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Machine learning techniques have been used in different fields of concrete
technology to characterize the materials based on image processing techniques,
develop the concrete mix design based on historical data, and predict the behavior
of fresh concrete, hardening, and hardened concrete properties based on
laboratory data. The methods have been extended further to evaluate the
durability and predict or detect the cracks in the service life of concrete, It has
even been applied to predict erosion and chemical attaches. This article offers a
review of current applications and trends of machine learning techniques and
applications in concrete technology. The findings showed that machine learning
techniques can predict the output based on historical data and are deemed to be
acceptable to evaluate, model, and predict the concrete properties from its fresh
state, to its hardening and hardened state to service life. The findings suggested
more applications of machine learning can be extended by utilizing the historical
data acquitted from scientific laboratory experiments and the data acquitted from
the industry to provide a comprehensive platform to predict and evaluate concrete
properties. It was found modeling with machine learning saves time and cost in
obtaining concrete properties while offering acceptable accuracy.
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Introduction

Machine learning (ML) is part of a subset of artificial intelligence which is the study of
computer algorithms that can learn and develop on their own with experience and historical
data (Mitchell et al., 2013; Jordan and Mitchell, 2015; Bonaccorso, 2017). It produces a model
based on training data to make predictions or judgments without having to be explicitly
programmed to do so (Ghahramani, 2015). It offers rapid solutions in modeling complex
systems (Khambra and Shukla, 2021). ML algorithms are used in a broad range of
applications, including business optimization (Apte, 2010), agriculture (Liakos et al.,
2018), medicine (Rajkomar et al, 2019), email filtering (Dada et al., 2019), speech
recognition (Padmanabhan and Johnson Premkumar, 2015), and computer vision (Sebe
et al,, 2005), while using traditional algorithms to do the required tasks is difficult or
impossible and time-consuming (Wang et al., 2009). ML has been extended to be used in the
built environment in different areas (Rachele et al., 2021) either to predict the concrete
properties (Asteris et al., 2021) or to predict the failure of structural elements based on
historical data (Taffese and Sistonen, 2017). ML modes can be classified into four main
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General steps in ML model development (Reich, 1997; Bonaccorso, 2017; Lehr and Ohm, 2017).

models which include artificial neural networks (ANN), support
vector machines (SVM), decision trees (DT), and evolutionary
algorithms (EA) (Chaabene et al, 2020) and these models are
commonly used to predict the mechanical properties of concrete.
The finest steps involving developing a ML model consists of eight
major steps which are summarized in Figure 1.

Concrete is a complex material because it contains different
materials and their proportions in the mix produce different
properties, hence the properties acquisition is rather costly, and
requires heavy machines and expertise (Roussel, 2011; Fiore et al.,
2014; Sgobba et al, 2015). ML has been used to improve the
understanding of concrete behavior and to develop new methods
for predicting its properties based on learning from historical data
(Ziolkowski and Niedostatkiewicz, 2019; Chaabene et al., 2020; Xie
et al., 2020; Nunez and Nehdi, 2021). ML can be used to analyze the
physical and chemical properties of concrete (Cheng et al., 2012;
Taffese and Sistonen, 2017; Han et al, 2020), as well as its
performance in various environments (Nguyen et al, 2020;
Tanyildizi et al., 2020; Xie et al., 2020). It can also be used to
develop new models for predicting the strength and durability of
concrete and to optimize the design of concrete structures (Abuodeh
et al,, 2020; Ahmad et al., 2021; Giiglier et al., 2021). It is further
extended to develop new methods for detecting and diagnosing
defects in concrete and to develop new methods for predicting the
service life of concrete structures (Taffese and Sistonen, 2017).
Moreover, ML can be used to detect cracks in concrete (Son
et al, 2012; Yokoyama and Matsumoto, 2017; Nasrollahi et al.,
2019; Deng et al, 2020; Stonski et al, 2020), which can help
engineers identify potential problems before they become serious.
By using machine learning algorithms, engineers can utilize
prediction models to detect cracks in concrete more quickly and
accurately, reducing the need for costly repairs.

In concrete technology which deals with the study of concrete
materials characterization, fresh and hardened properties,
behaviors, and its applications (Neville and Brooks, 1987), ML
has been used extensively to evaluate, predict and model the
properties of fresh, hardening, and hardened concrete (Chaabene
et al., 2020). Not only that but it has also been applied to optimizing
environmentally friendly materials used to replace cement using a
prediction technique of the impact of adding these materials such as
fly ash on the performance of concrete (Khambra and Shukla, 2021).
Moreover, it has been used during the construction and after
construction (Gamil and Cwirzen, 2022a), for example, Son et al.
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(Son et al, 2012) used ML to detect concrete on-site using
automated color model images with neural networks, and that
helped to measure the construction process and also monitor the
structural health.

