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Damage assessment applied to reinforced concrete elements is one of the main
activities of infrastructuremaintenance tasks. Among these elements, the problem
of corrosion in reinforced concrete is particularly critical and requires careful
consideration. Annually, governments invest a large amount of economic
resources in this activity. However, most methodologies for damage
assessment rely on visual inspection, which may be subjectively interpreted,
producing inconsistent results and requiring a considerable amount of time
and resources. This study evaluates the performance of real-time object
detection using You Only Look Once, version 3, for detecting corrosion
damage in concrete structures. The architecture of YOLOv3 is based on a
complex, but efficient, convolutional neural network fed by a dataset proposed
and labeled by the authors. Two training stages were established to improve the
model precision, using transfer learning with medium- and high-resolution
training images. The test results show satisfactory concrete-corrosion
detection through validation photographs and videos demonstrating the
capabilities of explainable artificial intelligence and its applications in civil
engineering.
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1 Introduction

Artificial intelligence (AI) applications have been growing in numerous fields of science
and technology. Nowadays, several major approaches within the AI context, such as machine
learning (ML) and deep learning (DL), are being developed and with a significantly large
number of problems Naser (2023). Both methods are focused on unique kinds of analysis
problems. Regression, classification, supervision, and recommendation are some of the most
common issues. These techniques have been successfully implemented in different
knowledge sectors and industries Guzmán-Torres et al. (2022). The latter tries to keep
up with these technological implementations. As such a broad and essential sector for
society, AI’s applications in construction are innumerable. However, this situation is usually
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a disadvantage in the construction sector because many variables
make it difficult to control the assessment process Torres et al.
(2020).

Civil engineering focuses on designing, constructing,
supervising, and maintaining urban infrastructure. Undoubtedly,
most of the existing infrastructure is built with reinforced concrete,
which implies using the two most used materials in construction
worldwide, concrete and steel Martinez-Molina et al. (2021);
Guzmán-Torres et al. (2021e). For this reason, it is crucial to
carry out damage assessment in reinforced concrete effectively,
efficiently, and objectively.

Corrosion is one of the main problems impacting reinforced
concrete infrastructure, which directly affects the structural
backbone exposed to the natural elements from spalling
problems and impacts the security and durability of reinforced
concrete structures Castañeda-Valdéz and Rodriguez-Rodriguez
(2014). Usually, there are different approaches to monitor
damage on concrete structures, most of which are supported by
visual inspection techniques. In most cases, this methodology
becomes subjective. Consequently, it might need to be more
consistent, in addition to the fact that a considerable amount of
time and economic resources are needed tomanage the evaluation of
the current state of concrete structures Guzmán-Torres et al. (2022).
On the other hand, when the inspection methods are not visual,
electrochemical and non-destructive tests (NDTs) such as ultrasonic
pulse velocity, electrical resistivity, carbonation resistance, and
resonance frequencies are usually used, having produced
acceptable results Bungey and Grantham (2006); Breysse et al.
(2021); Smirnova et al. (2020). However, the use of these
techniques requires sophisticated equipment and skilled labor.
Also, the NDTs should be complemented with other techniques
to provide a more comprehensive assessment of the concrete
conditions. Some of the limitations in the use of NDTs are as follows:

• Interpretation of results. Usually, the NDT may require
interpretation by trained professionals, and the operator’s
skills can affect the results.

• Variability in concrete properties. The different conditions of
the structures might affect the accuracy and reliability of NDT
outcomes.

• Cost. NDTmethods can be expensive, and the cost is related to
the size of the structure to be analyzed.

• Surface conditions. For instance, the moisture grade can affect
the results’ accuracy.

These limitations highlight the necessity of implementing direct
and feasible methodologies like ML techniques.

The exciting field of computer vision (CV) emerges from DL
theory, which focuses on vision systems that execute a specific task
on images and videos. These tasks detect, classify, and segment
objects into images, photographs, and videos. The state-of-the-art
shows success stories from adopting AI methods to monitor
concrete materials and structures. The current research shows
multiple DL-related works involving typical analysis problems.
Some of them are connected with the property prediction of
concrete and its behavior when subject to different kinds of loads
(compressive strength, tensile strength, and flexural strength), an
analysis of mixtures that include natural organic polymers, and

concrete materials that involve other properties Guzmán-Torres
et al. (2021a); Tahwia et al. (2021); Guzmán-Torres et al. (2021d);
Bui et al. (2018); Guzmán-Torres et al. (2021c); Naderpour et al.
(2018); Yaseen et al. (2018); Deng et al. (2018); Behnood et al.
(2017); Belyakov et al. (2021); Yakovlev et al. (2021); Tayeh et al.
(2022); Zeyad et al. (2022).

