely

Anti-adhesive surfaces Anti-adhesive or antifouling
surfaces reject the adhesion of
microorganisms. They are often
based on superhydrophilic or
superhydrophobic surfaces or
specific surface topography. For
example, hydrophilic polyethylene
glycol (PEG) attached to the surface
prevents the adhesion of
microorganisms

+No risk of increase in
resistance or microbial
imbalance

-Do not kill microbes and they may
end up on other surfaces

Dancer, 2014; Encinas et al.,
2020; Olmos and
González-Benito, 2021; Zou
et al., 2021+Surfaces are typically also

easy to clean because they
repel organic dirt

Light-activated antimicrobial
surfaces

Light-activated antimicrobial
surfaces can excite electrons under a
specific light, which results in the
production of ROS on the surface
from H2O and O2. The highly
reactive ROS degrades organic
contaminants, including microbes
on the surface. The most used
photocatalyst is TiO2 (also, e.g.,
ZnO). Coatings can be applied to
surfaces, for example, by spraying or
within paints

+Can be applied to old or
new surfaces and on
different materials

- Specific light sources are often
required to gain full activity (e.g.,
ultraviolet (UV) or blue light, which
is switched on when the space is not
occupied)

Walker et al., 2017; Mathew et al.,
2018; Bishweshwar et al., 2019;
Meng et al., 2019; Hwang et al.,
2020; Schutte-Smith et al., 2023+Photo-oxidation of cell

debris and organic matter
results in a self-cleaning
surface

-Not all surfaces in the indoor
environment are reachable by light

+Low risk of an increase in
microbial resistance

Touch-free solutions Replacing touch surfaces with
touchless options decreases
opportunities for infection
transmissions via surfaces. For
example, touch-free faucets, soap
dispensers, lights, and doors are
available

+Easy and practical
alternative without the use
of antimicrobial materials

-Require typically more technology
than non-touchless solutions

Dancer et al., 2021; Salonen et al.,
2022; Navaratnam et al., 2022

Antimicrobial light UV-C radiation can be used to
control the number of harmful
microorganisms on indoor surfaces.
UV-C damages the DNA of
microbes. Lamps can be installed on
walls or ceilings and automated to
switch off when the room is

+Automatic -Not all surfaces in the indoor
environment are reachable by light

Wang et al., 2017; Inagaki et al.,
2020; Füszl et al., 2021;
Demeersseman et al., 2023;
Graeffe et al., 2023

+Simultaneous disinfection
of surfaces and air - UV can be utilized when the room

is not occupied, or the occupants
are protected

+The antimicrobial effect
can be enhanced by using
photocatalytic coatings on
surfaces

-UV can harm materials

(Continued on following page)
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TABLE 1 (Continued) The available and functional antimicrobial technologies and solutions for indoor surfaces, HVAC, and water systems for establishing hygienic
indoor environments with increased infection-prevention capacity. Determining the hygiene requirements for the indoor environment in question helps to select
the appropriate solutions. The list of references is not fully comprehensive.

Antimicrobial
technology or
solution

Description Advantages Disadvantages References

occupied. UV robots and UV
disinfection chambers for small
objects are available. In addition,
blue light in the spectrum of
400–470 nm has antimicrobial
properties based on exciting
endogenous photosensitizers
leading to ROS production

-UV can produce ozone or other
harmful compounds in the air

HVAC

Increased ventilation rate Higher air exchange rates in
buildings help to dilute indoor air
contaminants, including pathogen-
containing aerosols, thus decreasing
the probability of airborne infection
transmission. This is applicable for
mechanical ventilation when the
ventilation rate is adjustable. In
some cases, the ventilation rate can
be increased by opening windows

+Easy and simple way to
decrease the probability of
airborne transmission

-Increases energy demand Pantelic and Tham, 2013; Dietz
et al., 2020; Izadyar and Miller,
2022

-Does not guarantee protection if
the airflow patterns, inlet and outlet
locations, and supplied air velocity
are not properly designed