A huge amount of data has been produced by scientific methods
either on the laboratory scale or at the full scale (Buyya et al., 2013)
and these historical data are of great asset to be used to the
maximum advantage using ML to produce platforms for judging
the concrete properties (Kamath et al., 2022). The main process of
data analysis in machine learning involves different steps the first is
data ingestion where data are collected and imported into the
assigned analysis platform, while the second step is processing
these data by filtering cleaning the data, or even data
manipulation, the third is data analysis by choosing the best-fit
model either optimization or prediction, train the model, evaluate
the model and the last step is data visualization or making the
prediction (Bhattacharya, 2021).

In this extensive review, the current trends, and applications
of ML in concrete technology are systematically reviewed aiming
to draw a road map for further extension of ML application in
areas of concrete technology which were not covered in the
literature.

Bibliometric analysis of machine learning
applications in concrete

A bibliometric analysis was performed to understand what
extent and attention have been put to the literature. The timeline
of the analysis is for publications from 2000-2023. During the
search, two keywords were used which are “machine learning in
concrete” and “application of machine learning in concrete
technology.” Results from Figure 2 helps to structure the review
article by addressing the most recurring keywords in the application
of machine learning in concrete.

From Figure 2, the results showed that ML has been used in
different parts of concrete technology and the intensity of the studies
differs. For instance, more studies were observed when focusing on
compressive strength because it is crucial for the industry and
depends more on historical data making it possible to use the
ML technique. The studies extended even to structural health
monitoring, corrosion in steel rebars, durability, etc. (Rosso et al.,
2022).
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FIGURE 3
Network visualization of publications based on countries of publication.

Frontiers in Built Environment 03 frontiersin.org


https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1145591

Gamil

TABLE 1 Areas of ML application in concrete technologies.

Categories

Materials characterizations

Sub-categories

— Particle sizes and shapes

10.3389/fbuil.2023.1145591

References application(s)

Altuhafi etal. (2013), Ohm et al. (2013), Pani and Mohanta (2015), Zheng and Hryciw (2018)

— Moisture
— Density
Mix design development — Proportions Lee et al. (2012), Ziolkowski and Niedostatkiewicz (2019), Nguyen et al. (2020), Kina et al.
(2021), Pandey et al. (2021)
— Optimization

Fresh properties

Hardening and hardened
properties

— Slump, slump flow,

— Air content, moisture

— Fresh concrete density,

— Yield stress,

— Segregation, bleeding, homogeneity,
— Concrete temperature, ambient temperature,
— and viscosity.

— Hydration rate through SEM image
processing

Oztas et al. (2006), Mohebbi et al. (2011), Chandwani et al. (2015), Mashhadban et al. (2016),
Song et al. (2019), Timur Cihan (2019), Zheng et al., 2019; Unlu (2020), Kina et al. (2021)

Kim et al. (2004), Yan and Shi, 2010; Atici (2011), Siddique et al. (2011), Dantas et al. (2013),
Duan et al. (2013), Naderpour et al. (2018), Cook et al. (2019), Nguyen et al. (2019), Timur
Cihan (2019), Abuodeh et al. (2020), Asteris and Mokos (2020), Nguyen et al. (2020),

— Strength development (maturity) and
characteristic strength

— Formwork removal time

— Tensile strength

Durability — Chemical attacks, weathering, and abrasion

— Carbonation depth
— Chloride penetration

Crack detections — Early crack detection

— Failure surface

— Cracks propagation (image processing)

— The severity of the cracks

Figure 3 shows the publications densities in different countries
which is indicated that China and the United States have published
and studied or applied ML in concrete technologies more than other
countries. Figure 2 shows the different fields of concrete
technologies that ML can be used to accelerate the results
acquisitions. It is shown that more areas are still scarce in terms
of using ML and that requires further expansion to achieve
acceptable digitalization. The common areas are presented in
Table 1.

The categories presented in Table 1 are studied separately
aiming to offer concluding remarks on the areas that need
further studies to leverage the ML techniques to predict or model
the properties.