Studies such as concrete analysis under extreme load conditions,
corrosion risk estimations, methods for predicting resistance in
concrete elements under the action of fire, and estimation of
durability on concrete specimens have been performed with
computational approaches Naser (2021a); Guzmán-Torres et al.
(2021b); Naser and Kodur (2022); Naser (2021b); Guzmán-
Torres (2022).

It is important to note that several notable works in machine
learning should be considered as the use of these techniques
continues to increase for various applications. For example,
Solhmirzaei et al. (2020) presented a data-driven ML framework,
which uses multiple ML algorithms to predict the failure mode and
shear capacity of ultra-high-performance concrete (UHPC) beams.
In addition, the importance of explainability in ML models is
highlighted in a study by Cakiroglu et al. (2022). They developed
data-driven ML models using 719 experiments to predict the axial
compression capacity of rectangular concrete-filled steel tubular
columns Cakiroglu et al. (2022).

The implementation of ML algorithms has increased the
effective evaluation of infrastructure. In a recent study, Zhen Sun
et al. (2022) proposed a method combining an ML approach to
evaluate the effectiveness of the tuned mass dampers. The authors
used seven ML techniques to generate the predictive models using
properties such as temperature and wind as input data. In addition
to this approach, standard algorithms that use artificial neural
networks (ANNs) remain prevalent nowadays, as we can observe
in a study by Hemmatian et al. (2023), where the maximum fiber
pull-out force and corresponding bond slip are predicted
using ANNs.

Other works include a graphical user interface (GUI) to aid
practicing engineers in developing new technological tools. It is
possible to appreciate the study by Hemmatian et al. (2023), where a
simple GUI was developed to accurately estimate the shear strength
of fiber-reinforced polymer-reinforced concrete beams. It
demonstrated a high level of accuracy and excellent performance.

In parallel, AI has been considered for more complex
approaches, such as the analysis of images in civil engineering
through convolutional neural networks using segmentation,
classification, and detection of failures on concrete surfaces
Ranjbar et al. (2021); Wu et al. (2021); Dais et al. (2021); Yang
et al. (2020); Kang et al. (2020); Mei et al. (2020); Tabernik et al.
(2020); Zhang et al. (2020), Zhang et al. (2019); Feng et al. (2019);
Liu et al. (2019); Choi and Cha (2019); Dung et al. (2019); Li et al.
(2019); König et al. (2019); Liu et al. (2019); Bang et al. (2019); Chen
et al. (2019); Silva and Lucena (2018); Zhang et al. (2018); Cha et al.
(2018); Li et al. (2018); Jenkins et al. (2018); Dorafshan et al. (2018);
Gopalakrishnan et al. (2017); Cha et al. (2017); this is one of the most
elegant and impressive ways to represent pathologies, issues, and
behavior related with infrastructure.

The study aims to demonstrate how some AI methods aid in
spotting reinforced concrete damage, specifically corrosion damage.
This is one of the most concerning problems in infrastructure
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nowadays. The approach used in this study, the followed steps, the
advice of what hyperparameters must be changed in order to obtain
a better performance, and the interpretability of the results produced
by the model explain the ML model performance and make the
implemented model more easily interpretable.

ML is helpful in structural damage detection because it can help
identify and analyze complex patterns that are difficult for humans
to detect. This study highlights the necessity of CV applications
because it emphasizes the early detection of damage and aids in
corrosion prevention, leading to increased safety, reliability, and cost
savings. This study intends to demonstrate how concrete visual
inspection and damage detection can be deployed in real-time, in
contrast to other ML models which perform object detection in
static images.

The analysis of this problem and its development is of great
interest to the construction and maintenance sector to reduce the
requirements of economic and human resources.

2 The corrosion problem and a
computer vision approach

2.1 Corrosion processes on concrete
structures

Corrosion of embedded reinforced steel is one of the main
problems in concrete structures. It has become a crucial topic that
requires the full attention of maintenance engineers who work with
concrete structures, such as those who maintain bridges and roads
Kessler et al. (1997).

The phenomenon of reinforcing steel oxidation significantly
affects the functional properties of reinforced concrete, such as its
adhesion. Additionally, this phenomenon induces crack generation
and spalling problems over concrete surfaces, which compromises
the structural integrity del Valle Moreno et al. (2001).

Corrosion is an expression often used in metal degradation because
of the electrochemical process. It causes considerable damage to
buildings, bridges, ships, and cars Chang and Goldsby (2013). The
corrosion process might start when aggressive agents such as chlorides,
sulfates, and carbon dioxide penetrate the concrete matrix Borges et al.
(1998). In civil infrastructure, the metals are often used as ceramic
reinforcement, as can be noticed in the reinforced concrete, metallic
structures, liquids, gas pipelines, and electric installations coated with
insulating polymers. In reinforced concrete, ferrous alloys—basically
metals—are the predominant ones.

