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The application of artificial neural network approaches has been successful in
solving complex civil engineering problems, such as damage detection and
structural member capacity prediction. Within the context of the present study,
corrosion has become the main factor limiting the safety and load-carrying
capacity of aging steel bridge girders. Corrosion damage is often most severe
near girder ends in simple-span bridges due to deck joint leakage and the pooling
of water and de-icing salts. In addition to empirical methods, Finite Element (FE)
analysis is typically used to evaluate the residual bearing capacity of corroded steel
girders. However, it is prohibitively challenging and time-consuming to create an
accurate FE model of a corroded girder due to the irregular nature of corrosion
damage. Resultantly, corrosion damage is often reduced to uniform section loss,
which leads to unreliable estimates of a girder’s residual bearing capacity.
Researchers have proposed methodologies for modeling irregular corrosion
damage, but these approaches require a high level of expertise. A
comprehensive method is therefore required to efficiently estimate the residual
bearing capacity of a corroded steel girder. This paper proposes the use of neural
networks to predict the residual bearing capacity of corroded steel platemodels as
a first step in estimating the residual bearing capacity of an in-service girder.
Neural networks are constructed and trained on a database built from FE analysis
performed on steel plate models with realistic representations of corrosion
damage. This study assesses the ability of neural networks to estimate the
compressive capacity of corroded steel plates since plate girders are one of
the most prevalent girder forms in steel bridges. Three types of neural networks
are trained to predict the compressive capacity of corroded plate models,
including a multilayer perceptron (MLP), a convolutional neural network (CNN),
and a hybrid MLP-CNN model. The average mean absolute percentage errors
(MAPE) for the three models are 20.65%, 11.46%, and 9.64%, respectively. The
results of this study demonstrate the potential of using neural networks to predict
the compressive capacity of corroded plates efficiently and accurately, which
could facilitate proactive maintenance decision-making for aging bridges.
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1 Introduction

Per the 2021 ASCE Infrastructure Report Card, 42% of all
bridges in the United States are over 50 years old; of which,
many have been rated “structurally deficient” (ASCE, 2021).
Corrosion is a leading cause of deterioration for aging steel
girder bridges, and girder ends are particularly susceptible to
corrosion damage due to leakage from damaged construction
joints. The resulting corrosion damage drastically reduces the
bearing capacity of steel girders and poses a risk to the overall
safety of a steel girder bridge (Kayser and Nowak, 1989). Despite
investments in bridge repairs at all levels of government, repair
projects remain woefully underfunded (ASCE, 2021). Thus, it is
critical to develop accurate and efficient methods for assessing the
residual bearing capacity of corroded bridge girders to ensure a
rational allocation of funds for future bridge restoration projects.

The methods for assessing the residual bearing capacity of
corroded bridge girders can be divided into two categories. First,
researchers have proposed formulas to estimate the residual bearing
capacity of corroded bridge girders. For example, Khurram et al.
(2014a) developed empirical relationships to calculate the bearing
capacity of a steel girder with corrosion damage on the stiffener and
web plates. Researchers proposed a formula to calculate the ultimate
bearing capacity based on a residual thickness ratio and a damage
height percentage parameter. Tzortzinis et al. (2021b) proposed
modification to existing equations for assessing the bearing strength
of rolled girders with corroded webs focusing on three aspects: the
initial imperfection amplitude, the average web thickness, and the
ratio of bearing length over section depth.

Finite Element (FE) analysis is another method with the ability
to evaluate the bearing capacity of bridge girders that has been
implemented by several researchers to date. However, due to the
complexity involved with accurately incorporating irregular
corrosion damage in FE models, most proposed methods
simplify the corrosion damage when evaluating the capacity of
corroded girders. For example, when studying the effect of local
corrosion on steel plate girder ends, Khurram et al. (2014b)
proposed a reduced thickness ratio, defined as the ratio of the
residual thickness of the bearing stiffener in the damage zone to
the original thickness of the stiffener. A group of uniformly corroded
girders with different reduced thickness ratios and different damage
heights were numerically modeled and analyzed. The ultimate
capacity and failure modes of the girder models were compared.
In order to replicate the thickness reduction distribution, Tzortzinis
et al. (2021b) divided the corroded region into multiple areas. The
thickness was considered uniform in each area. This method is more
accurate than considering the entire corrosion damage as uniform
section loss. However, it still simplified the corrosion damage and
introduced errors to the analysis results. To accurately capture the
geometry of corrosion damage, researchers proposed the use of 3D
point cloud data to generate FE models that accurately represent the
complex geometry of corroded surfaces (Tzortzinis et al., 2022;
Zhang and Zaghi, 2023). Once developed, the FE models can be used
to get an accurate estimate of the bearing capacity of corroded plate
girders. The accuracy of the constructed FE models was
experimentally validated.

Despite research completed to date, formulaic and FE-based
approaches still have several limitations. First, the methods of using

formulas and using FE analysis with simplified corrosion damage for
predicting residual bearing capacity are not accurate (Tzortzinis
et al., 2021a; Hain et al., 2021). Representing complex and irregular
corrosion damage with a couple of parameters or with a uniform
section loss neglects the fluctuation in corroded regions, which
introduces significant errors, sometimes up to 100%, to the
results. Second, constructing a FE model with accurate corrosion
damage representation is a complex process and requires a high level
of expertise. While a systematic procedure for constructing an
accurate FE model of a corroded steel girder based on point
cloud data was proposed (Zhang and Zaghi, 2023), a series of
parameters need to be determined by users based on the
condition of the corroded girders, such as the girder dimensions
and corrosion intensity, and the resolution of the scan data. Third,
analyzing a FE model with accurate corrosion damage
representation can be time-consuming. Many elements are
required to accurately capture minute details in corroded regions,
which leads to a significant analysis time. These limitations may
hinder the practical use of these approaches in engineering.

To address these limitations, this study first proposed the use of
regression analysis to predict the bearing capacity of a corroded
bridge girder. Regression analysis is a common statistical method
used to estimate the relationship between variables based on sample
data. In the context of this study, regression analysis and existing
validated data could be used to estimate the relationship between the
bearing capacity of corroded girder ends and relevant parameters
such as material properties, section dimensions, corrosion
intensities, and boundary conditions. The relationship could then
be used to predict the unknown bearing capacity of corroded bridge
girder ends. Regression analysis could address the limitations of
previous studies in the following ways. First, conducting the
regression analysis on both experimentally validated data and
accurate corrosion damage modeling would ensure a regression
model with high accuracy. Second, because regression analysis does
not require the creation of complex FE models, it does not require a
high level of expertise and would significantly reduce the time
required to estimate the residual bearing capacity of a corroded
girder. However, traditional regression analysis has several
drawbacks which limit the method’s applicability to predicting
the bearing capacity of corroded bridge girders. First, regression
analysis requires that the relationship between independent and
dependent variables be predefined. It is difficult to define this
relationship for corroded girder ends due to the variability in the
failure mode with varying section dimensions, boundary conditions,
and corrosion intensities. Second, it is challenging to account for
corrosion damage in traditional regression models. The corrosion
damage in steel girders is best represented as an image, which
includes a large amount of data. It is difficult to involve such a
large amount of data in a traditional regression model. Third,
solving such a large and highly nonlinear regression problem is
challenging. Traditional regression analysis requires solving the
inverse matrix, which is inefficient or even impossible when the
number of features is large and the relationship is highly nonlinear.