Concrete materials characterization

Raw concrete materials characterization is an essential part of
concrete technology and without that no scientific understanding of
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Guzman-Torres et al. (2021), Su et al. (2021)

Taffese and Sistonen (2017), Alexander and Beushausen (2019), Cai et al. (2020), Feo et al.
(2020), Nunez and Nehdi (2021)

Yokoyama and Matsumoto (2017), Bayar and Bilir (2019), Das et al. (2019), Kim et al.
(2019), Deng et al. (2020), Okazaki et al. (2020), Wang et al. (2020), Kaur and Singla (2022)

the concrete final product. Hence knowing the material’s structures,
and physical and chemical properties when they are in the raw state
would define lately the performance when working in composite to
concrete (Gamil and Cwirzen, 2022b). ML has been employed to
study concrete materials characterization. An investigative study by
(Rafiei et al, 2016) employed ML to characterize the concrete
materials and demonstrated the possibility of utilizing statistical
historical data to estimate the concrete properties such as slump,
flow, strength, and serviceability.

The study of particle morphology is an important topic to
address when characterizing the aggregates and sand, especially
for the shape and sizes because both play an important part in
concrete properties and performance. The coarse aggregate size is an
important physical property when designing the concrete mix, Sun
et al. (Sun et al,, 2021) used an importance-based machine learning
feature to define the aggregate size distribution using a measured 3D
binocular system instead of sampling and sieving the machine
learning provides an invasive measurement of the aggregate size
where the accuracy of determining the size was 95.06% and that
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et al, 2021). Step 1. Image acquisition. Step 2: Converting the images into 3D objects. Step 3: Sketching map of 3D features and converted to defined
volumes. Step 4: Sketching 2D symmetrical features and the data used to run machine learning for aggregate size estimation
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FIGURE 5

Method of pattern recognition for shape characterization, from (Zheng and Hryciw, 2018).

would help to save a lot of time taken to determine the aggregate size.
The process is rearranged in Figure 4.

In a different study of the particle shapes of sands was also
possible to characterize using pattern recognition by a similar
method of using 3D images, the pattern recognition of about
850,000 images to train the program and was conceivable to
determine the roundness and sphericity, the method is presented
in Figure 4 (Zheng and Hryciw, 2018) as demonstarted in Figure 5.
Different method using image method to quantify the size and shape
of sands was also possible by digitized image analysis algorithms
(Altuhafi et al., 2013). The size distribution of coarse aggregate has
also been identified by sed-imaging which is an image-based method
test by analyzing the image of soil that is rapidly sedimented through
water and can be sorted by size where the percentage of the fine was
determined by analyzing the images through learning process
ranging size between 0.075-2.0 mm (Ohm and Hryciw, 2014). A
similar method using image analysis was also used for particle size
characterization showing faster and more accurate results (Ohm
etal., 2013). Earlier the method was used to determine the volume of
aggregates and the estimation showed very good agreement with the
manual measurements (Rao and Tutumluer, 2000).

Concrete mix design

Development of appropriate mix design is a time-consuming
and cost-incurred process. ML techniques have been used to develop
the mix designs based on collective historical data (Esmaeilkhanian
et al., 2017; Ziolkowski and Niedostatkiewicz, 2019; Chaabene et al.,
2020). The process has gained more acceptance and applications
(Ziolkowski and Niedostatkiewicz, 2019; Pandey et al,, 2021). The
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process utilized historical data to predict the best and wanted mix
design with the stipulated performance requirements. For example,
(Ziolkowski and Niedostatkiewicz, 2019) used ML to develop mix
design based on extensive databases of concrete recipes, the data was
used to feed the optimal architecture of neural networks which
resulted in to develop of an equation enabling the prediction of mix
design and compressive strength as a performance indicator. ML can
be used to optimize certain proportions of specific materials in the
mix, for example, (Nunez et al., 2020) used hybrid ML to optimize
the mix design for recycled aggregate concrete to use more recycled
concrete that is believed to be a partial substitute of natural aggregate
and that made possible with ML and the results deemed to be robust
for predicting the mix performance. In different attempt, Zhang
et al. (Zhang et al., 2020) used ML and metaheuristic algorithms to
optimize the mix proportions of concrete and that was based on the
multiple objectives to be achieved the slump, cost and strength. That
helped to predict these parameters even before the construction of
the project based on historical data.

The methods of ML can vary but the concept remains similar
which is based on a collection of historical data to predict the best
mix design possesses acceptable fresh, hardening, and hardened
properties. For instance (Golafshani and Behnood, 2019), estimated
the optimal mix when using silica fume in concrete based on
biogeography-based programming and the results showed good
prediction accuracy. In high-performance concrete (Lee et al,
2012), used a heuristic algorithm to predict the mix proportions.
To summarize, ML has been used to develop and optimize the
concrete mix design, and it can be further extended to emerge new
environmental materials that have been extensively studied and
proved to have acceptable properties such as slag, fly ash, and other
supplementary cementitious materials.
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TABLE 2 ML for fresh concrete properties prediction.