The corrosion might cause critical damage to reinforced
concrete as cracks and spalling. These damages result in low
performance of concrete structures and cause a considerable
reduction in the deformation capacity of the reinforcing steel.
These issues put at risk the security of the building. Thus, the
preventive actions, evaluation, detection, and control of the
corrosion process are of paramount interest Herrera et al. (2022).

To mitigate the issues of corrosion in concrete structures, new
concrete structures must be designed by a durability criterion,
avoiding resistance-based methods such as Duff Abrams and the
ACI (American Concrete Institute) tables, which are relied upon for
the resistance criterion. Instead of resistance criteria, the idea is to
design mixtures by durability. The ACI provides a design method

considering this approach. In the construction processes, many
factors are involved in the mixture performance, but mainly, the
durability is directly related to the water–cement ratio. The
water–cement ratio equal to or lower than 0.44 produces ceramic
matrices with a lower percentage of interconnected pores, thus
reducing the probability of presenting corrosion problems.

The cost of controlling corrosion on the infrastructure may be
translated into insecurity for users, building demolitions, and the
need for new civil infrastructure, all of which require considerable
energy and resources, both human and economic. Therefore, the
accurate and efficient detection of corrosion in concrete structures is
of great importance in the civil engineering field, and CV can be a
valuable tool in this regard.

2.2 Computer vision perspective

CV is a rapidly advancing field, made possible by recent
refinements in AI and DL. As a society, we rely on technological
tools to perform our daily activities efficiently, andCV applications have
become universal in our everyday lives through the smart devices at our
disposal. Facial recognition is an area in which CV projects have made
significant progress. Smartphones, for instance, are increasingly better at
recognizing faces to unlock themselves. CV is now a broad field that
encompasses a wide range of techniques, including traditional CV, ML,
and DL algorithms. Traditional CV algorithms rely on handcrafted
features to extract and identify relevant information from images,
whereas ML algorithms can be used to classify images or detect
objects. One commonly used ML algorithm for these tasks is the
support vector machine (SVM) technique. DL algorithms have
demonstrated significant improvements in the precision of many
CV applications, including object detection, image classification, and
image segmentation.

2.2.1 Computer vision pipeline
Vision systems consist of two primary components: sensing

devices, such as cameras, and interpreting devices, typically
workstations or other computing devices. While the specific
problems addressed by CV applications can vary, most vision
systems use a sequence of distinct steps to process and analyze
image data. These steps are commonly referred to as a CV pipeline,
which involves acquiring input data, preprocessing the data, feature
extraction, analysis, and recognition, and finally, the application of
ML techniques to make predictions based on the information
extracted from the image. Figure 1 illustrates the steps involved
in a typical CV pipeline.

2.2.2 How computers see the images
Dealing with images or videos as input data is a typical routine in

CV applications. For instance, if we refer to grayscale, it is possible to
represent an image in matrix notation. CV approaches represent a
grayscale photograph as a function of two variables, x and y, which
define a two-dimensional area. A grid of pixels can represent a digital
image. The pixel is the raw building block of an image. Each image
consists of a set of pixels representing the light intensity in a given
location in the photograph.Whenwe look at an image or a photograph,
we see objects, surfaces, colors, landscapes, and textures. However, that
is not the case with computers. For computers, a grayscale image looks
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like a two-dimensional array of pixel values. Figure 2 represents an
image with a size of 44 × 44. This size indicates the width and height of
the image, where the figure has 44 horizontal and 44 vertical pixels. That
means there is a total amount of 1,936 pixels, and each one in the array
represents the brightness intensity in each pixel; 0 represents black, and
255 represents white.

The previous condition applies to grayscale images, but color
images are different. In color images, instead of representing the
pixel value with one number, the value is represented by three
numbers: the intensity of red (R), green (G), and blue (B),
representing the intensity of each color in the pixel. Therefore,
the system is described in an RGB scheme.

3 Methodology

3.1 YOLOv3: A general overview

YOLOv3 is an advanced and sophisticated algorithm for detecting
real-time objects based on a single stage. This single-stage algorithm is

supported on a complex CNN, which is a significant improvement over
previous versions, such as YOLO Redmon et al. (2016) and YOLOv2
(YOLO9000) Redmon and Farhadi (2017); Figure 3, taken directly from
a study by Zhao et al. (2020); itshows the general architecture of the
YOLOv3 algorithm implemented in this study. YOLOv3 architecture is
primarily based on Darknet-53, which contains 23 residual units He
et al. (2016). Each residual unit includes a 3 × 3 convolutional operation
and a 1 × 1 operation, and at the end of each residual unit, a layer is
added between the input and output vectors. These residual units are
responsible for calculating the convolutional feature maps over each
complete image used as an input parameter in the model. Each
convolutional layer contains three sequential layers: a convolution
layer O’Shea and Nash (2015), a batch normalization layer Ioffe and
Szegedy (2015), and a leaky rectified linear unit (ReLU) layerMaas et al.
(2013).