Displacement ventilation Cool fresh air is supplied near the
floor level and moves upward
vertically to the exhaust.
Contaminated air is displaced with
the fresh air. Polluted air is not
mixed with fresh air, as with the
mixing ventilation. This is suitable
for high rooms with no fans or other
sources causing air mixing

+Not mixing the fresh and
polluted air, thus,
decreasing the risk of
infection transmission

-Sufficient room height required Cao et al., 2014b; Bhagat and
Linden, 2020; Izadyar and Miller,
2022

-Heating is often required
-Airflows caused by the movement
of people and unexpected sources
of heat can send the polluted air
back to the occupant level
-Risk for draught at the floor level

Personalized ventilation Fresh air is supplied directly to the
breathing zones, such as to
workstations or patient beds. It can
be combined with the existing
ventilation strategy. Local exhaust,
in addition to air inlet, can improve
performance

+Reduces energy use and
clean air demand

-Airflows caused by the movement
of people can disturb the protected
zones

Cao et al., 2014a; Izadyar and
Miller, 2022

-Fixed locations for occupants need
to be known

Protected occupied zone
ventilation

Indoor space is separated into a few
subzones protected from one
another using a low turbulence
plane jet diffuser

+Can be used to protect
chosen areas in the indoor
space from infective
particles

- Airflows caused by the movement
of people can disturb the protected
zones

Cao et al., 2014a; Cao et al.,
2014b; Cao et al., 2017; Izadyar
and Miller, 2022

-Always leaks, no full separation

Pressure differentials With pressure differentials, airflows
can be controlled to flow from areas
of high cleanliness to areas of lower
cleanliness, from personal use areas
to public areas. Positive pressure is
created in the spaces where people
need to be protected. Negative
pressure is recommended, such as
for toilets and other areas with lower
hygienic levels

+Can be used to protect
chosen rooms or separate
spaces from infective
particles

-Opening doors can enable the
infective particles to escape

Offermann et al., 2016; Guo et al.,
2021; Izadyar and Miller, 2022

-Doors need to be closed or
preferably a specific anteroom
placed between the clean and
polluted rooms

Physical barriers Physical barriers can be used to
prevent the spread of virus-
containing airborne particles. For
example, plexiglass barriers can be
installed to protect workstations in
open spaces. The height of the
barriers and their locations in
relation to the air outlets and
infection sources are important
parameters

+Easy way to mitigate the
spread of infective particles

-The level of protection depends on,
for example, the location of the
infection source and the airflow
patterns in the space

Ren et al., 2021; Izadyar and
Miller, 2022

+Can be installed also in old
buildings

(Continued on following page)
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TABLE 1 (Continued) The available and functional antimicrobial technologies and solutions for indoor surfaces, HVAC, and water systems for establishing hygienic
indoor environments with increased infection-prevention capacity. Determining the hygiene requirements for the indoor environment in question helps to select
the appropriate solutions. The list of references is not fully comprehensive.

Antimicrobial
technology or
solution

Description Advantages Disadvantages References

Mechanical filters Indoor air can be purified using
filters capable of removing particles
containing microorganisms. High-
efficiency MERV filters (MERV
13–16) or more efficient HEPA
(high-efficiency particulate air)
filters are suitable for microbial
decontamination. HEPA filters can
remove at least 99.97% of particles
of 0.3 µm (MERV 17–20). Filters
can be centralized or portable

+No production of harmful
by-products

-Require fan energy (especially
HEPA filters)

Azimi and Stephens, 2013; Zhang
et al., 2020b; Guo et al., 2021;
Izadyar and Miller, 2022;
Szczotko et al., 2022

+ High-efficiency MERV
filters can decrease
contamination at a
reasonable price

- Require maintenance (replacing
filters)

+Can be combined with UV
disinfection

-Do not destroy the microbes
causing risk of secondary pollution

Electrostatic
precipitators (ESP)