With the increase in computing power in the past decade,
machine learning has become and has been proven to be a
powerful tool that can perform large nonlinear regression
analyses. Recently, machine learning has been applied in various
fields (Sarker, 2021), such as medicine (Daniel et al., 2023), physical
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sciences (Carleo et al., 2019), and agriculture (Liakos et al., 2018). In
civil engineering, Xu et al. (2021) applied seven classical machine
learning algorithms, such as XGBoost, support vector regression,
and MLP, to predict the capacity of cold-formed stainless steel
tubular columns and compared their performance to current
Eurocode design methods. Graciano et al. (2021) developed a
symbolic regression model to predict the patch load resistance of
slender austenitic stainless-steel girders. Specifically, machine
learning has also been used in the field of bridge engineering.
Mangalathu et al. (2019) proposed the use of machine learning
techniques to rapidly assess the post-earthquake state of bridges. The
performances of different machine learning algorithms, such as
k-nearest neighbors, naïve Bayes, and random forest, were
compared. Wakjira et al. (2022) investigated the performance of
machine learning techniques in predicting the lateral cyclic response
of post-tensioned base rocking steel bridge piers and proposed an
explainable machine learning based predictive model. Malekjafarian
et al. (2019) proposed a two-stage machine learning approach to
detect damage in bridges using the responses obtained from a
passing vehicle. The approach includes an artificial neural
network in the first stage to predict vehicle responses and a
Gaussian process in the second stage to identify damage in the
bridge. The success of these studies demonstrated the applicability of
machine learning methods to civil engineering and validated their
feasibility for predicting the capacities of structural members. Neural
networks, a powerful class of machine learning techniques, come in
many forms and can be used to solve complex regression problems.

Neural networks offer several advantages over traditional
regression models. First, there is no need to predefine the form
of the relationship between independent and dependent variables
since neural networks can automatically learn the nonlinear
relationships from the training data due to their multilayer
architecture and nonlinear activation functions. Second, neural
networks can accept image data as input data. Through
convolution operations with kernels, CNNs focus on the
relationships between adjacent pixels and extract essential
features from the image data for prediction (Albawi et al., 2018).
Third, neural networks are efficient for solving large and complex
regression problems. By using the gradient descent method, neural
networks do not need to solve the matrix inverse and are therefore
much more efficient than traditional regression methods, especially
for problems with a large amount of input data and a high degree of
nonlinearity (Ruder, 2016). Thus, it is crucial to investigate the
feasibility of using neural networks to predict the bearing capacity of
corroded steel bridge girder ends. This study focuses on failures of
the web and stiffener plates under compression, which is the main
reason for the failure of corroded steel girder ends. Specifically, this
study will develop a framework for analyzing the compressive
capacity of corroded steel plate FE models with neural networks
that may be validated with experimental data and expanded to in-
service steel bridge girders through future research. Three neural
network architectures will be evaluated on their ability to predict the
compressive capacity of corroded steel plate FE models.

The dataset used to train the neural network models will be
generated from the results of FE analyses in Section 2. In Section 3,
three different neural networks (MLP, CNN, and hybrid MLP-
CNN) will be trained on the same dataset to predict the
compressive capacities of the artificial corroded plate models. The

results of the neural networks will be compared and discussed in
Section 4, and the conclusions and future applications of this
research will be presented in Section 5.

2 Generation of a representative
training dataset

Training a neural network requires a large amount of data. As
the aim of this study is to assess the applicability of various neural
network algorithms to the determination of plate bearing
capacity, plate FE models are generated to construct the large
dataset required to train the neural networks. The plate models
used in this research are isolated to rectangular portions of the
bottom of a web or stiffener plate, which is where most of the
corrosion damage occurs. Figure 1 depicts a typical corroded
plate model used to build the training dataset for this research in
which several parameters are defined. First, the parameters
required to construct a realistic corroded plate model are
identified, including plate width, height, and corroded
thickness. Note that the thickness of the plate model varies
across the surface, which is a common result of corrosion. In
addition, the boundary conditions of the four plate edges shown
in Figure 1 must be defined. Apart from the bottom edge, the
boundary conditions of the top (BC_top), left (BC_left), and right
(BC_right) edges can be selected as clamped, pinned,
symmetrical, or free, as described in Table 1. Because the
bottom of the web or stiffener plates is assumed to be
restrained by the bottom flange, the bottom boundary

FIGURE 1
A typical corroded plate FEmodel of the bottom portion of a web
or stiffener plate for a corroded steel girder.

TABLE 1 Constrained degrees of freedom for the potential boundary
conditions of the plate edges.

Boundary Condition Lateral Deformation Rotation

Clamped Constrained Constrained

Pinned Constrained Non-constrained

Symmetrical Non-constrained Constrained

Free Non-constrained Non-constrained
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condition is always fixed. The FE models of the corroded plates
are then built from these parameters and analysis is run to
determine the compressive capacity of the corroded plate
model. A downward displacement is applied at the top edge of
the plate, and the model is analyzed under displacement control
to capture the load-displacement relationship during the loading
process. All steel plate models have a Young’s modulus of
29,000 ksi and a yield strength of 50 ksi. The stress-strain
relationship after yielding was found based on the tensile tests
conducted on coupon samples according to ASTM A370
(McMullen and Zaghi, 2020; ASTM, 2021). A total of
30,000 corroded plate models are created and analyzed to
build the training dataset.

2.1 Generating the required parameters for
the corroded plate models

Each corroded plate model is defined by a series of parameters.
These parameters include a set of dimensions, parameters to define
the four high-frequency components and one low-frequency
component that make up the corroded surface, displacement
parameters for the FE analysis, and boundary conditions for the
plate edges. For each of these parameters, the distribution type and
ranges are determined first. Once identified, 30,000 sets of
parameters are randomly generated within the defined ranges
and are used to generate the plate models.

2.1.1 Plate model dimensions
Each of the rectangular plate models is defined by a height (H),

width (W), and intact thickness (t). The authors collected geometric
data of corrosion damage from in-service steel bridge girders using
3D scanning (Hain et al., 2019), of which select results are shown in
Figure 2. These field studies concluded that the width of the
corroded region typically ranges from 4 to 10 inches, that the

H:W ratio typically ranges from 1:2 to 2:1, and that the intact
plate thickness, t, is typically between 1/16th and 1/8th of the plate
width, W. To ensure that the training database for the neural
networks is representative of known corrosion patterns, the plate
width (W) for each model generated in this study is randomly
selected from a uniform distribution spanning the range of
4–10 inches. The remaining height and intact thickness
parameters can be determined from ln (H/W) and t/W,
respectively, where ln (H/W) is the natural logarithm of H over W.