The YOLOv3 backbone is performed across five separate
convolutional layers. Each convolutional layer works with a stride
equal to two to reduce the feature map dimensionality and becomes
more efficient in the operations performed during the training
process. The ImageNet dataset Deng et al. (2009) is used to pre-

FIGURE 1
Computer vision pipeline.

FIGURE 2
Image representation on computers.
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train the backbone Darknet-53 Redmon (2013). It has proved that it
is capable of producing paramount results compared to state-of-the-
art feature extractors such as RetinaNet Lin et al. (2017),
DSSD513 Fu et al. (2017), ResNet-101, and ResNet102 He et al.
(2016), consuming less computational resources Redmon and
Farhadi (1804).

First, YOLOv3 operates by splitting the input image within a
grid of cells, where each one is responsible for predicting a bounding
box and whether the bounding box center falls within it. Within this
process, each grid cell forecasts a bounding box involving
parameters such as x and y coordinates, the width and height,
and the confidence. Furthermore, a class prediction is related to
each cell. Eventually, the bounding boxes and the class probabilities
map are combined into a final set of class labels and bounding boxes.

YOLOv3 predicts three bounding boxes at each grid cell on three
output feature maps. A general rule is that each predicted box has
one confidence variable represented by tc, four class variables (ti, i =
1, 2, 3, 4), and four coordinate variables (tx, ty, tw, th). All the
predicted variables are transformed into the object’s confidence, the
probability of each class, and the location to generate the predicted
results Zhang et al. (2020). The object confidence C denotes the
likelihood of a box containing an object, and this probability is
computed using a sigmoid function, which is defined by the
following equation.

C � σ tc( ) � 1
1 + e−tc

. (1)

Another meaningful task is the location prediction;
YOLOv3 predicts the central coordinates of the bounding box,

which is relative to the location of the grid cell in such a way
that the center coordinates are between 0 and 1. Figure 4 shows that
if the grid cell is offset from the upper-left corner of the image at (Cx,
Cy), then the predicted bounding box has coordinates (bx, by).

The last fully connected layer of the model uses a softmax
classifier to detect the object of interest, which, in this case, is
corrosion damage in concrete structures. However, since this
problem only detects corrosion damage, the output class

FIGURE 3
YOLOv3 architecture.

FIGURE 4
Bounding box, anchor, and location to the prediction box
process.
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corresponds to only one node. The softmax function transforms the
output variables into a multi-class probability distribution, with each
class corresponding to a different object category. Specifically, the
model predicts the presence or absence of corrosion damage on
reinforcing steel exposed to weathering by spalling damage or
corrosion processes within the cementitious matrix.

3.2 Performance metrics

In this study, the performance of the YOLOv3 model was
evaluated utilizing established object classification metrics,
including precision, recall, and F-score in all the stages, training,
testing, and validation.

Precision is the ratio between the valid number of instances and
the total retrieved instances, and it is determined by the following
expression.

precision � TP

TP + FP
, (2)

where TP and FP represent the true positive and the false
positive numbers, respectively. Recall is related to the false
negative FN and explain how many true predictions were
established as false predictions; also, it is known as sensitivity,
and its formulation is denoted by Eq. 3.

recall � TP

TP + FN
. (3)

F-score aids to generalize the performance of a model with one
metric. This metric uses precision and recall in a simple
mathematical formulation. Its function is written as follows:

F − score � 2pprecisionprecall
precision + recall

. (4)

In addition to the aforementioned classification metrics, a
detection indicator was applied to the model evaluation,
Intersection over Union (IoU). The aim of the detection
indicator is to evaluate how the YOLOv3 framework is
performing the training and testing of corrosion images on
concrete structures. The essence of the detection indicator can
be summarized as follows; only the anchor with the highest value
of the IoU with true prediction will be responsible for the object
prediction. Mathematically, the IoU parameter is defined by

IoU � Area of overlap

Area of Union
. (5)

Thus, assessing Eq. 5, it is possible to notice that IoU is simply
a ratio; therefore, Eq. 5 can be easily represented, as shown in
Figure 5.

Additionally, in the context of object detection metrics, we
cannot avoid the implementation of important indicators such as
average precision (AP), mean average precision (mAP), and the
mean average precision 0.5 (mAP0.5). AP is a critical metric in
object detection problems, and it is defined by the area under the
precision–recall curve. The mAP is determined by averaging the
AP overall classes or IoU thresholds. The parameter mAP0.5 is
related to the mAP calculated for an IoU threshold of 50%, and

the parameter mAP0.5:0.95 represents the average mAP
calculated over IoU thresholds of 50%–95% in intervals of 5%.

