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Plastic pollution and climate change are serious and interconnected threats to
public and planetary health, as well as major drivers of global social injustice.
Prolific use of plastics in the construction industry is likely a key contributor,
resulting in burgeoning efforts to promote the recycling or downcycling of used
plastics. Businesses, materials scientists, institutions, and other interested
stakeholders are currently exploring the incorporation of plastic waste into
building materials and infrastructure at an accelerated rate. Examples include
composite asphalt-plastic roads, plastic adhesives, plastic-concrete, plastic/
crumb rubber turf, plastic lumber, plastic acoustic/thermal insulation, plastic-
fiber rammed earth, and plastic soil reinforcement/stabilizers. While some believe
this to be a reasonable end-of-life scenario for plastic waste, research shows such
efforts may cause further problems. These uses of plastic waste represent an
ongoing effort at “greenwashing,”which both delays and distracts from finding real
solutions to the plastic pollution crisis. Hypothesized effects of incorporating
plastic waste in construction materials, including economic, environmental,
human health, performance, and social impacts, are evaluated in this mini
review. We compare known impacts of these treatments for plastic waste and
provide recommendations for future research. Evidence shows that such
practices exacerbate the negative ecological, health, and social impacts of
plastic waste and increase demand for continued production of new (virgin)
plastics by creating new markets for plastic wastes. We urge caution—and
more research—before widely adopting these practices.
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Introduction

The modern petrochemical industry’s development during World Wars I and II led to
mass production of fossil fuel–based plastics. Plastics facilitated widespread advancements in
medicine, science, and technology, resulting in industrial and governmental economic gain
(Tickner et al., 2021). However, mass production of plastics and its copious waste streams is
harming the environment and living beings, including humans (Landrigan et al., 2023).

By 2015, more than 8.3 billion metric tons of plastic had been produced. If plastics
production continues to increase at historic and projected rates, humanity is expected to
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produce 32 billion metric tons of plastics along with 2 billion metric
tons of plastic chemical additives, by the end of 2050 (Geyer et al.,
2017). Most plastic is not and has not been historically recycled
(9%), but instead is primarily put in landfills, discharged into the
environment (79%), or incinerated (12%) (Geyer et al., 2017) in
energy-intensive and polluting processes (Eriksson and Finnveden,
2009). A significant reduction, if not cessation, of new plastics
production is recommended to seriously address the numerous
impacts of plastic pollution and its consequent chemical
pollution and contributions to the climate crisis (Lavers et al.,
2022). Even if addressed promptly, plastics and their related
pollutants will inevitably remain a problem well into the future
(Borrelle et al., 2020; Persson et al., 2022).

Life cycle analyses (LCAs) find reuse and recycling of plastics
show greater environmental benefits compared to composting,
landfilling, or incinerating with or without energy recovery
(Mannheim, 2021; Gómez and Escobar, 2022). LCAs also find
that, from a circular economy perspective, the energy produced
during plastics incineration cannot substitute (in terms of energy
output) fossil fuel energy sources (Horodytska, 2020). Primary
plastics recycling (Kutz, 2011) has been identified as a method of
addressing plastic pollution with a goal of eliminating or minimizing
waste (Uekert et al., 2023). However, major challenges remain.
Plastic waste is not comprised of a single material, but includes
hundreds of polymers and thousands of chemical additives in
different combinations (Rosato et al., 1991). Many plastic
products are not designed for easy recycling (Burrows et al.,
2022), limiting their potential for circularity in desirable closed
loop systems. Moreover, industries have favored the historically low
cost and high economic gain of new (virgin) polymers, reducing the
overall demand for recycled plastics (Merrington, 2017).

Secondary recycling involves downgrading or downcycling
(Hopewell et al., 2009; Helbig et al., 2022). Of growing interest is
the use of homogenous and mixed plastic wastes in construction
materials such as asphalt-plastic roads, plastic adhesives, plastic-
concrete, plastic/crumb rubber turf, plastic lumber, plastic acoustic/
thermal insulation, plastic-fiber rammed earth, and plastic soil
reinforcement/stabilizers (Safinia and Alkalbani, 2016; Kassa
et al., 2020; Ma et al., 2021; Rahman et al., 2022). Many of these
uses have been promoted as strategies to reduce metal and other
materials in construction, thereby reducing water and energy use
(Yina et al., 2016) and construction costs (Rebeiz and Craft, 1995).