Concrete
parameter

Tool for data
acquisition

Reliability

10.3389/fbuil.2023.1145591

Application

References

Slump and strength

Backpropagation neural networks

Actual data from
RMC plant with
93 records

Slump prediction accuracy
is less than for strength
prediction

Slump for ready mix concrete

Dias and
Pooliyadda
(2001)

Concrete
Temperature

Slump flow

Slump flow, t50 and
J-ring

ML of classification and regression
tree

Support Vector Regression, M5P
Trees, Random Forest, and MLPReg

Extreme learning machine and long
short-term memory (LSTM)

Radio-frequency
identification (RFID)

Lab experiments with
103 datasets

48 mixtures in the
laboratory

98%

MLPReg predicted
optimum

The slump flow, t50, and
J-ring with 99.71%, 81%,
and 94.21% accuracy,
respectively,

To prevent concrete surface
cracks, manage the curing of the
concrete and adopt preventative
measures.

Predict slump flow for HPC

To predict the fresh properties
of SCC

Xie et al. (2020)

Unlu (2020)

Kina et al. (2021)

Slump flow for high-
performance concrete

Classification and regression trees
CART, support vector machines
SVM, multilayer perceptron MLP and
radial basis function neural
networks RBF

Usage of bagging
(bootstrap
aggregating)

SVM, CART, MLP and
RBF) and bagging optimize
prediction accuracy of the
slump flow

To predict the workability

Aydogmus et al.
(2015)

Slump flow for ready
mix (RMC)

filling ability,

Artificial Neural Networks (ANN)
and Genetic Algorithms (GA)

vector machine approach using the

From the actual RMC
plant with 560 mix
proportions

Experimental data sets

ANN with GA showed high
accuracy

RBF kernel was more

Predict the slump based on

To predict the fresh properties

Chandwani et al.
(2015)

Sonebi et al.

flowability and radial basis function (RBF) and accurate compared to of SCC (2016)

passing ability of SCC | polynomial kernels polynomial kernel

Slump Neural network test data of 99.34% accuracy Predict slump for high-strength | Oztas et al.
187 different concrete concrete (2006)
mix-designs

Slump and fuzzy logic method 58 and 56 fuzzy logic method is most = To predict the slump and Timur Cihan

compressive strength

accurate

strength

(2019)

Moisture content

Mel-Frequency Cepstral Coefficients
(MFCCs) and SVM for classification

100 sets of concrete
specimens

SVM showed acceptable
accuracy of moisture
prediction

Important for underwater
concrete structure to monitor
the moisture

Zheng et al.
(2019)

Rheological properties

Artificial neural network

200 different
mixes, lab

Accepted prediction

Predict the rheology of SCC

Mohebbi et al.
(2011)

Fresh concrete properties

A key benefit of ML techniques is their ability to generalize the
data structure and capture the underlying mechanisms even in the
absence of some information (Das et al., 2019) hence it can be
possible to use for predicting the concrete properties because it is
data-driven method (Chaabene et al., 2020). When casting concrete,
several properties are needed to judge the quality and applicability of
concrete such as slump for normal concrete, slump flow for Self-
compacting concrete (SCC), T500 for SCC, density, air content,
yield stresses, concrete temperature, ambient temperature, and
viscosity. These parameters are needed for specific equipment
and expertise (Gamil et al., 2021; Gamil et al., 2023). It comes
with the need for machine learning to substitute manual testing
using historical databases owned by corporate or research
institutions.

The concrete temperature is an important parameter for fresh
concrete which helps to relate that with the curing time. Xie et al.
(Xie et al., 2020) have developed an ML system to predict the
development trajectory of concrete quality and the temperature
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changes at the center and surface of the cross-section. Radio-
frequency identification (RFID) temperature sensors to record
temperature data. The results indicate that the system has over
98 percent reliability on the correlation coefficients between the
predicted temperatures and actual temperatures. This thorough
study sheds light on how big data analytics and machine learning
can help engineers and construction managers oversee the curing of
concrete and put preventative measures in place to avoid concrete
surface fractures.