Another aspect to be considered is that YOLOv3 uses the mean
square error (MSE) loss function to train its neural network. It
compares the predicted bounding box coordinates and class
probabilities with the ground-truth annotations. The MSE loss
function penalizes the network more severely for larger errors,
which is desirable for object detection tasks where accurate
bounding box predictions are crucial.

Using the MSE loss function in YOLOv3 also has the advantage
of being computationally efficient, as it can be easily computed using
vectorized operations. However, other object detection models may
use different loss functions depending on the specific requirements
of the task. The MSE is given by

MSE � 1
N

∑
N

i�1
yi − ŷi( )2, (6)

where N is the number of samples, yi is the true value for sample i,
and the ŷi is the predicted value for sample i.

3.3 Dataset

3.3.1 Dataset details
To address the insufficiency of an established image dataset

about corrosion damage on concrete structures, this research
provides a dataset of images built by the authors,
CONCORNET2023. The image dataset contains 790 images,
where each image denotes a particular concrete structure with
some sign of corrosion damage.

The initial dataset was built using 159 images. However, the
number of images was augmented introducing distortions in the
initial dataset, achieving 790 images. It is possible to achieve CV
tasks with a small dataset, but it can be more challenging compared
to using a larger dataset. Training DLmodels for CV tasks requires a

FIGURE 5
IoU representation.
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significant amount of labeled data to learn and generalize well. With
a smaller dataset, the model may not be able to learn all the necessary
features and patterns in the data, leading to overfitting or poor
performance.

To overcome these challenges, there are several techniques that
can be used to improve the performance of CV models with small
datasets, such as data augmentation, transfer learning, and
regularization. While these techniques can help improve the
performance of models trained on small datasets, it is relevant to
keep in mind that the model performance will ultimately be limited
by the quality of the data available. Therefore, it is always
recommended to collect as much high-quality data as possible to
train robust and accurate CV models. For this study, data
augmentation was implemented to address the small data issue.

All the images in CONCORNET2023 were captured using
smartphones at different sites and places with random
perspectives, angles, distances, and lighting conditions. These
varieties or perturbations allow the generation of a robust model
capable of detecting corrosion damage on concrete structures
considering several circumstances. The image pixels range from
1,280 × 960 up to 12,400 × 12,400, i.e., the images contain different
resolutions resulting in a challenging task for the model within the
training stage at the moment of finding the minimal loss function
value. Thus, the recognition of damaged elements in different
conditions makes the model robust and flexible.

The input image size that YOLOv3 accepts by default is 416 ×
416; however, it can also be trained and used with larger input
sizes, such as 608 × 608 and 832 × 832. As described, the size of the
images in CONCORNET2023 is bigger than the one established by
YOLOv3. This can be addressed by setting the - -img parameter

during the training process. For the case of interest of this article,
this parameter was set as—img 832. It is worth mentioning that the
input image size can be adjusted during training and inference
using data augmentation and resizing techniques. This can
improve the robustness and precision of the model for different
input image sizes and aspect ratios. Figure 6 shows some
representative photographs of the image dataset built and
trained by the authors.

3.3.2 Annotated dataset
The image collection is one of the most meaningful tasks in CV

projects because the collected images will feed the model; therefore,
they need to be correctly annotated or labeled. In this step, it is
necessary to teach the model what is what (image labeling), and in
consequence, the model learns to identify the object it has to detect.
Undoubtedly, there are broadly open-access and non-open-access
tools to perform the labeling image process. For this research, we
used a traditional standard open-access method for labeling all the
images, the LabelImg tool. This framework allows the user to
visualize each image and manually generate a bounding box that
delimits the object we want to identify in our detector. Figure 7
shows the LabelImg tool interface and the labeling process in some
sample images.

3.3.3 Data augmentation
It is essential to generate reliable and robust models in the

development processes of AI applications, and the availability of
a great amount of data comes to aid in reaching this purpose. For
this reason, it is necessary, in some cases, to consider increasing
the image dataset, because the image conditions in the inference

FIGURE 6
Representative images contained in CONCORNET2023.
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processes might differ from the considered conditions within the
model training process. Therefore, it is crucial to add noise to the
images to distort in unique forms the actual photographs and
generate modified versions of theirs Elgendy (2020).

By introducing noise into the images, the model is trained and
prepared to receive photographs with realistic and different
conditions, which will feed the model to test its precision. These
modifications include changes in light and brightness, object
arrangement to be detected, different textures, offsets, angles, and
rotations. Also, including distortion in the dataset helps increase the
number of photographs.