Focus on this topic has increased as plastic pollution, along with
the social pressures of a growing human population (e.g., a lack of
housing) increases (Awoyera and Adesina, 2020). The Global South
may be particularly vulnerable, as many areas lack formal primary
recycling systems and instead depend on informal recycling to
manage wastes (Velis, 2017). Huge volumes of plastic pollution
have accumulated in the Global South as a result of the global
plastics waste trade (Zhao et al., 2021).

Given the rise in downcycling plastics for use in construction,
the goal of the present review was to document use of plastic waste in
construction and determine what is known and to evaluate the
hypothesized effects—including economic, environmental, health,
performance, and social impacts. Our specific objectives are to 1)
identify the frequency of plastic waste used in construction reported
in the literature, including the source material (i.e., product and
polymer types) and end application (i.e., types of building materials

and infrastructure), 2) evaluate what is known about the effects, 3)
identify whether the practice is portrayed as a net positive or
negative, and 4) recommend areas for future research.

Assessing the full impacts of incorporating
plastic waste into construction materials

This mini review focused on studies documenting the
feasibility and impacts of secondary recycling of plastic waste
in construction materials published online from 1992 through
2022. Using ScienceDirect and Google Scholar, our search
included the terms: “plastic waste in construction materials,”
“plastic waste building materials,” and “plastic waste in built
environment.”We included studies presenting original research
published in peer-reviewed journals, government reports, and
academic theses. Primary recycling of plastic waste was not
included.

In total, we reviewed 100 studies (Figure 1). Most of these were
published primarily between 2012 and 2022 (n = 92). Across studies
reviewed, both homogenous and mixed plastic wastes were used in
construction materials, and included:

• acrylonitrile butadiene styrene
• coffee-cup waste
• cross-linked polyethylene
• crumb rubber
• e-waste (mixed and hazardous)
• expanded polystyrene
• high-density polyethylene
• industrial waste (mixed)
• low-density polyethylene
• mixed synthetic textile fibers
• nylon
• personal protective equipment
• polyester
• polyethylene terephthalate (including plastic bottles)
• polypropylene
• polystyrene
• polyvinyl chloride
• polyurethane foam
• urban plastic waste (mixed)

Some of the plastic waste also required chemical additives
for processing. Several studies examined use of more than one
type of plastic waste, and/or assessed the production of more
than one type of construction material. (Supplementary
Datasheet S1)

Sixty-one studies examined plastic composites. Composite
mixtures incorporated plastic waste with:

• banana fiber (n = 1)
• concrete (n = 45)
• gypsum (n = 2)
• particle board (n = 1)
• rubber (n = 1)
• sand or clay bricks (n = 9)
• wood (n = 4)
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Other studies examined incorporation of plastic waste into:

• acoustic and thermal insulation (n = 1)
• adhesives (n = 1)
• plastic lumber (n = 4)
• rammed earth (n = 1)
• roads (n = 34)
• reinforcement and stabilizers (n = 3)
• synthetic turf (n = 8)

Of the 100 studies, incorporation of plastic waste into
construction materials was portrayed as a net positive (64%); net
neutral (26%); or net negative (10%) sentiment, determined by each
study’s final recommendations on researched materials. Primary
benefits and risks spanned economic, environmental, human health,
performance, and social impacts. Few studies addressed aesthetic
impacts. Some applications of plastic waste in construction materials
are in early test phases and less feasible to produce at scale, such as
producing wood adhesives by chemically recycling polyurethane
foams (Beran et al., 2021), so less was known about their impacts.

Several of the studies used LCAs (Muralikrishna and Manickam,
2017) to evaluate use of plastic waste in constructionmaterials. LCAs are
designed to capture economic, environmental, health, social, and other

important factors. However, we note LCAs of emerging technologies are
challenging to compare due to a lack of existing data, which can present
uncertainty (Thonemann et al., 2020). Furthermore, LCAs can lack
quality data and employ unclear boundary choices that may exclude a
complete assessment of key parts of the full plastic life cycle (Miller,
2022). An important factor missing from the literature is the impact on
human health, which is adversely affected by contact with plastic waste,
and intersects all pillars of a triple bottom line approach to sustainability
(Omer and Noguchi, 2020).