The slump flow as an important fresh concrete property for
high-performance concrete has been assessed using a machine
learning model using four mathematical methods to obtain the
best results which are Support Vector Regression, M5P Trees,
Random Forest, and Multilayer Perceptron Regressor (MLPReg)
and the findings showed that MLPReg algorithm produced the best
optimum results for slump assessment (Unlu, 2020). In a different
method Kina et al. (Kina et al., 2021) compared extreme ML with
deep learning to predict the fresh properties of SCC reinforced with
fiber, the method is called long short-term memory (LSTM) where
48 mixes were developed in the laboratory as a learning data and the
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LSTM methods helped to predict the slump flow, T500 and J-ring
for SCC with high accuracy. The moisture content in the concrete is
an important parameter to monitor, an innovative percussion-based
technique was developed by (Zheng et al., 2019) to document the
concrete moisture content using Mel-Frequency Cepstral
Coefficients to extract the features and to categorize the various
moisture levels in the concrete, Support Vector Machine (SVM)
was used.

According to the information described in Table 2 more possible
expansion of using ML methods to use the big data obtained in
laboratories and research publications to develop more data-driven
models that can predict concrete properties. These models can save
time and help researchers and industry players to make proper

decisions on the concrete mix proportions.

Prediction of mechanical properties

Determining the compressive, flexural, and tensile strengths is a
time-consuming task and requires machinery and personnel. These
properties are of interest to engineers and concrete makers onsite
especially compressive strength because it defines the concrete
grades (Ziolkowski and Niedostatkiewicz, 2019; Aloisio et al.,
2022). ML has been used to predict the compressive strength
based on the input of mix design (Chou et al., 2014; Abuodeh
et al., 2020; Chaabene et al., 2020). What makes it promising, ML
and other modeling techniques are non-destructive and do not need
laboratory work if historical data are available.

The application of machine learning for strength prediction was first
introduced in 1998 by (Yeh, 1998) where linear regression with ANN
emerged to predict the strength of high-performance concrete using
historical data (Nunez et al., 2021). Then acceptance has been raised in
applying advanced methods to predict the strength. For instance (Deng
et al, 2018), used deep learning method to predict the compressive
strength of recycled concrete based on five inputs include water to cement
ratio, the amount of replaced coarse aggregate, the amount of replaced
fine aggregate, and the amount of fly ash, the methods use the ratios of
each input and the results show the method offers high efficiency and
accuracy for strength prediction. While (Ghasemzadeh et al, 2016)
utilized multi-objectives genetic programming (MOGP) to predict the
long-term compressive strength and creep using nine input variables
which seems to affect the strength and the model possessed an acceptable
prediction accuracy. For recycled aggregate concrete (Duan et al,, 2013)
used a neural network to forecast the strength and that was also the same
concepts when (Dantas et al.,, 2013) used NN to predict the strength of
concrete containing demolition waste. But (Luo and Paal, 2018) used the
backbone curve model (BCV) to stimulate the force deformation
behavior of the structure under cyclic loading. Another modeling
method called decision trees and random was used to determine the
load capacity of bridges using the national bridge inventory database and
that enabled forecasting any failure of the bridges after casting (Alipour
et al, 2017). In a different study (Contento et al, 2022), used a
probabilistic axial capacity model to estimate the load eccentricity and
debonding, the model showed very good accuracy.

A critical review developed by (Chaabene et al, 2020) on the
application of ML to predict the mechanical properties found that the
models developed by ML based on an accurate data tends to produce
more acceptable prediction model of the mechanical properties of
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concrete. The ML was also extended to be used in the evaluation of
bond strength between reinforcement, for example, fiber reinforced
polymers (FRPs) and concrete (Gao et al, 2020). Another attempt by
(Valikhani et al., 2021) applied ML and image processing to estimate the
surface roughness of concrete which is a good indicator of the sufficient
bonds between concrete casting at different times. The model helped to
distinguish the coarse aggregate from the cement paste using images with
relation to the surface area, the results showed that the model can estimate
the surface roughness with more than 93% accuracy. Table 3
demonstrates a summary of different publications when ML is applied
to predict the mechanical properties of concrete.

Table 3 shows studies on the application of different ML models
to determine the mechanical properties of different types of concrete.
The data used to develop these models are classified into different
sources some are collected in the laboratory while some are collected
from the literature. The accuracy of the models is tested using the
coefficient of determination R? which is the amount of variance of the
dependent variable that is predicted from the independent variable
and is used to measure the relationship between the predicted values
outputted from the model (Guglier et al., 2021; Su et al,, 2021).