The H:W aspect ratio for common corrosion patterns ranges
from 1:2 to 2:1. In lieu of more detailed data, it is assumed that a
corroded region is equally likely to have a width greater than and less
than the corrosion height. Therefore, the height parameter for each
of the plate models, H, is calculated from the natural logarithm of H
over W (ln (H/W)). The value of the natural logarithm is selected
from a uniform distribution in the range of ln (1/2) to ln (2),
i.e., −0.6931–0.6931, from which H can be determined. A uniform
distribution is critical to ensure that the ratio ofH:W is equally likely
in the ranges of 1:2~1:1 and 1:1~2:1. The second parameter, t/W, is
the ratio of intact plate thickness to plate width. Intact plate
thickness is typically between 1/16th and 1/8th of the corroded
plate width, W. For each of the plate models, the ratio t/W is
randomly selected from a uniform distribution between 1/16 and 1/
8 such that potential intact plate thickness values, t, are expected to
span uniformly from W/16 to W/8. For example, for the minimum
value ofW, 4 inches, the range of H is 2–8 inches, and the range of t
is 0.25–0.5 inches. For the maximum value of W, 10 inches, the
range of H is 5–20 inches, and the range of t is 0.625–1.25 inches.

2.1.2 Corroded surface parameters
The irregularities of corrosion damage are included in each of

the plate models used to build the training dataset by generating
surfaces with intricate, irregular geometries. According to Zhang
et al. (2023), the geometry of the corroded surface of a steel girder
can be decomposed into four high-frequency components and one

FIGURE 2
Four representative examples of corroded surface geometries from in-service steel bridge girders obtained from 3D scanning. (A–D) show the
surface geometry of a corroded surface where the H:W ratio is approximately: (A) 1:2, (B) 1:1, (C) 1:1.75, (D) 1:1.5.
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low-frequency component using Lanczos filters. Figure 3
demonstrates this process, where the original corroded surface
along with the five frequency components are shown. The four
high-frequency components represent the textures of different scales
on the corroded surface, while the low-frequency component is
representative of the overall shape of the corroded surface.

Each of the high-frequency components is represented as a
random field and is statistically characterized by its autocorrelation
function, defined below in Eq. 1.

Ryy d( ) � E Y x1( ) − μy( ) Y x2( ) − μy( )[ ] for x1 − x2‖ ‖ � d (1)

Here, x1 and x2 are any two points in the random field a distance
d apart, Y (x1) and Y (x2) are the height values at points x1 and x2,
and μy is the mean of the height values in the random field. Zhang
et al. (2023) investigated the corrosion damage from in-service steel
bridge girders and concluded that the autocorrelation function of

the high-frequency component could be fit using the Hole-Gaussian
function, shown below in Eq. 2.

HG d( ) � σh
2 1 − d

lc
( )2( )e−1

2
d
lc
( )2

(2)

Here, σh is the standard deviation of the height values of the
high-frequency component, and lc is the correlation length of the
high-frequency component. When d is equal to 0, the Hole-
Gaussian function takes its largest value, σh

2, and is equal to the
variance of the random field. This is consistent with Eq. 1, in which
the calculated autocorrelation will be equal to the variance of the
random field when x1 and x2 are the same point. When the value of d
ranges from approximately lc to 3lc, the value of the Hole-Gaussian
function is negative, forming peaks and valleys in the random field.
The value of the Hole-Gaussian function is close to 0 for values of d
beyond 3lc since points in a random surface a large distance apart are

FIGURE 3
Decomposition of a corroded surface into four high-frequency components and one low-frequency component using Lanczos filters. The
dimension of corroded depth is exaggerated in this figure for visualization purposes only.
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independent of one another. The relationships between the two
parameters, σh and lc, and the cutoff frequency, f, of the Lanczos filter
for the decomposition of a corroded surface are expressed in Eqs 3, 4.

σh � 1 + v( ) × 6.297
f

× 10−3 (3)

lc � 0.283
f

(4)

The cutoff frequencies corresponding to the four high-frequency
components used to generate the surface textures of the corroded
plate models are 1.563 in−1, 0.781 in−1, 0.391 in−1, and 0.195 in−1,
respectively. The variation parameter v in Eq. 3 follows a normal
distribution with a mean of 0 and a standard deviation of 0.264 and
reflects the varied magnitude of surface textures due to varying
corrosion intensities.

The low-frequency component of a corroded surface was
characterized and represented using a bivariate Lagrange
polynomial surface constructed from a 4 × 4 two-dimensional
Gauss point sample set from the low-frequency component. First,
the low-frequency component was mapped to a square region with
the range of −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Second, the 4 × 4 Gauss point
sample set is constructed based on the points where
x = ±0.34 and ±0.86, and y = ±0.34 and ±0.86. The coordinates
with the corroded depths of the 16 sample points can be represented
as (xi, yj, zij), with i = 0, 1, 2, 3 and j = 0, 1, 2, 3. Finally, the low-
frequency component is constructed from the Lagrange polynomial
shown in Eq. 5. The Lagrange polynomial is the sum of a series of
Lagrange bases, li,j (x, y), calculated from the set of 16 sample points.
The Lagrange bases are determined from Eq. 6. It was verified that
the constructed surface is close to the low-frequency component,
with an average normalized root mean square error of less than 5%
(Zhang et al., 2023).

f x, y( ) � ∑
0≤ i≤ 3,0≤ j≤ 3

zi,jli,j x, y( ) (5)

li,j x, y( ) � ∏ 0≤p≤ 3
p≠i

x − xp

xi − xp
∏ 0≤ q≤ 3

q≠j

y − yq

yj − yq

0≤ i≤ 3, 0≤ j≤ 3( ) (6)

In this research, artificial corroded surfaces for the plate models
were generated based on the characterization method outlined
above, with two corroded surfaces (one for each side) generated
for each plate model. Each corroded surface is the summation of
four high-frequency components and one low-frequency
component. Each of the high-frequency components is generated
as a random field using the Karhunen-Loeve (K-L) expansion
method (Eq. 7) (Wang, 2008; Htun et al., 2013) and is based on
the autocorrelation function from Eq. 1. To generate the corroded
surfaces, σh and lc must first be calculated according to Eqs 3, 4,
respectively. The four cutoff frequencies, f, given above (1.563 in−1,
0.781 in−1, 0.391 in−1, and 0.195 in−1) are used. The variation
parameter, v, shown in Eq. 3 is randomly generated for each
plate model following a normal distribution with a mean of
0 and a standard deviation of 0.264. With σh and lc known for
each plate model, the covariance matrix of each high-frequency
component can be generated. The covariance matrix is an N-by-N
matrix, where N is the number of pixels in the high-frequency
component. The elements in the covariance matrix, cij, are equal to

the value of the autocorrelation function between points i and j and
are calculated using the Hole-Gaussian function presented in Eq. 2.
Finally, each high-frequency component, s, is generated from Eq. 7,
where ξ is a set of uncorrelated random variables with zeromean and
unit variance, and λ and φ are the eigenvalues and eigenvectors of
the covariance matrix.

s � ∑N

i�1ξi
��
λi

√
φi (7)

The low-frequency component for each of the corroded surfaces
is generated as a bivariate Lagrange polynomial based on a 4 × 4 two-
dimensional Gauss point sample set. Based on corrosion damage
data collected by Hain et al., 2019, the corroded depth is defined in
the range between 0 and 0.6 times the intact plate thickness, t. This
range of allowable values for corroded depth is used to ensure that
the generated FE models will account for varying corrosion
intensities. Because the FE models will be used to train the
neural networks, these machine learning models will have the
ability to handle a wide range of corrosion intensities. To
generate the low-frequency component, the corroded depth
values at the 16 sample points are first randomly selected based
on a uniform distribution in the range between 0 and 0.6t to consider
a range of possible corrosion intensities. The low-frequency
component is then constructed using Eqs 5, 6. Based on this
definition, the low-frequency component will vary across the
surface to produce a surface with variable corrosion damage.