Figure 1 illustrates a summary of studies evaluating plastic waste in
constructionmaterials. Here, we outline where studies have evaluated or
discussed the economic, environmental, health, performance, and social
implications of these practices, and whether those impacts were
described as costs or benefits for each material category.

Economic effects

The economic cost of utilizing plastic waste as a secondary or
primary component in construction materials appears competitive
compared to traditional construction materials. However, indirect
costs may be underrepresented in these studies. Research on other
waste materials, such as fly ash waste, which has been used in some

FIGURE 1
Summary of studies evaluating plastic waste in construction materials. Applications and assessed impacts (economic, environmental, health,
performance, and social) were summed across a total of 100 articles from the literature, with some articles assessing multiple construction materials.
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construction materials since the 1970s, indicates costs increase when
wastes are transported to processing sites (Sandanayake et al., 2020).
In a few cases, elevated production costs resulted in an economic
downside, particularly when additional processing or complex
technologies were used. Further, economic benefits were
dependent on numerous factors, including: cost-effectiveness of
collecting, sorting, and preparing plastic wastes for downcycling;
costs of producing the materials; establishment of markets for these
materials; and construction, maintenance, operation, and end-of-life
costs (Alqahtani et al., 2021). Many of the costs unaccounted for in
plastic production (Tejaswini et al., 2022) are addressed in this mini
review.

While studies emphasized the longevity of plastics, they lacked
discussions of the fate of plastic-laced construction materials at their
end of life. It is unclear whether downcycled materials can themselves
be effectively reused. For example, a majority of road pavement is
recycled in situ and can be recycled multiple times (Turk et al., 2016),
but cannot be recycled indefinitely. Construction and demolition
waste accounts for an estimated 30 percent of all wastes generated
globally. Ultimately, materials will be incinerated or sent to landfills at
the end of their useful lives. Moving the construction sector toward
circularity in the future involves deconstructing and evaluating the
quality of different materials, handling hazardous waste, developing
advanced processing for recovery, as well as incentivizing material
recovery and reuse (Purchase et al., 2022).

Environmental effects

Most studies highlighting environmental benefits focused on
diversion of discarded plastic waste from landfills and the
environment. However, studies frequently overlooked production
of microplastics and nanoplastics, a key effect of processing and
using plastic waste (Hartmann et al., 2019; Rahman et al., 2022).
Shredding or pelletizing homogenized or mixed plastic wastes for
incorporation into asphalts, composites, lumbers, and synthetic
turfs generates microplastics and nanoplastics. These particles,
along with chemical additives and sorbed contaminants (e.g.,
heavy metals and legacy POPs), travel widely through ecological
compartments—including but not limited to the air (Amato-
Lourenço et al., 2020), the ocean (Eriksen et al., 2023), and soils
(Cramer et al., 2022)—and into living bodies including humans
(Amobonye et al., 2021). An identified environmental risk is the
need to incorporate additive chemicals and/or new materials to
plastic waste to maintain structural and performance integrity,
which diminishes a material’s circularity and safety (Parece et al.,
2022).

The reviewed literature was most critical of the environmental
impacts of synthetic turfs, which are typically composed of many
layers of plastics including micro-sized crumb rubber from synthetic
automobile tires. Crumb rubber particles and their leachates are
easily transported from the material into surrounding environments
where they threaten ecosystem and human health (Armada et al.,
2022; Murphy and Warner, 2022). These and other plastics are
known to contain a wide range of toxic additives that contribute to
environmental and human health burdens, exacerbating barriers to
their safe recycling and reprocessing in a circular economy (Wagner
et al., 2020).

Health effects

Studies occasionally cited benefits to people via employment
(e.g., informal waste sorting, recycling, production of construction
materials) in the Global South (Estil, 2019; Kumi-Larbi, Jr. et al.,
2022). However, no studies identified potential health costs of
plastics, microplastics, or chemical exposures in this informal
sector. Research documents serious health hazards linked to work
in informal waste picking (Alfers, 2022; Zolnikov et al., 2021),
especially in poor communities of color who work unprotected
and lack access to reliable healthcare (Morais, 2022).