Durability and service life

The durability of concrete concerns researchers and engineers which
is the ability of concrete to resist chemical attacks, weathering, and
abrasion while maintaining the desired concrete properties (Feo et al,
2020; Lalitha et al,, 2020). While the service life refers to the expectation of
concrete life (Alexander and Beushausen, 2019). Both the durability and
service life of the concrete are necessary parameters to evaluate the quality
of concrete. ML as a time-saving data-driven method has been
implemented to forecast the durability and service life of the concrete.
For instance, Nunez and Nehdi (Nunez and Nehdi, 2021) used 713 data
recorded on carbonation for recycled aggregate concrete, the model
developed by machine learning can capture the parameters that
influence the carbonation depth, the model opted to run the process
called gradient boosting regression tree (GBRT) which demonstrated
exceptional performance in predicting the depth of carbonation. That
gives a good indication of the carbonation level and helps to predict that
and act when it is over the limits. Another study by Omran et al. (Yinfeng
et al, 2008) used ML to assess the non-linear structural response of the
structure and managed to obtain and predict the future displacement of
the structure when a non-linear load is applied. The durability and service
life of reinforced concrete were assessed by ML (Taffese and Sistonen,
2017), which managed to accurately plan the repair measures when
required and help to predict the service life based on historical data. The
assessment method is presented in Figure 6. The method is denoted by the
use of sensors that are left on the structure to provide spatial changes and
send these data to the cloud using the mean of data loggers. The ML
technique can use these data to learn from the historical and real-
time data.

The chloride penetration in high-performance concrete was
evaluated by (Song and Kwon, 2009) using a neural network
algorithm, chloride penetration is one of the main causes of
concrete deterioration. The NN algorithms were built based on
actual experimental data, the algorithm type is back-propagation,
and the model was able to predict the chloride penetration over
time. Similarly, ML was used to predict chloride concentration in
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TABLE 3 Application of ML in Mechanical properties prediction.

Type of concrete

Data
sample
size

Source of data

ML Model(s)

Accuracy

10.3389/fbuil.2023.1145591

Output

References

Normal and high- Undefined Laboratory Support vector machine (SVM) SVM can be generalized | Elastic modulus Yan and Shi
strength concrete more effectively than an (2010)
ANN model.

High-performance 135 different concrete Bagged ANN R? of 0,9278 Compressive Atici (2011)

concrete (HPC) mixtures strength

HPC 1,030 Laboratory Fuzzy Support Vector Machine R? of 0.902 Compressive Cheng et al.
Inference Model for Time Series strength (2012)

Data (EFSIMT)
SCC Undefined Experimental data SVM SVM showed close Elastic Modulus Cao et al. (2013)
prediction with lab- of SCC
based outcomes
HPC Undefined multi-nation data MLP, SVM, CART, and LR SVM and MLP are the | Compressive Chou et al.
most accurate strength (2014)

Environmentally 144 from experiments Gaussian processes regression R? 0.98 Compressive Omran et al.

friendly concrete strength (2016)

Fibre reinforced self- 9 concrete mixtures in | particle swarm optimization PSOA is more accurate | Mechanical Mashhadban

compacting concrete the laboratory algorithm (PSOA) and ANN to predict the properties | properties et al. (2016)

Environmental 139 existing sets of data Artificial Neural Network (ANN) = R?:0.903 Compressive Naderpour et al.

concrete derived from strength (2018)

14 literature.

Normal concrete 49 Literature Decision tree (DT) model, random =~ R Compressive Chopra et al.
forest (RF) model, and neural strength (2018)
network (NN) DT:0.43

RF:0.68
NN:0.94

Normal concrete >10,000 Literature ANN, SVM, boosted tree, and R% Compressive Young et al.

random forest models strength (2019)
ANN:0.82, SVM:0.86,
BT:0.85 RFM:0.83

Normal Concrete 1,030 Literature Hybrid ML model, random forests =~ R2:(0.8664-0.9448) Compressive Cook et al.
(RF) model with the firefly strength (2019)
algorithm (FFA)

field-placed concrete 1,681 Colorado Department | Random forest ML R%0.80 Compressive DeRousseau

of Transportation strength et al. (2019)
(CDOT)

geopolymer SCC 412 Laboratory data genetic programming (GEP) R*0,97 Compressive and Awoyera et al.
and ANN split-tensile and (2020)

flexural strength

Geopolymer concrete 335 Experimental work Deep neural network R*0,9927 Compressive Nguyen et al.

strength (2020)

Normal concrete 1,030 Literature AdaBoost algorithm R of 0.982 Compressive Feng et al.

strength (2020)
98% accuracy

Recycled aggregate 526 Literature Random forests (RF) and support | R* 0.8709 Modulus of elasticity = Han et al. (2020)

concrete vector machine (SVM)

Ultra-high- 110 Experimental data Sequential Feature Selection (SFS) = 80.01% accurate Compressive Abuodeh et al.