Electrostatic precipitators use static
electricity to charge impurities in
the air, which are then collected on
charged plates inside the purifier.
Microbes are inactivated. Portable
disinfectors can be installed in
different spaces

+Remove particles in the
nanometer scale

-Require energy Feng et al. (2021)

+Can be combined with an
activated carbon filter to
remove volatile organic
compounds (VOCs)

-Generate waste
-May generate ozone

Non-thermal plasma air
purifiers

Non-thermal plasma air purifiers
release bipolar ions that stick to
airborne impurities (e.g., viruses,
bacteria, VOCs) and destroy them
via generated free radicals. They can
be combined with other air-cleaning
technologies to improve
performance and minimize by-
product formation

+Remove microbes,
particles, and VOCs

-Generate ozone and other by-
products

Bahri and Haghighat, 2013;
Hernandez-Díaz et al., 2021;
Szczotko et al., 2022-Require energy

Photocatalytic oxidation air
purifiers (PCO)

The photocatalytic oxidation system
uses UV light and (usually) a TiO2

catalyst to produce radicals.
Airborne pollutants, including
microorganisms, are oxidized and
degraded. PCO units can be
mounted to an existing forced-air
HVAC system

+Degradation of toxic
compounds into non-toxic
ones

-Generate by-products Zhong and Haghighat, 2015;
Binas et al., 2017; Ahmadi et al.,
2021; Szczotko et al., 2022

+Low energy consumption

-Require maintenance (catalyst
replacement)
-Increased humidity inhibits PCO

Air disinfection with UV Airborne microorganisms are killed
by the absorption of UV-C light
causing DNA damage. UV lamps
can be installed in the upper part of
a room limiting the exposure in the
occupied zone and/or switched on
when the room is unoccupied.
Installation within air-conditioning
systems and ventilation ducts can be
used to disinfect circulated air

+Low energy consumption -Possible harm to materials Kowalski, 2009; Morawska et al.,
2020; Szczotko et al., 2022-Can generate by-products

-Does not remove particles
+Simultaneous disinfection
of air and surfaces

-Only partial disinfection
- Maintenance required
- Restricted use when the space is
occupied

Water systems

Temperature adjustments Keeping cold water <20°C and hot
water >55°C will restrain microbial
growth in water systems because
optimal growth temperatures for
many microbess it between those
temperatures. Flushing with hot
(70°C) water from time to time can
be used for thermal disinfection of
pipes and taps. Avoiding
recirculation of hot water decreases
the possibility of maintaining
optimal growth temperature for
opportunistic pathogens

+ Easily applied, also to
older buildings

-Higher hot water temperature
increases energy consumption

Gavalda et al., 2019; Falkinham,
2020; Leslie et al., 2021

+ Efficient way to decrease
the growth of certain
pathogens

-Flushing to keep cold water cold,
increases water consumption
-High hot water temperatures pose
a risk of burns

(Continued on following page)
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Indoor surfaces

Microbial contamination on indoor surfaces often originates
from people touching the surfaces with contaminated hands or

causing airborne contamination settling on surfaces (Dai et al.,
2017). Many harmful micro-organisms can stay viable on dry
inanimate surfaces from hours to several months, thus increasing
the likelihood of onward transmission via touching surfaces (Otter

TABLE 1 (Continued) The available and functional antimicrobial technologies and solutions for indoor surfaces, HVAC, and water systems for establishing hygienic
indoor environments with increased infection-prevention capacity. Determining the hygiene requirements for the indoor environment in question helps to select
the appropriate solutions. The list of references is not fully comprehensive.