The process of increasing the dataset is considered an efficient
method of regularization and has become an indispensable step in
the pipeline of CV problems to improve model performance.
Figure 8 shows the effect of the introduction of noise in a sample
image taken from the dataset built in this work. So, the parameters
used to generate eachmodification in the data augmentation step are
listed as follows:

• Channel shift = 15
• Horizontal flip = true
• Horizontal shift = 0.1
• Random rotation = 0.30

• Random zoom = [0.5, 1.0]

From Figure 8 and the parameter values used in each
modification for augmenting image data listed previously, it is
possible to remark that the introduced distortions in the images
have a significant effect on them, and themodel is trained using all of
these perturbations.

3.4 Model implementation steps

3.4.1 Computational details
The compilation processes were performed on a personal

workstation with an Intel Core i7-8750H @ 2.20 GHz, 24 GB of
random access memory, and an NVIDIA GTX 1050ti GPU with
4 GB of memory type GDDR5. The YOLOv3 framework used in this
study is based on the Ultralytics YOLOv3 version, which is an open-
source framework. The GPU-accelerated software environment is as
follows: CUDA-11.5, cuDNN-7.6.5 matplotlib-3.2.2, numpy-1.18.5,
opencv-python-4.1.2, Pillow-7.1.2, PyYAML-5.3.1, requests-2.23.0,
scipy-1.4.1, torch-1.7.0, torchvision-0.8.1, tqdm-4.41.0,
tensorboard-2.4.1, pandas-1.1.4, seaborn-0.11.0, and a wandb
account.

FIGURE 7
Labeling process of some representative images.
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3.4.2 Organizing directories
It is crucial to highlight that to run the YOLOv3 framework

satisfactorily, it is necessary to have a correct directories’
organization since the information that will be used (Images and
labels) needs to be available according to the paths involved in the
YOLOv3 framework.

YOLOv3 framework folder distribution includes a folder called
data, which, in turn, contains different folders, of which, train, test,
and val are of interest to us because these folders store the images
that will be used as part of training, testing, and validation. Inside
each folder previously mentioned, there are two folders, images and
labels. The first one contains the photographs, whereas the folder
named labels stores the corresponding text files of each one of the
images stored in the images folder. Each text file must contain the
coordinates of the location of the labeled object.

For the image distribution, the authors considered a standard
split ratio of 80% for training, 10% for testing, and 10% for

validation. Thus, 632 images were selected for training, and
79 images for testing and validation.

It is worth noting that all the images must be in a JPEG format.
Otherwise, the model will generate an error in the compilation stage
due to incompatibility with other formats. Within the root file of the
YOLOv3 folder lie the scripts with which the model is executed.
Without this correct organization, it will be impossible to run the
model appropriately.

3.4.3 Training the model
By training the YOLOv3 model, it is necessary to have in mind

some hyperparameters that need to be tuned. By default,
YOLOv3 proposes specific values for the different
hyperparameters specified in the model and also offers various
configurations for these hyperparameters. This configuration
depends on the performance level that the user wants to obtain
and the problem that will be addressed. By regular compilations, the

FIGURE 8
Data augmentation representation in a sample image with different distortions.
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documentation suggests using the hyp. scratch configuration, which
presents the following settings.

• lr0: 0.01 0 initial learning rate (SGD = 1E-2, Adam = 1E-3)
• lrf: 0.1 0 final OneCycleLR learning rate (lr0 * lrf)
• momentum: 0.937 0 SGD momentum/Adam beta1
• weight decay: 0.0005 0 optimizer weight decay 5–4

• warmup epochs: 3.0 0 warmup epochs (fractions ok)
• warmup momentum: 0.8 0 warmup initial momentum
• warmup bias lr: 0.1 0 warmup initial bias lr
• box: 0.05 0 box loss gain
• cls: 0.5 0 cls loss gain
• cls pw: 1.0 0 cls BCELoss positive weight
• obj: 1.0 0 obj loss gain (scale with pixels)
• obj pw: 1.0 0 obj BCELoss positive weight
• iou t: 0.20 0 IoU training threshold
• anchor t: 4.0 0 anchor-multiple threshold
• fl gamma: 0.0 0 focal loss gamma (efficientDet default
gamma = 1.5)

• hsv h: 0.015 0 image HSV-hue augmentation (fraction)
• hsv s: 0.7 0 image HSV-saturation augmentation (fraction)
• hsv v: 0.4 0 image HSV-value augmentation (fraction)
• degrees: 0.0 0 image rotation ( ± deg)
• translate: 0.1 0 image translation (± fraction)
• scale: 0.5 0 image scale (± gain)
• shear: 0.0 0 image shear (± deg)
• perspective: 0.0 0 image perspective (± fraction), range
0–0.001

• flipud: 0.0 0 image flip up–down (probability)
• fliplr: 0.5 0 image flip left–right (probability)
• mosaic: 1.0 0 image mosaic (probability)
• mixup: 0.0 0 image mixup (probability)
• copy paste: 0.0 0 segment copy paste (probability)

The training stage was carried out in two phases: the first one,
following the default settings suggested by the framework, and the
second one, adjusting the hyperparameters that were necessary for
tuning. The first training stage was for observing how the model
performed throughout the image dataset. However, the model
performance through hundred iterations denoted the necessity of
tuning hyperparameters such as the learning rate, the momentum,
the patience, and the weight decay. All of them are hyperparameters
that come in handy for overcoming overfitting problems.