Performance Concrete and Neural Interpretation strength (2020)

(UHPC) Diagram (NID)

HPC 1,133 Literature GBR and XGBoost R® of 0,98 Compressive and Nguyen et al.
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(2021)

(Continued on following page)
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TABLE 3 (Continued) Application of ML in Mechanical properties prediction.

Type of concrete Data Source of data ML Model(s) Accuracy Output References
sample
size

Normal concrete 207 Literature decision tree (DT), an artificial DT and ANN gave Compressive Ahmad et al.
neural network (ANN), bagging, R2 equal to Strength of Concrete = (2021)
and gradient boosting (GB) 0.83 and 0.82 at High Temperature

Normal concrete 522 Experimental data Neural Network (ANN), Decision = R? of 0,86 Compressive Giigltier et al.
Tree (DT), Support Vector strength (2021)

Machine (SVM) and Linear
Regression (LR) algorithms

Normal concrete and Dataset Literature MLR, SVM, and ANN R%: Interfacial bond Su et al. (2021)
fiber reinforced 1: 122 strength
polymers MLR: 0.88

Dataset SVM: 0.91

2: 136

ANN: 0.88

Concrete with recycled =~ 721 Experimental results Gradient Boosting (GB), Extreme | R* of 0.935 Compressive Quan Tran et al.
concrete aggregates Gradient Boosting (XGB), Support strength (2022)

Vector Regression (SVR), and
three hybrid models of those single
models

SCC containing Fly 85 Literature based ANN and SVM R? of 0,9725 Compressive Abunassar et al.
Ash and Silica Fume dataset Strength in SCC (2022)
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FIGURE 6
Assessment of durability and service life of reinforced structure (Taffese and Sistonen, 2017).

Predictthe Evaluate the

o Select 75% The ML Apply 10- Parameters o 2y prediction
%':tg;:;l data-records model fold cross of the model ren%:ix/luin o P'x:::ltt'so" performance
randomly training validation optimization 4.0 o0 a via statitical

parameters

FIGURE 7
The process of training and developing ML models (Cai et al., 2020)

Frontiers in Built Environment 10 frontiersin.org


https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1145591

Gamil

10.3389/fbuil.2023.1145591

FIGURE 8

Crack detection using ML, (A) source data (B) crack detection from source (Yokoyama and Matsumoto, 2017)

Bt ol Y
E:: Classified as crack D Classified as noncrack

FIGURE 9
Classification of cracked and crack-free surfaces (Kim et al,
2019)

marine concrete (Cai et al, 2020) using 642 records of field exposure
data of surface chloride concentration, these data were used to train five
standalone ML models called, linear regression (LR), Gaussian process
regression (GPR), support vector machine (SVM), multilayer
perceptron artificial neural network (MLP-ANN) and random
forests (RF) models and trained as demonstrated in Figure 7.

The model produced acceptable accuracy and was able to predict
the chloride concentration in marine concrete. The highest coefficient of
determination R* is 0.83 for an ensembled model of RF + MLP + SVM.
The model can be used to forecast the surface chloride intensity of
marine concrete. In a different study (Morcous and Lounis, 2005), used
neural networks and case-based reasoning to predict the corrosion in
concrete bridges and proposed a method to perform the prediction. The
technique showed good feasibility and adequate reliability to predict
corrosion. Another recent finding (Rosso et al., 2022), used non-linear
analysis to model the corrosion and ductility of concrete used in half-
joint bridges, the finding showed discussed two case studies behavior
which possessed different behavior whereby the first showed a
significant reduction of capacity and ductility while the second
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didn’t behave similarly, the study managed to model the corrosion
of the joints. In a different approach (Di Trapani et al,, 2020), used a
generic algorithms-based framework to optimize the jacking retrofitting
in reinforced concrete columns and the findings showed the framework
enabled the effecting modeling of retrofitting costs and can be used by
practitioners as a tool for retrofitting modeling.

Concrete crack detections

Concrete crack detection is the process of sensing the cracks in a
structure using different technologies which can be classified as
destructive and non-destructive methods (Pham et al., 2022). ML
and image processing are classified as non-destructive method to
predict the cracks in concrete (Gamil and Cwirzen, 2022a; Kaur and
Singla, 2022), these methods use images and historical data to make an
accurate prediction of the cracks based on data-driven models.
Different ML algorithms were also adopted to monitor the
concrete structural elements based on real-time sensor acquitted
data which includes the Gaussian mixture model for color image
detection which helps to detect unusual cracks in the concrete surfaces
(Son et al., 2012). The ML is even extended to provide guidelines on
repairing materials, for instance (Jiao et al., 2019), used ML to check
the repairing materials called high-performance fiber reinforced to
repair the concrete structure.