While the full human health impacts of microplastics and
associated chemicals are still emerging, microplastics damage
human cells in vitro (Danopolous et al., 2022) and cause serious
illness in wildlife, such as seabirds (Charlton-Howard et al., 2023).
Presence of plastic particles have been reported in blood (Leslie et al.,
2022), breastmilk (Ragusa et al., 2022), feces (Zhang et al., 2021),
human lungs (Jenner et al., 2022), placenta (Ragusa et al., 2021),
testes and semen (Zhao et al., 2023), and venous tissue (Rotchell
et al., 2023). Although all people living in a built environment made
from plastic waste are at risk of absorbing, ingesting, and inhaling
hazardous plastic particles and chemicals (Domenech and Marcos,
2021), those involved in producing construction materials from
plastic fragments and items may be at an even greater risk through
occupational exposure (Murashov et al., 2021).

Beyond the particles themselves, plastics are associated with over
10,000 chemical substances, very few of which have undergone
rigorous toxicity testing and assessment (Wiesinger et al., 2021).
Synthetic turf fields and plastic-asphalt roads offgas hazardous
chemicals (including hydrogen chloride) known to originate from
plastics, especially under hot climatic conditions or during melting
in production (Pavilonis et al., 2013; Sabradra, 2017). The human
health impacts of chemical offgassing from plastics is largely
unknown.

Performance effects

Performance benefits varied across construction materials. For
structural materials, including composites and bricks, performance
benefits include: cohesive strength, compressibility, flexural
strength, seismic performance, shear strength, and thermal
insulation. For roadways, performance benefits include ability to
withstand cracking, rutting, and other effects of weathering; perform
well on fatigue tests; and show limited stiffness with high tensile
strength. Across the studies, synthetic turf had the fewest
performance benefits, and was limited to providing additional
cushioning for athletes who use fields for sport (Pavilonis et al.,
2013). Some of the applications of plastic waste in construction
materials are still in early development, such as with producing
wood adhesives by chemically recycling polyurethane foams (Beran
et al., 2021), so their performance is not yet well understood.

Further, in some construction materials, while the addition of
plastic waste may show no risks to performance or may even slightly
enhance performance (e.g., Rahman et al., 2022), several studies
showed clear performance risks across various uses of plastic waste
in construction materials, particularly when increased amounts of
plastics were used. For example, when producing asphalt from
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plastic waste, the smallest quantities of plastics incorporated (e.g.,
less than 5% of total asphalt mixture) were most beneficial to
performance (Santos et al., 2021). The quantity of plastic waste
that can potentially be sequestered in construction materials is
inherently limited and should not be oversold.

Social effects

We found construction materials made from plastic waste were
often recommended for application in the Global South. Across
studies, these materials were generally not recommended for large or
multi-story structures due to strength- and/or integrity-related
performance risks. Flammability was identified as a major
concern (Gulhane and Gulhane, 2017). Research shows
constructions made of synthetic materials, chiefly plastics, burn
more intensely and quickly than constructions made of natural
materials like wood (Kerber, 2012).

A net positive asset of plastic waste was its flexibility and heat-
insulating characteristics when incorporated into construction
materials, potentially making it well suited for temporary housing
applications in refugee camps and slums (Estil, 2019; Haque and
Islam, 2021; Zuraida et al., 2023). However, the propensity for heavy
rains and natural disasters in the Global South can threaten
infrastructure, and infrastructure made from plastic waste,
including roadways, may be more vulnerable (Sabrada, 2017).

Incorporation of plastic waste into construction materials is still
in its infancy and its focus has centered on the potential
environmental and social benefits (e.g., cleanup and housing).
The exposure and subsequent harm these practices may cause to
humans however remains unquantified. Specific research gaps
include investigations into potentially hazardous employment
(e.g., from creating plastic bricks) and unsafe housing/
infrastructure, as well as the short- and long-term health
consequences.

Discussion

Before broad recommendations to incorporate plastic waste into
construction materials are made, we urge researchers to further
investigate human health and social consequences to avoid
exacerbating injustices to communities in which the most
vulnerable people are exposed to more environmental hazards
and potential long-term health implications.