Occasionally, using the default values of the YOLOv3 in the
training stage works well. In most cases, this depends on the object
intended to spot, remembering that hyperparameters proposed in
the YOLOv3 framework were used for training the COCO dataset (a
large-scale object detection, segmentation, and captioning dataset
with several features) suggested by Microsoft Lin et al. (2014).

For the second stage of training, 30 hyperparameter
combinations in the experiments were carried out to improve the
model performance. The best proposal for the values of the
hyperparameters that satisfactorily performed the task of
detecting corrosion damage, at least for this work, is as follows:

• lr0: 0.00010 initial learning rate (SGD = 1E-2, Adam = 1E-3)
• lrf: 0.01 0 final OneCycleLR learning rate (lr0 * lrf)
• momentum: 0.937 0 SGD momentum/Adam beta1

• weight decay: 0.005 0 optimizer weight decay 5–4

• warmup epochs: 3.0 0 warmup epochs (fractions ok)
• warmup momentum: 0.8 0 warmup initial momentum
• warmup bias lr: 0.1 0 warmup initial bias lr
• box: 0.05 0 box loss gain
• cls: 0.5 0 cls loss gain
• cls pw: 1.0 0 cls BCELoss positive weight
• obj: 1.0 0 obj loss gain (scale with pixels)
• obj pw: 1.0 0 obj BCELoss positive weight
• iou t: 0.15 0 IoU training threshold
• anchor t: 4.0 0 anchor-multiple threshold
• fl gamma: 0.0 0 focal loss gamma (efficientDet default
gamma = 1.5)

• hsv h: 0.015 0 image HSV-hue augmentation (fraction)
• hsv s: 0.7 0 image HSV-saturation augmentation (fraction)
• hsv v: 0.4 0 image HSV-value augmentation (fraction)
• degrees: 0.0 0 image rotation (± deg)
• translate: 0.1 0 image translation (± fraction)
• scale: 0.5 0 image scale (± gain)
• shear: 0.0 0 image shear (± deg)
• perspective: 0.0 0 image perspective (± fraction), range
0–0.001

• flipud: 0.0 0 image flip up–down (probability)
• fliplr: 0.5 0 image flip left–right (probability)
• mosaic: 1.0 0 image mosaic (probability)
• mixup: 0.07 0 image mixup (probability)
• copy paste: 0.07 0 segment copy paste (probability)

It is worth realizing that the previous configurations were
implemented using the weights of the best epoch in the first
stage of training, i.e., the use of partial transfer learning. The
outcomes of the training stages will be discussed shortly in the
next section. But for the moment, it is relevant to mention that the
success of the training stage depends on many circumstances, such
as the correct labeling process, the hyperparameter tuning during
several experiments, and the robustness of the image dataset.

4 Results and discussion

4.1 Training outcomes

As previously mentioned, the training process was executed
twice. The results of the first stage are presented in the following
part, beginning with the box loss function and its corresponding box
validation loss function in Figure 9. The figure demonstrates how the
learning process occurred over 400 epochs.

As depicted in Figure 9, the results from the initial training stage
show a tangible overfitting problem during the first few epochs, with
a noticeable divergence between the box loss function and the
corresponding box validation loss function. It indicates that while
the model is gaining knowledge during the training process, it is not
reflecting this in the validation stage, thus leading to a performance
gap between the two stages.

Similarly, Figure 10 also demonstrates an overfitting issue, with
the training and validation graphs diverging as the training process
proceeds. The primary goal of the training stage is to ensure a
convergence between the training and validation performance or at
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least achieve equivalent performance, indicating that the model is
capable of performing equally well in both training and validation
instances.

For YOLOv3, it is necessary to compute both loss functions, box
and object. It is because the model calculates the loss for both
elements since the first task is to detect the object in the photographs,
and the second activity is to delimit it with a bounding box. The loss
of the latter is compared with the size of the bounding box proposed
in the labeled images.

In the second training stage, the overfitting problem was
addressed to obtain an adequate performance in the validation
set. This was possible due to the correct manipulation of the
hyperparameters—denoted in the previous section—in the
YOLOv3 framework. Both performances, training and
validation, in box loss are depicted in Figure 11.