Concrete crack detection using machine learning is a promising
area of research. Machine learning algorithms can be used to detect
cracks in concrete structures (Nasrollahi et al., 2019). By using data
from images of concrete structures (Son et al., 2012), the algorithms
can be trained to recognize the patterns of cracks and identify them
accurately. The algorithms can also be used to predict the severity of
the cracks and provide an estimate of the repair costs. This
technology can be used to improve the safety of concrete
structures and reduce maintenance costs.

An automatic detector of the crack in concrete was developed
using ML (Yokoyama and Matsumoto, 2017) using images of
concrete structure, the modeling method is called convolution
neural network which is a deep learning method, the images with
cracked parts are marked, and the images were classified into five
classes and an automatic detector was developed using these five
classifiers. The features of cracks are extracted by partitioning the
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ML method for crack pattern and propagation detection (Bayar and Bilir,

images into different color intensities and then transformed into
understandable crack patterns as shown in Figure 8.

Different ML methods were compared to model the concrete failure
surface (Reuter et al,, 2018), three methods called 1) Artificial neural
networks, 2) support vector machines, and 3)support vector regression,
using 88 experimental datasets, the results showed that regression
produced the best results in comparison with the two methods. It was
rather difficult to determine cracked and crack-free areas on the surface.
That is critically studied by (Kim et al., 2019) using ML to classify both
cracked and crack-free surfaces. The method helps to determine the
cracked areas on the surface, an example demonstrated in Figure 9, the
automated crack detection of concrete structures offers a high promise for
the suggested machine-learning-based cracks identification approach.

For bridge structure, ML can be used to detect the cracks based
on image processing (Okazaki et al., 2020) applied ML to model the
cracks in bridges, a regression model was developed to model the
formation and propagation of the crack based on actual site data.

Crack propagation in concrete structure can lead to detrimental
effects, that is possible to predict using ML. A study by (Bayar and
Bilir, 2019) used ML to predict the crack extension using digital image
processing embedded with the Voronoi machine learning algorithm,
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the crack patterns and propagations were examined using a collection
of images, the method helps to predict the crack extension making it
possible for engineers to take corrective measures before a catastrophe
happens. The method is presented in Figure 10.

Challenges, and future recommendations

The application of ML in concrete technologies has been noticeable
however, there have been some challenges addressed by different
researchers. Of that (Thai, 2022), summarized the challenges when
applying ML in structural engineering and these can be common to
concrete technology as well, of these challenges is the difficulty to select
the appropriate ML algorithm hence they are expanding over the
different application and that makes it tedious process to select the
efficient one. The second challenge is the nature of understanding ML
and how they work which can be difficult for engineers and
policymakers. The third challenge would be the acquisition of data
and the quantity of data required for training the model.

Some recommendations are to be addressed to optimize the use of
ML in concrete technology, the first one would be the selection of an
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appropriate and efficient ML algorithm and that can be done before
through an intensive review of the former applications and the accuracy
of the output. The second recommendation is to explain the model in a
more understandable language for engineers to assimilate how efficient
and productive ML can be in terms of producing an effective decision-
making platform. The third would be producing banks of databases by
involving research institutes to continuously feed the system with more
data. ML has a variety of approved applications in the field of concrete.
Here are a few recommendations.

—

. Optimization of mix design: ML algorithms can be used to
analyze data on the properties of different types of concrete
and the performance of concrete mixes under different
conditions. This can help optimize the mix design of
concrete for different applications.

. Proactive casting: ML can be used to predict the formwork
pressure when casting allowing acceleration of casting and
avoiding accidents when pressure is off the limit.

. Quality control: ML algorithms can be used to analyze data
from concrete production processes to identify patterns that
may indicate problems with the quality of the concrete. This
can help improve the consistency and reliability of concrete
products.

. Predictive maintenance: ML algorithms can be used to predict
the cracks at early age allowing for proactive maintenance and
reducing downtime and minimizing accidents.

. Structural analysis: ML algorithms can be used to analyze data
on the structural performance of concrete structures, such as
bridges and buildings, under different loading conditions. This
can help predict the behavior of these structures and identify
potential problems.

Conclusion

A wide range of concrete technology applications has seen
the emergence of ML as a promising forecasting tool, making it
a potential alternative for often employed empirical models and
time-saving methods. The exponential rise in recent years in the
number of pertinent literature is proof that the use of ML in
concrete technology is growing. An ambitious and thorough
review of ML applications for concrete technology has been
provided in this article. The review addresses different themes
of ML applications in concrete technology which includes
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