Antimicrobial
technology or
solution

Description Advantages Disadvantages References

Flow control Regular flushing of rarely used
pipelines increases the
microbiological quality of tap water.
Increased water age and stagnation
of water in rarely used pipelines
allow harmful micro-organisms to
proliferate and accumulate

+ Easily applied, also to
older buildings

-Increases water consumption Singh et al., 2020; Leslie et al.,
2021; Julien et al., 2022;
Rahmatika et al., 2022+Efficient way to decrease

microbial counts

-Work required if automatic
flushing is not available

Pipeline design and
configuration and the
materials used in contact with
water

Correct sizing of the premise
plumbing system, based on demand,
decreases water age. Eliminating
dead-ends helps to avoid stagnation.
Copper as a plumbing material does
not encourage microbial growth.
Some rubber and plastic materials
may enhance growth by releasing
organic nutrients.

+Decrease the demand for
other measures of
microbiological control

-Applicable mostly to new
construction

Inkinen et al., 2017b Julien et al.,
2020; Leslie et al., 2021;
Logan-Jackson et al., 2023

+Decrease pressure
build-ups
+Decrease energy and water
requirements

Control of scaling Magnetic water treatment removes
scaling and precipitates inside pipes
by introducing an alternative
magnetic field in the flowing water
and causing the formation of
nanobubbles.

+Improved quality of water
and pipes

-Removal of biofilms and scales
decreases the water quality
temporarily after (the start of) the
treatment

Latva et al., 2016; Pečnik et al.,
2016; Al-Juboori and Bowtell,
2019; Zou and Tang, 2019;
Quach et al., 2020

Ultrasound cleaning can be utilized
to dislodge solid residues and
remove biological and other fouling.

+ Makes the conditions less
favorable for microbes

The disinfection effects result from
acoustic cavitation, which leads to
chemical, mechanical, and heat
effects.

+Decreases corrosion and
increases the effect of
thermal or chemical
disinfection
+Applicable also to older
buildings

Filtration Point-of-use filtration removes
harmful microorganisms from
drinking water before consumption,
which is useful especially for
buildings accommodating high-risk
people. Filtration devices can be
installed on faucets and shower
heads or under a kitchen counter or
bathroom sink.

+Easily applied in the case
of contamination or
preventively

-Requires maintenance of filters Molloy et al., 2008; Cervia et al.,
2010; Leslie et al., 2021

+Applicable also to older
buildings

Disinfection On-site disinfection of water can be
achieved, for example, by chlorine-
based chemicals, UV light, ozone
(produced on-site), and copper-
silver ionization. Water disinfection
is useful in epidemic situations but
also preventing installations can be
done. In addition, regular
disinfection of showerheads is
sometimes recommended.

+Quick help in the case of
contamination

-May cause harmful by-products in
the water

Lin et al., 2011; Falkinham, 2020;
Leslie et al., 2021; Buse et al.,
2022; LeChevallier, 2023-May change the smell and taste of

the water
-Microbes, especially in biofilms,
can resist disinfection

Choice of water outlets Aerosol-generating devices should
be avoided (hot tubs, fountains,
“ultrasonic” humidifiers, etc.)
because pathogen-containing
aerosols are an important source of
infection. Installation of
showerheads with large holes helps
to avoid the formation of aerosols.

+Cheap and easy to apply -User experience can be less
pleasant

Falkinham (2020)
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et al., 2013; Cook et al., 2016; Cassidy et al., 2020; Kampf et al., 2020;
Riddell et al., 2020).

Frequent cleaning and disinfection are important when
controlling the microbial load on surfaces. However, they
are often not sufficient to fully eliminate harmful micro-
organisms because of poor cleaning practices, overwhelming
bioburden, and disinfectant tolerance (Dancer, 2014; Meyer
et al., 2021). Cleaning is often not performed immediately after
contamination, and, thus, there is time for infection
transmission before cleaning. Replacing as many touch
surfaces as possible with touchless options, such as touchless
faucets, soap containers, and automatic doors and lights, helps
to decrease human contact with surfaces (Dancer et al., 2021;
Navaratnam et al., 2022).