After generating the high-frequency and low-frequency
components, the corroded surface is calculated as the sum of all
five components, which have the same dimensions as the plate. In
summary, the parameters for generating a corroded surface consist
of a single variation parameter v for the high-frequency components
and 16 corroded depth ratios (depth/t) for the low-frequency
component.

2.1.3 Displacement and boundary conditions
The trapezoidal distributed displacement applied to the top of

the plate model, as shown in Figure 1, is characterized by the ratio
between the displacements at the two ends, i.e., by d1/d2, and is
considered constant during loading. Its logarithm form, ln (d1/d2), is
selected from a uniform distribution in the range of ln (1/4) to ln (4),
i.e., −1.3863–1.3863 such that the ratio of d1:d2 is expected to be
equally likely within the ranges from 1:4 to 1:1 and from 1:1 to 4:1.
The boundary conditions for the top (BC_top), left (BC_left), and
right (BC_right) edges will be randomly generated. Since the plate
models constructed can either be a stiffener plate or a web plate, the
top boundary condition may be clamped, pinned, or symmetrical,
and the left and right boundary conditions may be clamped, pinned,
or free, depending on the possible locations of the plates at a girder
end. Each of these options has the same probability (1/3) of being
selected for each plate model. For the purposes of the training
dataset constructed for this study, no restrictions were made on the
combination of boundary conditions. The bottom edge of the plate
models is always fixed due to the stiffness of the bottom flange.

In summary, a total of 41 parameters are required to generate
each corroded plate model. Table 2 summarizes the necessary
parameters, their selection distribution, and the selection range
or options, as applicable. All parameters are considered
independent of each other. A total of 30,000 sets of parameters
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are generated using a quasi-random number generator to ensure
that the generated random samples uniformly cover the defined
space (Kocis and Whiten, 1997; Joe and Kuo, 2003).

2.2 Constructing FE models to calculate the
compressive capacity of the corroded plate
models

A total of 30,000 FE plate models are constructed from the
30,000 sets of quasi-randomly generated parameters created in
Section 2.1; however, due to its irregularity and complexity,
corrosion damage is challenging to incorporate accurately into
FE models. To address this challenge, Zhang and Zaghi (2023)
proposed an automated methodology for predicting the bearing
capacity of corroded bridge girders using shell FE models that
accurately represent the corrosion damage. The approach
involves extracting geometric information from 3D point cloud
data using Alpha shapes (Edelsbrunner et al., 1983) and the
Douglas-Peucker algorithm (Douglas and Peucker, 1973) to
detect and simplify the boundary of each plate, respectively.
Delaunay triangulation (Ruppert, 1995; Shewchuk, 1996) is used
to generate a triangular mesh for each plate member. Each node in
the mesh is assigned unique thickness and eccentricity values, which
are calculated based on the point cloud data, to capture the
intricacies of the corrosion damage that would otherwise be lost
in the model. To ensure the constructed FE model can accurately
capture the corrosion damage while also ensuring an efficient FE
analysis, the approach proposed three criteria to limit the size of
each element in the FE mesh. First, the area (A) of the checked
element should be less than k1 times the cubic of the minimum nodal
thicknesses (tmin) of the element, i.e., A< k1 × tmin

3. This ensures
the element size is small enough in the regions with small remaining
plate thickness. Second, the ratio of the maximum nodal thickness
(tmax) to the minimum nodal thickness (tmin) of the checked element
should be less than k2, i.e.,

tmax
tmin

< k2. This criterion limits the element
size in the regions with dramatic thickness change, where the stress
is usually complex. Third, the relative error of the element thickness
(tele) to the actual thickness (tactual) at the centroid of the checked

element should be less than k3, i.e.,
|tele−tactual |

tactual
< k3. tele is calculated as

the average of the three nodal thicknesses of the element, and tactual is
calculated from the point cloud data. This criterion ensures that the
fluctuations in corroded surfaces are accurately captured in the
mesh. The three parameters k1, k2, and k3 are defined based on the
extent of the corrosion damage and the resolution of the point cloud
data. These three parameters determine the accuracy of the FE
model. The smaller the parameter values, the more accurate the
model, and the more time-consuming the FE analysis. To generate
the mesh of the FE model, a relatively course mesh is generated first
and all the elements are then checked against the three criteria. Any
elements that violate any one of the three criteria are represented
with smaller elements to refine the mesh. The accuracy of the FE
models generated using this approach was validated by experimental
results (Zhang and Zaghi, 2023).

This approach is used to construct the 30,000 FE models
required for this research. Once the models are generated, FE
analysis is used to evaluate the compressive capacity of the
corroded plate models. LS-DYNA is used to analyze the

TABLE 2 Parameters required to generate each artificial corroded plate model.

Category Expression Number of parameters Distribution Range or options

Plate dimensions W 1 Uniform 4~10in

ln (H/W) 1 Uniform ln (1/2)~ln (2)

t/W 1 Uniform 1/16~1/8

High-frequency component parameters v 1 × 2 Normal N (μ = 0, σ = 0.264)

Low-frequency component parameters depth/t 16 × 2 Uniform 0~0.6

Displacement parameter ln (d1/d2) 1 Uniform ln (1/4)~ln (4)

Boundary conditions BC_top 1 Discrete Clamped, Pinned, Symmetrical

BC_left 1 Discrete Clamped, Pinned, Free

BC_right 1 Discrete Clamped, Pinned, Free

Total 41

FIGURE 4
A sample load-displacement curve for a typical plate model.

Frontiers in Built Environment frontiersin.org07

Zhang et al. 10.3389/fbuil.2023.1156760

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1156760


generated FE models, as shown in Figure 1 (LSTC, 2018). The
rotation and translation constraints are applied at the nodes on the
edges based on the corresponding boundary conditions selected
from Table 1. Due to the stiffness of the bottom flange, the bottom
boundary condition of all plate models is fixed. The values of the
parameters k1, k2, and k3 are 50 in

−1, 1.5, and 5%, respectively, which
are determined based on convergence analysis. The FE analysis
results do not change obviously when the parameter values are
further reduced.

Figure 4 shows a sample load-displacement curve resulting from
a FE analysis for a typical plate model where the load is equal to the
reaction force at the bottom (fixed) edge of the plate, and the
displacement is measured at the middle of the top edge of the
plate. The load-displacement curve is used to assess the compressive
capacity of the corroded plate models; for example, the plate model
used to generate the plot shown in Figure 4 has a compressive
capacity of approximately 62 kips. The load-displacement curve
captures the entire loading process of the plate model and reflects its
mechanical characteristics, such as initial stiffness, failure capacity,
and post-failure behavior. These characteristics are important for
evaluating the strength of corroded plates; therefore, the load-
displacement curve will be predicted using neural networks and
will be compared to those generated by a FE analysis. As the purpose
of this study is to evaluate the ability of neural networks to accurately
predict the results of a rigorous FE analysis, the FE analysis was not
calibrated against experimental data on the compressive capacity of
corroded steel plates.