Our mini review documents varied benefits and costs (Figure 1)
to downcycling homogenous and mixed plastic wastes in
construction materials across categories such as economic,
environmental, health, performance, and social impacts.

A key finding was that while this may extend the useful life of
plastics that would otherwise be discarded as waste, such
applications rely on continued generation of plastic waste.
Adding plastic waste to construction materials ultimately does
not address the core cause of continued plastic pollution, which is
the still rapidly escalating increase in global plastic production.
Current patterns of plastic production, use, and disposal have
been identified as unsustainable and responsible for significantly
harming human health and driving serious societal injustices
(Landrigan et al., 2023). To prevent the worst-case scenario of
future plastic pollution, many have called for capping plastic
production and ceasing new (virgin) plastic production. With a
Global Plastics Treaty currently being negotiated, such
possibilities now exist via legally binding policy (Bergmann
et al., 2022).

Upstream approaches to addressing plastic pollution (e.g.,
prevention through regulation curbing plastics production) are
clearly favorable to midstream and downstream approaches like
downcycling plastic waste into construction materials. Upstream
approaches involve eliminating wastefulness wherever possible
by tapping into strategies of refill and reuse (Moss et al., 2022),
repair (Tellier, 2022), and share (Wieser, 2019), along with
reducing reliance on single-use items that require recycling or

FIGURE 2
Material flow chart from initial feedstocks to end-of-life strategies.

Frontiers in Built Environment frontiersin.org05

Cirino et al. 10.3389/fbuil.2023.1206474

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1206474


composting. Eliminating single-use plastic items avoids
landfilling, incineration, pollution, and continued resource
use/waste creation. These systems that enable refill, reuse,
repair, and sharing already exist and were more prevalent
before mass production of plastics (Lucas, 2002).

Various iterations of a waste hierarchy have been proposed by
scientists and policy makers—particularly those in the European
Union—to facilitate reduction or cessation of new plastics
production. This hierarchy prioritizes prevention of material
pollution, including plastics. (Figure 2). These measures
emphasize products designed for perpetual use and avoidance
of using wasteful throwaway materials before taking the
following actions (Egüez, 2021; European Union, 2022; Zhang
et al., 2022):

• preparing used products for reuse
• recycling of products that cannot be reused
• downcycling of products that cannot be reused, or recovery
(such as waste-to-energy incineration or chemical/“advanced”
recycling) of products that cannot be reused or recycled

• disposal (landfilling or incineration without energy capture) of
products that cannot be reused, recycled, downcycled, or
recovered

Ultimately downcycling plastic waste into construction
materials is not circular and does not address the core problem
of plastic pollution. While LCAs may deem this to be a next-best
approach to addressing plastic waste, current research does not
fully assess and weigh potential consequences. To reduce risks
and enhance benefits of downcycled materials in the immediate
term, we recommend that safeguards are implemented to
promote better health and labor conditions for people working
in the informal waste sector, mandatory material end-of-life
plans, and standardized material toxicity tests (preferably
audited by a third party). However, without also prioritizing
measures to curb wasteful plastics production, downcycling
effectively greenlights continued manufacturing of plastic
material items (Borrelle et al., 2020; Lau et al., 2020). This
perpetuates the cycle of increased pollution and injustice.

To reduce the generation of plastic waste, we recommend future
research on proposed solutions such as expanded reuse models, new
business models to promote reuse, nontoxic material and green
chemical development, increased precision of green building
standards, and new product development and design to eliminate
single-use plastics and toxic chemicals. Education and the creation

of models for the purchase of affordable, safe alternatives are critical.
Government incentives such as tax breaks, subsidies, and grants can
help shift business practices (Zhao et al., 2021). But even if we are to
succeed at stopping plastic pollution upstream, the urgent question
remains of what to do with the plastics and toxic additives produced
to date. If LCAs are used to justify use of plastic waste as a resource,
they must take into account the full cost of toxic impacts from plastic
wastes’ effects on the environment, to social injustices, and harmful
effects on human health—including the little-known effects of
chemical offgassing of plastics. Along with implementing
upstream approaches to curb the growth of plastic pollution, we
recommend urgent research on remediation of landfills, the
environment, and communities impacted by plastics and their
numerous forms of toxic pollution.
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