Using antimicrobial materials that repel or kill microbes
can also improve surface hygiene. Antimicrobial materials
typically offer a continuous and nonspecific intervention
targeting a wide spectrum of microbes, including bacteria,
viruses, and fungi. Inactivation can occur even minutes after
contamination depending on the used technology, the microbes
present, and environmental conditions. Using antimicrobial
materials on critical surfaces, such as door handles, handrails,
and toilet flush buttons, would stop these surfaces from
functioning as microbial reservoirs, thus reducing the risk of
indirect contact infections. Antimicrobial material can be used
as the surface itself, such as copper, or can be incorporated into
a bulk material to be used, for example, as a paint, coating, or
fabric.

Antimicrobial surfaces can be classified by their functional
principle (Ahonen et al., 2017), but several mechanisms may also
act in parallel (Adlhart et al., 2018). Different antimicrobial solutions
for indoor surfaces are summarized in Table 1. Light-activated
antimicrobial surfaces can excite electrons under a specific light,
producing the reactive oxygen species (ROS) on the surface that
degrade organic contaminants, including microbes. Titanium
dioxide (TiO2) is probably the best-known light-activated
antimicrobial material and is widely used in antimicrobial
coatings (Shang et al., 2022). For better stability and action under
visible light, TiO2 has been morphologically modified and doped
with metal and non-metal elements (Nigussie et al., 2018; Schutte-
Smith et al., 2023). For example, Ag-doped TiO2 caused the
decomposition of Escherichia coli cells in 3 h under visible light
(Endo et al., 2018).

Silver and copper are classified as release killing because the
release of the ionic species is required for the antimicrobial effect
(Ahonen et al., 2017). Copper and some copper alloys can destroy
even over 99% of bacteria within 2 hours after contamination even
after repeated contamination (Abraham et al., 2021). SARS-CoV-
2 was inactivated in 4 h, coronavirus 229E in a couple of minutes,
and norovirus in 5–30 min on copper surfaces (Warnes and
Keevil, 2013; Warnes et al., 2015; van Doremalen et al., 2020).
In real-life studies, copper surfaces have been shown to harbor
33%–90% fewer bacteria than conventional touch surfaces
(Inkinen et al., 2017a; Colin et al., 2018). Hard surfaces and
linens containing copper have been associated with fewer
healthcare-associated infections (von Dessauer et al., 2016;
Lazary et al., 2014; Marcus et al., 2017; Salgado et al., 2013;
Sifri et al., 2016; Zerbib et al., 2020). Unlike copper, silver is

more effective in moist surroundings or as silver compounds or
nanoparticles, because silver is less susceptible to the surface
oxidation required to produce the ionic species (Pietsch et al.,
2020). When several fittings in a hospital setting were replaced
with silver-incorporated replicates, the average microbial
contamination was reduced by 96% (Taylor et al., 2009).
However, studies on the effects of silver-containing surfaces on
preventing infections are scarce.

When comparing antimicrobial coatings, the time required
for the elimination of microbes is an important factor. The
standards used for evaluating the efficacy of antimicrobial
coatings often have a testing time of 24 h (ISO 22196:2011,
2011; ISO 21702:2019, 2019). However, a significant level of
elimination should be more quickly reached for the coating to
fulfill its purpose. Before installing antimicrobial coating, it is
also important to consider that the possible release of
antimicrobial agents from the coating may affect its shelf life
and lead to environmental contamination (Rosenberg et al.,
2019). The potential effects of antimicrobial surfaces on
microbial communities and resistance need further study
(Mäki, et al., 2023). Until then, the application of
antimicrobial surfaces should be limited to frequently
touched locations in public indoor environments (Dunne
et al., 2018).

Regular cleaning maintains a hygienic indoor environment.
Antimicrobial surfaces also need cleaning because dirtiness may
hinder their function. The cleaning method should be suitable for
the material in question to retain its desired function (Dunne et al.,
2018). The cleanliness of surfaces can be verified, for example, by
ATP or optical measurements (Inkinen et al., 2019; Kwan et al.,
2019).