2.3 Constructing the training data for neural
network applications

The training data for the neural networks requires both an input
and a corresponding output. The input data to the neural networks
consists of the plate dimensions, remaining plate thickness,
boundary conditions, and the displacement parameter, while the
output data consists of the load-displacement curves obtained from
the FE analysis. It is important to note that the input training data is
of two data types: tabular and image. The tabular input data consists
of two plate dimensions (H andW), three boundary conditions, and
one displacement parameter (ln (d1/d2)). For the model training, the
three boundary conditions are expanded into six constraints on edge
degrees of freedom. On each edge, one boundary condition defines
two constraints–one for lateral deformation and another for
rotation, as shown in Table 1. The image data includes the
thickness map and eccentricity map, which represent the
remaining thickness and the eccentricity across the plate caused
by asymmetric corrosion damage. Because the dimensions of the
plate models fluctuate, the thickness and eccentricity maps vary in
size from one plate model to the next. This is not convenient for
training neural networks. Therefore, the thickness and eccentricity
maps for all plate models are resized to 200 × 200 pixels for
consistency. For example, the largest size of the plate models is
20 × 10 inches (H×W), which will have a remapped size of 10 ×
20 points per inch. The lowest resolution occurs for the largest plate
model and, therefore, the lowest resolution is 10 points per inch; this
resolution is larger than twice the highest frequency of the generated
corroded surfaces (1.563 inch-1). Per the Nyquist theorem, the 200 ×

200 feature map is sufficiently detailed to be able to capture the high-
frequency components of the corroded surfaces (Por et al., 2019).

The output data, which is the data the neural network is trying to
match, consists of the load-displacement curves obtained from the
FE analysis shown in Figure 4. For the FE analysis, a fixed loading
process defined by the acceleration applied at the top of the plate
models is used. The acceleration starts from 0 to reduce the dynamic
effect of the loading rate on the plate and to measure a reliable static
load-displacement curve. To ensure that all the plates fail, the final
displacement is set proportional to the plate height, and the analysis
time is calculated based on the acceleration curve and the final
displacement. Not only do the load-displacement curves obtained
from FE analysis consist of many points, but the number of points
varies for different plate models since the number of analysis steps is
related to the plate size. Because neural networks require that the
output be consistent, a load-displacement vector (sfailure, ffailure, f0.2,
f0.4, f0.6, f0.8, f1.2, f1.5, f2, f3, f5) is constructed to represent the load-
displacement curve. In the vector, sfailure and ffailure are the
displacement and load at the failure point, respectively. The
failure point is defined as the point where the plate’s stiffness is
equal to 1/10 of the initial stiffness, as shown by the red point in
Figure 4. The variables f0.2 to f5 (fx) are set equal to the load values
corresponding to the displacements at x × sfailure and are shown by
the nine green points in Figure 4. In this way, each vector
representing the load-displacement curves has eleven elements,
regardless of the initial number of points on the curve.

3 Preprocessing the training data and
training the neural networks

Three types of neural networks, MLP, CNN, and hybrid MLP-
CNN, are trained and evaluated on their ability to predict the
compressive capacity of corroded steel plate models. Multilayer
perceptron (MLP) and convolutional neural network (CNN) are
two basic architectures of neural networks (O’Shea and Nash, 2015;
Ramchoun et al., 2016). MLP networks require that the input data be
in a tabular form, usually vectors. A MLP is typically constructed by
connecting multiple fully connected layers using activation
functions (Dongare et al., 2012). In theory, a MLP has the
potential to model any nonlinear relationship given a sufficient
number of layers and neurons. A CNN is a regularized version of a
MLP designed specifically for analyzing image data. By replacing
fully connected layers with convolutional layers, a CNN significantly
reduces the number of parameters and is less prone to overfitting
when processing image data. MLP and CNN are typically used to
process monomodal data, such as pure tabular or pure image,
respectively. However, the training data in this research contains
both tabular and image data, which cannot be processed in a MLP or
a CNN directly. Two strategies are used to address this problem. The
first strategy consists of converting the multimodal data into
monomodal data. For the MLP, numerical features such as the
average remaining plate thickness can be manually extracted from
the image data and appended to the tabular data, as will be discussed
in Section 3.1.1. For the CNN, the relationship between the tabular
data (plate dimensions) and the output data (failure load and failure
displacement) can be estimated by simplifying and idealizing the FE
models, as will be discussed in Section 3.1.2. The second strategy
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consists of using a hybrid MLP-CNN machine learning model. A
hybrid MLP-CNN combines a MLP and a CNN where tabular and
image data are fed to the MLP and CNN branches, respectively
(Zhang et al., 2018; Ahsan et al., 2020). The outputs of the two
branches are connected to predict the results through the subsequent
fully connected layers. The following sections will focus on the
methods used to preprocess the training data and to train the models
for the three types of neural networks.

3.1 Data preprocessing

Before a neural network can be trained, the data must be
properly formatted and organized. This is because different
neural network architectures have been designed to handle
different data structures. A MLP requires the training data to be
solely in tabular form, while a CNN is designed to process only
image data. The training data compiled for this research must
therefore be preprocessed into a compatible format for each type
of neural network before the networks can be trained. The following
three sections will discuss the preprocessing steps required for the
training dataset before the MLP, CNN, and hybrid MLP-CNN
models can be trained, respectively.

3.1.1 Data preprocessing for MLP
A MLP neural network can only read tabular data. To use the

images in the training data, three numerical features–average
thickness, minimum thickness, and hole area ratio–are manually
extracted from the thickness maps. These three features are
commonly used to investigate the effect of corrosion damage
on steel plate girders (Liu et al., 2011; Khurram et al., 2014a;
Khurram et al., 2014b). The three features are then appended to
the vector of the tabular data as the new input data. Their
addition to the input vector allows the MLP neural network to
account for the variable levels of corrosion in the FE plate models.
For the output data, the load-displacement values are converted
to logarithms, ln(s) and ln(f), in order to eliminate the error
caused by the extensive range of output data and to convert the
highly skewed distributed data to an approximately normal
distribution. As depicted in Figure 5A, the distribution of the

failure loads of the plate models is skewed to the right and the
failure loads range from less than 10 kips to more than 350 kips.
This skew in the data is removed by taking the logarithm of the
failure loads and displacements, which yields the approximately
normal distribution shown in Figure 5B. This is done to improve
the accuracy of the trained neural networks (Zhang et al., 2017).

The Mean Squared Error (MSE) loss function is used for
regression analysis during the training process for neural
networks and is calculated based on the difference between the
predicted and target results. For example, if during the training
process the neural network predicts a failure load of 20 kips, but the
plate has a known capacity of 10 kips from the FE analysis, then the
prediction error is 10 kips. The same is true for a prediction of
360 kips when the failure load is known to be 350 kips. If the failure
load value is selected as the output of the neural networks, these
predictions are considered the same performance and have the same
effect on the training process. However, the prediction of 20 kips
corresponds to a 100% error for 10 kips, while 360 kips corresponds
to a 2.9% error for 350 kips. They should be treated differently.
Therefore, using absolute error to update the neural networks will
lead to significant errors for the low-capacity samples. By converting
the output data to logarithm form, the difference between the
predicted and target results for the two cases in the above example
will be ln(20) − ln(10) ≈ 0.693 and ln(360) − ln(350) ≈ 0.028. The
error for the first case is approximately 25 times greater than that for
the second one. Thus, the loss function for the first case has a greater
impact on the neural network, which corresponds to the larger
percent error for the first case.