Indoor air

Harmful micro-organisms in indoor air typically originate
when human carriers cough, sneeze, talk, or simply exhale. These
actions spread microbes in droplets and aerosols to the
surroundings. Droplets usually settle close to their origin,
while aerosols can travel a longer distance and be inhaled,
causing airborne transmission. For example, SARS-CoV-2 can
remain infectious in aerosols for several hours, making airborne
transmission a risk even when the source is not present anymore
(van Doremalen et al., 2020). Although many viral diseases, such
as chicken pox and measles, are well-known for airborne
transmission, airborne bacteria, such as Mycobacterium
tuberculosis, also cause infections (Fujiyoshi et al., 2017;
Swaminathan et al., 2021).

HVAC systems have received attention because of the airborne
spread of COVID-19 (Zhang et al., 2020a). Poor ventilation allows
contagious aerosols to stay longer in indoor air and is thus associated
with increased transmission of airborne infections (Guo et al., 2021).
In general, higher outside air fractions and higher air exchange rates
in buildings help to dilute indoor air contaminants, including
pathogen-containing aerosols, thus decreasing the probability of
infection transmission (Dietz et al., 2020). Demand-controlled,
flexible ventilation can be adjusted to control energy use
(Morawska et al., 2021). Different infection transmission-
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decreasing solutions for ventilation and air purification are
summarized in Table 1.

In mechanical ventilation, air distribution should be
designed to deliver external air to each part of the space to
efficiently remove airborne pollutants. Exhaled aerosols can be
transmitted both directly and via the room air distribution
method. Mixing air ventilation—that is, mixing fresh air with
polluted air—is not always the best choice. Displacement
ventilation, which pushes pollutants upwards from the lower
part of the room without mixing the polluted and fresh air, has
shown better performance in contaminant removal efficiency.
However, when the distance between two people is short,
exposure to contaminants seems to be higher with
displacement ventilation than with mixing ventilation
(Olmedo et al., 2012; Cao et al., 2014a), probably because of
the direct connection. Thus, choosing an optimal air
distribution system is not straightforward and should be
based on the dimensions, the heating strategy, and the
planned use of the space. In a warm atmosphere, natural
ventilation can sometimes provide a higher ventilation rate
in an energy-efficient manner. In a hybrid approach,
mechanical ventilation is available if necessary (Udomiaye
et al., 2020).

Special ventilation solutions include personalized ventilation
installed to workstations, and protective occupied zone
ventilation, which separates the indoor area into a few
subzones protected from one another (Cao et al., 2014a; Cao
et al., 2014b; Cao et al., 2017). Pressure differentials between
zones in the building should be controlled so that air flows from
less contaminated to more contaminated areas (Guo et al., 2021).
Physical barriers placed, for instance, to open offices, can
mitigate the spread of aerosols, lowering the risk of infection
transmission (Ren et al., 2021).

Air-conditioning systems in large buildings often require
circulation of indoor air, especially when a larger cooling
capacity is needed. Circulating indoor air creates a certain
risk of airborne infection transmission. Air-conditioning
systems have been associated with the transmission of
SARS-CoV-2 and L. pneumophila (Hamilton et al., 2018; Lu
et al., 2020; Elsaid and Ahmed, 2021). It is sometimes not
possible to increase the ventilation rate enough to lower the risk
of infection to an acceptable level (Blocken et al., 2021). These
spaces can benefit from air filtration and disinfection strategies
(Brągoszewska and Biedroń, 2021; Alvarenga et al., 2023). For
example, SARS-CoV-2 was detected in the hospital ward air
before the activation of HEPA air filtration and after its
deactivation but not during the filter operation (Morris
et al., 2022). In an intervention study implementation of an
air purifier significantly decreased the number of microbes
detected in the air and on surfaces. In addition, the number
of hospital-acquired infections was lower when compared to
the control space (Arikan et al., 2022). Special air purifiers can
be portable or incorporated into a building’s HVAC system
(Cheek et al., 2021). The air purifier should be selected carefully
based on the required capacity and safe performance (Blocken
et al., 2021).