3.1.2 Data preprocessing for CNN
A CNN requires that the input data be formatted as images.

Tabular data, such as the dimensions and boundary conditions of
the plate models, cannot be fed to the network directly. To
consider dimensional data, the training data is normalized to
remove the effects of varying plate dimensions from the input
images and output vectors. For the input images, the values in the
thickness and eccentricity maps can be divided by the intact
thickness of the plates, t, to produce the thickness and
eccentricity ratio maps. In addition, the thickness and
eccentricity ratio maps ensure that the trained neural networks

FIGURE 5
Histograms of failure load values with the number of bins as 100–(A) histogramof original failure load values, (B) histogram of the logarithm of failure
load values, and (C) histogram of the normalized failure load values.
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can account for the varying corrosion intensities included in the FE
model training database. The output of the CNN is a vector
representing the load-displacement curves of the FE models. To
normalize the output data, the failure mode of the plate models is
assumed as the yielding failure of a uniformly corroded plate such
that the failure displacement is proportional to the plate height, H,
and that the failure load is proportional to the cross-sectional area
of the plate,W×t. The output displacements and loads contained in
the output vector are divided by the plate height, H, and by the
yielding capacity of the intact plate, W×t×fy, respectively, where
fy = 50 ksi for all plates. In this way, all the training data is
transformed such that dimensions are not involved in the training
of the neural networks. Figure 5C shows a histogram of the
normalized failure load ratio across all plate models, calculated
as the failure load divided by the theoretical yielding failure load of
the intact plate (W×t×fy).

The boundary conditions of the plate models should be
considered in the input data to train as accurate a model as
possible. To accomplish this, the boundary conditions of the
plates are utilized to produce 2D maps of the theoretical buckling
shapes. Figure 6 shows two examples of the theoretical buckling
shapes of plate models with different boundary conditions in both
2D and 3D. Figures 6A, B are the 2D representations of the 3D
buckling shapes shown in Figures 6C, D, respectively. The 2Dmodel
is representative of the heatmap fed to the CNNs, whereas the 3D
model is included for visualization purposes. Because a CNN
requires that all input images be of the same size, the buckling
shapes are also sized at 200 × 200 pixels. Finally, all input
layers–thickness ratio map, eccentricity ratio map, and theoretical
buckling shape–are stacked into one 3D array that can be fed to the
CNN for training.

3.1.3 Data preprocessing for hybrid MLP-CNN
The input data to a hybridMLP-CNNmodel should be both tabular

and image data. The tabular data is fed to the MLP branch while the
image data is fed to the CNN branch. Therefore, there is no need for
feature extraction or data type conversion for the hybrid MLP-CNN
model. Similar to the dataset for theMLPnetwork, the load-displacement
values in the output data are represented in logarithm format to eliminate
the errors caused by the extensively ranged and highly skewed training
data. In the hybrid MLP-CNN model, the plate dimensions, boundary
conditions, and displacement parameter are input directly to the MLP
branch. Similarly, the thickness and eccentricity maps are input directly
to the CNN branch without additional preprocessing. For the hybrid
model, the MLP branch handles the effect of the tabular data, such as
plate dimensions, whereas the CNN branch handles the effect of varying
corrosion levels from one plate model to another.

Table 3 provides a summary of the preprocessed input and
output data types required for the training of the three neural
network architectures evaluated in this study.

3.1.4 Statistical analysis on training data
Before training the neural networks, statistical analyses are

performed on the training data, including an evaluation of the
statistical distribution of the training data and the correlation
between the input and output data.

The statistical distributions of the tabular parameters are
investigated. In the tabular parameters, the plate width (W),
boundary conditions, and the displacement parameter (ln (d1/
d2)) were generated based on the defined distributions
summarized in Section 2.1. The plate height, H, was generated
fromW and ln (H/W). The distribution of H is shown in Figure 7A.
Within the training dataset, H ranges from 2 to 20 inches and has a

FIGURE 6
Typical buckling shapes of the FE platemodels. -(A) and (C): 2D and 3D representations, respectively, of the theoretical buckling shape of a platewith
the top and right edges clamped, the left edge pinned, and the bottom edge fixed. -(B) and (D): 2D and 3D representations, respectively, of the theoretical
buckling shape of a plate with the top boundary condition symmetrical, the right and left edges pinned, and the bottom edge fixed.
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mean of 7.53 inches and a standard deviation of 3.59 inches. The
distributions of the three parameters extracted from the image data are
shown in Figures 7B–D. The average thickness of the corroded plate
models has a mean of 0.284 inches and a standard deviation of
0.122 inches. The minimum thickness and the hole area ratio are
mutually exclusive, which means that a sample with a non-zero
minimum thickness will have a hole area ratio of 0, and vice versa.
For the training data, the number of samples with a non-zerominimum
thickness is 19,488, and the number of samples with a non-zero hole
area ratio is 10,512. Figures 7C, D only include the samples with non-
zero minimum thickness and non-zero hole area ratio, respectively.
Both of these two distributions are highly skewed to the right. The
minimum thickness has a mean of 0.073 inch and a standard deviation
of 0.063 inch. The maximum value of the minimum thickness is

0.489 inch. The hole area ratio has a mean of 0.023 and a standard
deviation of 0.028. The maximum hole area ratio is 0.199.

The linear correlation between the tabular input data and the failure
load and displacement values is investigated. The linear correlation is
calculated by the Pearson correlation coefficient, defined below in Eq. 8.
The results of these calculations are listed in Table 4. It is noted that the
nonlinear correlation between parameters is not investigated here, as the
analysis was performed only to investigate which parameters showed
correlation with the output data.

rxy � ∑n
i�1 xi − �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ �����������∑n

i�1 yi − �y( )2√ (8)

Here, n is the sample size (30,000); xi and yi are the individual
sample values; �x and �y are the sample means. The relationships

TABLE 3 Input and output of neural network models.

Model Input Output

Tabular data (#) Image data (200 × 200)

MLP Dimensions (2),
Constraints on edge degrees of freedom (6),

ln (d1/d2) (1),
average thickness (1),

minimum thickness (1),
hole area ratio (1)

Total: 12

/ logarithm of load-displacement vector

CNN / thickness ratio map, eccentricity ratio map,
theoretical buckling shape Total: 3

normalized load-displacement vector

MLP-CNN Dimensions (2),
Constraints on edge degrees of freedom (6),

ln (d1/d2) (1)
Total: 9

thickness map, eccentricity map Total: 2 logarithm of load-displacement vector

FIGURE 7
Statistical distributions of tabular input data. (A) Histogram of plate heights, H, contained in the training dataset, (B) Histogram of the average plate
thicknesses contained in the training dataset, (C) Histogram of the minimum plate thicknesses contained in the training dataset, (D) Histogram of the
hole-area ratios contained in the training dataset.
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between the tabular input data (x) and the output data (y) can be
found from the correlation coefficients. First, the dimensions have a
strong correlation with the output data. Specifically, the width is
more related to the failure load with a correlation value of 0.6, while
the height is more related to the failure displacement with a
correlation value of 0.81. Second, two of the three manually
extracted features (average thickness and minimum thickness) for
the MLP show a high correlation with the output data, especially
with the failure load. The correlation values between these two
features and the failure load are 0.89 and 0.65, respectively. The high
correlation values mean that the manually extracted features are
critical to predicting the failure load and displacement. Further, the
correlation value between the hole area ratio and the failure load
is −0.29. This value is negative, which means that as the hole area
ratio increases, the compressive capacity of the plate decreases.
Finally, the correlation values between boundary conditions and
the output data are less than 0.15. It is found that most of the
corroded plates failed due to local failure rather than global buckling
because of the varied thickness across each corroded plate. The
boundary conditions and displacement slope have minimum effects
on the local failures inside the plates.