For desired performance, the building’s HVAC system
requires regular maintenance, such as replacing the filters and

cleaning the air terminal units and ventilation ducts. The
performance of the ventilation system can be monitored by
certain parameters, such as temperature, carbon dioxide,
humidity, and particle content.

Building water systems

In moist surroundings, many bacteria form biofilms with
increased tolerance to biocides and other environmental
factors. Building water systems are prone to develop
microbiological problems because of high surface area-to-
volume ratios, stagnation periods, diverse materials, and low
disinfectant levels (McCoy and Rosenblatt, 2015). Biofilms in
premise plumbing can form a reservoir for harmful micro-
organisms that is difficult to destroy. Starting and stopping
pumps as well as opening and closing valves create pressure
shocks that may release biofilms into the drinking water. In
addition, favorable conditions make biofilm microbes
proliferate in water. Waterborne infections can be
transmitted when exposed to contaminated water through
the gastrointestinal tract, skin, or mucous membranes. In
addition, the building’s water system, such as toilets and
showers, generates aerosols that may cause infection
transmissions via the respiratory tract (Dai et al., 2017).
Water systems are an important source of L. pneumophila
and Pseudomonas aeruginosa, both of which cause mild to
severe infections (Moriz et al., 2010). Biofilms in handwashing
sinks can also play a role in outbreaks (Breathnach et al., 2012;
Roux et al., 2013; Franco et al., 2020).

The water treatment plants and distribution systems have
limited potential to control opportunistic pathogens in a
building’s plumbing systems. Thus, to reduce the risk of water-
borne infection transmission, it is necessary to decrease microbial
concentrations in premise plumbing. Implementing a water safety
plan for public buildings is recommended (McCoy and Rosenblatt.,
2015; Schmidt et al., 2019). Strategies to control premise plumbing
pathogens are summarized in Table 1.

Water temperature is an important factor when preventing
microbial growth in premise plumbing. Cold water should be
kept below 20°C and warm water over 55°C, preferably 60°C at the
outlets, to avoid temperatures favorable to micro-organisms.
Energy saving often results in too low warm water
temperatures, which encourages the growth of Legionella
(Falkinham, 2020). In a 2-year study, the renovation of a
hospital’s hot water pipelines and keeping the hot water
temperatures around 60°C throughout the whole circuit led to
the disappearance of Legionella from water samples (Quero et al.,
2021). In this context, it is also important to adequately insulate
water pipes. Premise hot water systems can be frequently
decontaminated by raising the hot water temperature to
around 70°C for a certain time and flushing the outlets with
hot water (Gavalda et al., 2019). Despite decontamination,
biofilms can protect the pathogens, and regrowth can happen
within weeks or months (Cazals et al., 2022; Molina et al., 2022).
Maintaining regular flow is also important to ensure that the cold
water does not increase in temperature, which would enable
colonization (Leslie et al., 2021).

Frontiers in Built Environment frontiersin.org08

Salonen et al. 10.3389/fbuil.2023.1212920

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1212920


Extended water retention time in pipelines and water
stagnation in dead-ends or rarely used pipelines result in the
loss of residual disinfectant and the proliferation of micro-
organisms (Singh et al., 2020; Julien et al., 2022; Rahmatika
et al., 2022). Water-efficient fixtures both increase water age
and can cause aerosolization, increasing the risk of infection
transmission (Leslie et al., 2021). Regular flushing, avoiding
dead-ends, and correct sizing of a premise plumbing system
help to decrease stagnation.