3.2 Training models

Before the neural networks are trained, the training data is split
into three categories–training, validation, and test–using an 85%/
10%/5% split. The typical architectures of the MLP, CNN, and
hybrid MLP-CNN are shown in Figure 8. The MLP neural network
(Figure 8A) is constructed by connecting multiple fully connected
layers using activation functions. For example, a single layer in a
MLP can be expressed as y = f (Wx + b), where x is the input vector
of the layer, y is the output vector, W is the weight matrix, b is the
bias vector, and f () is the nonlinear activation function. The fully
connected layer, Wx + b, integrates all input data for predicting the
values to the next layer, while the activation function, f (), introduces

nonlinearity to the neural network. By convention, the activation
function is not applied at the last layer for a regression task
(Goodfellow et al., 2016), as shown in the figures. The
parameters in the MLP consist of the weight matrix, W, and bias
vector, b, in each layer. In the CNN (Figure 8B), convolutional layers
are used to extract features from the input image. The following fully
connected layers combine all the extracted features for prediction.
The activation function, f (), is applied to each convolutional and
fully connected layer, except the last one. The parameters in the
CNN consist of the kernel tensor, K, and bias vector, h, in each
convolutional layer and the weight matrix, W, and bias vector, b, in
each fully connected layer. For the hybrid MLP-CNN (Figure 8C),
the outputs of the MLP and CNN branches are connected and
followed by fully connected layers, which combine the outputs to
predict the results. The parameters in the hybrid MLP-CNN model
consist of the parameters in the MLP and CNN branches and the
weights and biases in the joint layers.

For all three neural networks, a mean squared error (MSE)
function (Eq. 9) is selected to calculate the loss values for solving
regression problems. In the equation, y and y’ are the target result
and the predicted result from the neural networks, respectively. The
loss values represent the closeness between the predicted and target
results. During the training process, the loss value of the training
data is calculated in each iteration. Once the loss values have been
calculated, the Adam optimizer is used to update all parameters in
the neural networks to minimize the loss value. In addition, the loss
value of the validation data is calculated every 50 iterations and is
recorded to monitor the generalization of the trained neural
network, i.e., how well the neural network performs when
making predictions on data not contained in the training dataset.
The training process terminated once the current validation loss was
larger than the previously smallest validation loss 20 times. The
hyperparameters of the three neural networks are determined
through random search fine-tuning as follows. A set of options
for the hyperparameters are predefined first. The predefined options
for the number of layers for the MLP model and the MLP branch in

TABLE 4 Correlation between the tabular data and the failure load and displacement values.

Input tabular data Failure displacement Failure load

Dimensions Width 0.49 0.60

Height 0.81 0.27

Constraints on edge degrees of freedom Top translation 0.061 0.043

Top rotation −0.0077 0.0051

Left translation 0.092 0.059

Left rotation 0.051 0.0033

Right translation 0.11 0.061

Right rotation 0.065 0.042

Displacement abs (ln (d1/d2)) 0.099 −0.016

Corrosion damage (Extracted from image) Average thickness 0.43 0.89

Minimum thickness 0.23 0.65

Hole area ratio −0.12 −0.29
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the hybrid MLP-CNN model are {2, 3, 4}. Similarly, the number of
layers for the CNN model and the CNN branch in the hybrid MLP-
CNN model can be selected from the set {3, 4, 5, 6}. The maximum
numbers of neurons for the MLP model and the MLP branch are
selected from {16, 32, 64, 128}. The maximum number of channels

for the CNN model and the CNN branch are selected from {32, 64,
128, 256}. The options for batch size are {64, 128, 256, 512}, and the
options for learning rate are {1e-2, 1e-3, 1e-4, 1e-5}. The
hyperparameters are randomly sampled from the predefined
options, and the model is trained and evaluated with these

FIGURE 8
Typical architecture of the three neural networks–(A) MLP, (B) CNN, and (C) hybrid MLP-CNN.

TABLE 5 Architectures of the three trained neural network models.

Model type Input layer Hidden layers Output layer

branches joint

MLP 12 64, 64a / 11

CNN 3 × 200×200 8, 16, 32, 64b 1,024, 256, 32a / 11

MLP-CNN MLP 9 16, 32a 128, 64, 32a 11

CNN 2 × 200×200 8, 16, 32, 64b 1,024, 256, 32a

aFully connected layers. Each number represents the number of neurons in a layer.
bConvolutional layers. Each number represents the number of channels in a layer.
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hyperparameters. The options of the hyperparameters are then
reduced based on the loss value of the validation data. The
process is repeated several times, and the best set of
hyperparameters is selected. Based on Occam’s razor principle,
the simplest model is selected when the performances are close
(Bargagli Stoffi et al., 2022). The final architectures of the models for
the three types of neural networks are shown in Table 5. The MLP
model has two hidden layers with 64 neurons in each layer. The
CNN model has four convolutional layers followed by three fully
connected layers. The sizes of all the convolutional kernels are 3 × 3.
The numbers of channels for the four convolutional layers are 8, 16,
32, and 64, respectively. A 2 × 2 maxpooling layer follows each
convolutional layer to down sample the image size. The numbers of
neurons for the three fully connected layers are 1,024, 256, and 32,
respectively. The CNN branch of the hybrid MLP-CNN model has
the same architecture as the CNN model, and the MLP branch has
two layers, with 16 neurons in the first layer and 32 neurons in the
second layer. The output vectors of the MLP and CNN branches are
concatenated and are followed by three layers of fully connected
layers to predict the results. For all three models, the activation
function is selected as the Rectified Linear Unit (ReLU) function,
f(x) = max (0, x). The finalized batch size is 256, and the learning rate
is 1e-3.

MSE � 1
n
∑ y − y′( )2 (9)

4 Results analysis

The mean absolute percentage error (MAPE, Eq. 10) is adopted
to evaluate the performance of the three neural networks. The
MAPE of sfailure and ffailure, and the average MAPE of the eleven
outputs corresponding to points on the load-displacement curve for
the three networks are calculated separately on both the training and
test data and are listed in Table 6.

MAPE � 1
n
∑n
t�1

At − Ft

At

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ × 100% (10)

The MAPE values of the training data are close to (MLP) or
slightly smaller than (CNN and hybrid MLP-CNN) that of the test
data. The average MAPE values of the eleven points in the load-
displacement vector for the training data range from 21.36% for the
MLP model to 10.69% and 8.32% for the CNN and hybrid MLP-
CNN models, respectively. Similarly, the average MAPE values for
the load-displacement vector on the test data range from 20.65% for

the MLP model to 11.46% and 9.64% for the CNN and hybrid MLP-
CNN models, respectively. The MAPE values are found to be
consistent across the training and test datasets, which signifies
that there is no obvious overfitting in the neural networks. These
error percentages are significantly better than the accuracy known
for simplified methods that consider corrosion damage as uniform
section loss, which can be up to 100% (Tzortzinis et al., 2021a; Hain
et al., 2021). This demonstrates that the neural-network-based
models are capable of predicting the results of a rigorous FE
analysis and are able to estimate the residual load-carrying
capacity of a corroded plate.