Copper-silver ionization has been successfully used to
control Legionella and other opportunistic pathogens in
public buildings, however, it must be properly designed,
operated, and maintained to be effective. In a hospital case
study, copper-silver ionization was installed in two hospital
buildings where Legionella samples were regularly positive.
After installation, the Legionella concentrations started to
decline and were no more detected after 3 months
(LeChevallier, 2023). In the case of disease outbreak or the
detection of opportunistic pathogens in building water
samples, on-site chemical disinfection can be useful,
especially in facilities accommodating at-risk populations.
However, biofilms can be 100 to 1,000 times less susceptible
than planktonic bacteria to different disinfectants. Even
prolonged treatment with chlorine-based disinfectants usually
fails to remove all adherent biofilm (Zubris et al., 2017). Thus,
reliable control of biofilms requires stringent and repeated
cleaning strategies, aimed at physically disrupting them.
Magnetic water treatment devices installed to premise
plumbing have been shown to remove scales, hence limiting
biofilm formation (Latva et al., 2016). In addition, generated
nanobubbles may decrease biofilm formation (Xiao et al., 2020).
Total eradication of opportunistic pathogens is still difficult to
achieve. Instead, limiting their growth and human exposure
should be pursued (Dancer, 2014; Julien et al., 2022).

Maintaining a building’s drinking water system requires
verifying that the water temperatures remain within the required
thresholds. The flow must be steady, without harmful pressure
buildups. If automatic flushing is used, its function should be
regularly checked. In spaces where the quality of water is critical,
various parameters, such as water temperatures, disinfectant
residuals, and bacterial counts, need to be monitored (Falkinham,
2020; Nakade et al., 2023).

Discussion

COVID-19 has shown that more attention should be paid to
the role of indoor environments in infection prevention,
especially in public buildings. Being a current topic, infection
prevention in indoor environments has been approached in some
recent reports discussing healthy architecture, antimicrobial
surfaces, and air purification strategies (Dietz et al., 2020;
Udomiaye et al., 2020; Shepley et al., 2021; Alhusban and
Alhusban, 2022; Amran et al., 2022; Navaratnam et al., 2022;
Tokazhanov et al., 2022; Udomiaye et al., 2022; Yong and
Calautit, 2023). The articles provide useful recommendations
on how to prevent the spread of infections, in particular COVID-
19, through air and contact surfaces.

To broaden the perspective to an even more comprehensive
approach, the indoor environment should be considered as whole
to establish buildings with increased infection prevention
capacity. Indoor environments can mediate infections via air,
surfaces, and the building’s water system. For example,
antibiotic-resistant bacteria spread through contaminated
indoor surfaces, and premise plumbing pathogens cause a
threat via building water systems, especially to people with
low immunity. The methods available for increasing indoor
hygiene in these areas include building design, antimicrobial
technologies and solutions, and cleaning and maintenance.
These methods should be implemented already during the
design and construction phases and throughout the building’s
lifecycle. For this purpose, building design and engineering
professionals involved in the early stage of the construction or
renovation process need to be aware of the opportunities to limit
infection transmissions via the indoor environment. Nominating
a hygiene-dedicated expert for each construction or renovation
project to help set the hygiene targets and monitor their
fulfillment throughout the project might be useful (Salonen
et al., 2022). Moreover, guidelines for constructing hygienic
indoor environments, set by authorities or certificates, would
be necessary when integrating the described methods throughout
the building’s lifecycle.

The goal of infection prevention may sometimes conflict with
other objectives, such as sustainability. Energy and water conservation
strategies can enable pathogens to proliferate in a building’s water
system. Thus, it is important to design and operate a building
according to its purpose to keep the infection risk at an acceptable
level. For example, hospitals have different requirements for indoor
hygiene than museums or swimming halls. Flexible and demand-
controlled design solutions help to adapt to changing situations.

Plenty of antimicrobial technologies and solutions for indoor
surfaces, ventilation, and water systems are available and more are
under research. It is not always easy to evaluate which of these are
effective. More real-life studies are required to clarify the impacts of
antimicrobial technologies and engineering solutions on the viability
and spread of pathogens. However, no standard protocols are
available, for example, for testing the antimicrobial efficacy of
antimicrobial coatings in real-life settings. More research is also
required to determine the effects of antimicrobial technologies and
solutions, or more generally, hygienic indoor environments, on
morbidity to infectious diseases, and demonstrate their cost-
effectiveness.
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