The hybrid MLP-CNN model consistently involves less error
when compared to the MLP and CNNmodels, which means that the
hybrid MLP-CNN model performs better than the standalone MLP
and CNN models for predicting the compressive capacity of
corroded plates. This is likely due to the fact that the hybrid
MLP-CNN model does not require additional preprocessing of
the training data, such as manually extracting features from
image data or removing dimensions from the input and output
data. These processes simplify the data, but also sacrifice some
information contained in the data. For example, to involve the image
data for predicting the compressive capacity of the corroded plate
models in the training of the MLP model, three numerical
features–average thickness, minimum thickness, and hole area
ratio–are manually extracted from thickness maps and fed to the
model. Although the manually extracted features and the load and
displacement values are strongly correlated (Table 4), the MLP
model has much larger errors than the CNN and the hybrid
MLP-CNN models. The manually extracted features may
disregard information that is important for accurately predicting
the results. For example, the manually extracted features ignore the
variations in the thickness across the corroded plates. Of note, the
improved performance of the CNN when compared to the MLP
confirms that the CNN model can extract critical features from
image data required for the accurate prediction of the compressive
capacity of corroded steel plates.

Figure 9 depicts four plots which each compare the load-
displacement curves obtained from the FE analysis to those
obtained from each of the three neural network models. The
displayed plots are randomly selected samples from the test dataset,
so the neural networks have not been exposed to these plate models
during the training process. The solid black curves display the load-
displacement curves obtained from the FE analysis. Figures 9A, C, D
are consistent with the calculated MAPE in Table 6, in which the MLP
model has more error than the CNN and hybrid MLP-CNN models.
From Table 6, it is also noted that the CNN and hybrid MLP-CNN
models have similar errors, which is confirmed by the plots in Figure 9.

TABLE 6 MAPE of the outputs of training and test data for the three trained neural networks.

Model type MAPE of training data (%) MAPE of test data (%)

sfailure ffailure Average of eleven points sfailure ffailure Average of eleven points

MLP 17.2 22.2 21.36 16.5 21.5 20.65

CNN 13.7 9.1 10.69 14.9 9.9 11.46

MLP-CNN 9.1 7.4 8.32 10.3 8.8 9.64
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Furthermore, the prediction process using neural network
models is extremely fast compared to traditional FE analysis. For
example, the time required to predict the capacity of a corroded plate
using the neural network models, from inputting the parameters to
obtaining the results, is less that 1 minute. In contrast, constructing
and analyzing a FE model with accurate corrosion damage
representation for prediction takes around 10 minutes if the
automatic FE model construction method (Zhang and Zaghi,
2023) is used. This time savings can increase significantly when
the methods are applied to a larger model, such as a corroded bridge
girder.

5 Summary and conclusion

This research evaluated the feasibility of using neural networks to
predict the compressive capacity of steel plate FE models. The capability
of three neural network architectures (MLP, CNN, and hybrid MLP-
CNN) to accurately predict the known capacity of a corroded steel plate
was evaluated. The dataset used to train the neural network models
consisted of 30,000 FE plate models and the corresponding load-
displacement curves obtained from the FE analysis. The MLP model
is trained using tabular input data only. In addition to plate dimensions,
edge degree-of-freedom constraints, and a displacement parameter, the
corrosion damage was represented by three parameters including
average remaining plate thickness, minimum remaining plate
thickness, and a hole area ratio. For the CNN model, plate
dimensions were incorporated into the training data by producing
thickness and eccentricity ratio maps. In addition, constraints on
edge degree-of-freedoms were represented by the theoretical buckling
shapes. Finally, the hybrid MLP-CNN model could accept both tabular
and image data. Therefore, plate dimensions, edge degree-of-freedom

constraints, and the displacement parameter were fed directly to the
MLPbranch, while image data including thickness and eccentricitymaps
were fed to the CNNbranch. Each of the trained networks was evaluated
on its ability to accurately predict the load-displacement curve originally
obtained through a rigorous FE analysis for a test dataset. This test
dataset was 5% of the total training dataset and was not used during the
training process.

The evaluation of the three models illustrated that neural networks
are capable of predicting the results of a rigorous FE analysis. Of the
three architectures evaluated, the MLPmodel had the largest MAPE on
both the training and test datasets. TheCNNand the hybridMLP-CNN
models both performed better than theMLPmodel, withMAPE values
as low as 8%–10% on both the training and test datasets for the hybrid
MLP-CNN model. These results suggest that, once trained on a
representative dataset, a hybrid MLP-CNN model can be used to
accurately estimate the load-carrying capacity of a corroded steel
plate. A fully trained model therefore has the potential to remove
the requirement of FE analysis for future predictions. Furthermore, the
reduced MAPE of the CNN and hybrid MLP-CNN models compared
to the MLP model demonstrate the importance of representing the
intricacies of corrosion damage with images rather than a set of single-
valued parameters. A large proportion of model accuracy is therefore
likely to be driven by the intricacies of corrosion damage which cannot
be sufficiently represented by single-valued parameters or by broad
model simplifications, such as a uniform remaining thickness.

Whereas this study focused on evaluating the feasibility of using
neural networks to accurately predict the load-displacement behavior of
corroded steel plates, the evaluation presented in the current study is
limited by the dataset used to train the models. The accuracy of the
model predictions is constrained by the range of plate dimensions, edge
boundary conditions, etc., included in the training dataset. These ranges
reflect typical scenarios of corrosion damage in steel bridge girders, but

FIGURE 9
Comparison of the load-displacement curves predicted by the neural networks with the target load-displacement curves obtained from FE analysis.
(A–D) show load-displacement curves produced for four different test plate FE models with varying expected failure loads of approximately: (A) 35 kips,
(B) 125 kips, (C) 215 kips, (D) 85 kips.
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they may not encompass all possible scenarios. If the parameters of a
plate fall outside of these ranges, the accuracy of the results obtained
from the neural networks trained on the generated plate models may be
compromised. Further, the proposed models have not been evaluated
on their ability to predict experimentally collected load-displacement
behaviors of corroded steel plates.

Future research should focus on evaluating the accuracy of the
proposed model on experimental data. Corroded steel plates
within the geometric constraints of the dataset should be
compression tested and the experimental load-displacement
curves compared with those predicted by the FE models and
the trained neural networks. Future research should also
investigate the ability of neural networks to predict the residual
bearing capacity of corroded steel bridge girders. A training
dataset can be constructed on FE models of corroded steel
girders and used to train a neural network in a manner similar
to that presented in this study. Once experimentally validated, a
trained neural network may be used by practicing structural
engineers to accurately evaluate the residual bearing capacity of
in-service steel girders. This information can then be used to guide
the allocation of funding for bridge repair and rehabilitation
projects. In conclusion, neural networks have the ability to
accurately predict the outcome of a rigorous FE analysis and, if
experimentally validated, neural networks may be used to
estimate the capacities of in-service members.
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