After adjusting the hyperparameters, the overfitting problem
was successfully addressed, as can be observed in Figure 11,
where the discrepancy between the training and validation loss
values decreased to a negligible value of 0.01871 over 31 epochs.
In the second training instance, a hyperparameter value of 20 was
assigned to the patience parameter, which is a technique to
mitigate overfitting. Specifically, the patience parameter
monitors the validation loss and concludes the training
process when the model fails to improve for a certain number
of epochs (the patience value). As a result, the second training
stage consisted of only 31 epochs.

Similar to the box element, the losses for the object were also
computed and can be observed in Figure 12 for both the training and
validation stages.

As demonstrated in the box element, and in the object element,
there is no evidence of overfitting problems. The absence of
overfitting problems can also be observed in the object element,
with a minimal difference value of 0.00423 between the training and

FIGURE 9
Training and validation performances in the box loss function
during 400 epochs.

FIGURE 10
Training and validation performances in the object loss function
during 31 epochs.

FIGURE 11
Training and validation performances in the box loss function
during 31 epochs.
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validation stages. The corresponding performance of both training
stages is presented in Table 1, which includes the numerical values of
other complementary metrics.

The results presented in Table 1 demonstrate the
significance of hyperparameter tuning to achieve optimal
model performance. The chosen hyperparameters successfully
lead the model toward the correct prediction path, as evidenced
by the low values of the loss functions. It is important to note
that the model performance in terms of overall precision is
82.121%. The behavior of the hyperparameters is reflected in the
accuracy of the detection objects, which will be presented
shortly.

Real-time object detection systems are subject to variability,
and their precision can be influenced by various factors.
Nonetheless, it is a widely adopted practice to set the
detection threshold at a minimum of 20% for real-time
detection. Therefore, achieving a precision value of 82.121% is
regarded as satisfactory.

4.2 Detection diagnostic

Following the fine-tuning process, a robust detector for
concrete-corrosion damage was successfully developed. Figure 13
reveals the capability of the built detector to identify areas that have
been damaged by corrosion. All the photographs exhibit some level
of corrosion damage, and the reinforcing steel is exposed to the
natural environment. This type of corrosion damage is generally
caused by spalling, which is a prevalent pathology in concrete with
poor quality control and unsatisfactory designs.

From the analysis of Figure 13, it is evident that the developed
detector can effectively detect corrosion damage with high precision
and confidence. The detected-element confidence levels are shown
by the labels generated by the model, which consist of the term
“corrosion damage” followed by a confidence value. The confidence
value indicates the level of certainty with which the model identifies
the element as a corroded area. A confidence value of 1.0 means that
the model is 100% sure that the recognized object contains corrosion
damage, and this trend is consistent across the other images.

In object detection with YOLO frameworks, it is common to
observe confidence values that oscillate between 20% and 100%.
This range is considered acceptable as detections are performed in
real-time over dynamic or static elements, such as videos and images.
Therefore, the confidence levels shown in Figure 13 are considered high
and satisfactory.

The corrosion detector on concrete structures performs adequately
by detecting the shape of steel bars, the coloration of corrosion (maroon,
dark brown, and dark orange), and its combination with the gray color
(the concrete color). However, the detector might fail in some object
detection with corrosion merged with other elements or textures, as it is
possible to notice in Figure 14.

The precision of the YOLOv3 model for object detection can be
affected by many factors, which are as follows:

• Training dataset size. The model precision improves with the
size of the training dataset. Larger datasets provide more
examples for the model to learn from.

• Hyperparameter selection. Hyperparameters, such as the
learning rate, batch size, and anchor boxes, can affect the
training process and the precision of the final model.

• Image quality. The quality of the input images, such as lighting
conditions and image resolution, can affect the model’s ability
to detect objects accurately.

• Choice of architecture. The YOLOv3 model architecture, such as
the number of layers and the size of the input image, can affect the
ability of the model to detect objects of different sizes and shapes.

FIGURE 12
Training and validation performances in the object loss function
during 31 epochs.

TABLE 1 Model performance for various metrics in both stages, first and second.

Metric First training stage Second training stage First validation stage Second validation stage

Precision 0.57862 0.71410 0.61972 0.82121

Recall 0.67027 0.72972 0.41891 0.77026

mAP0.5 0.34875 0.42003 0.38575 0.4830

mAP0.5:0.95 0.22976 0.22744 0.26422 0.36762
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The limitations of the model developed in this study can be
mitigated through several measures. One possible solution is to
increase the size of the dataset used to train the model. This
approach would provide the model with a more diverse dataset
and allow it to learn more robust features to detect corrosion in
concrete structures.

Additionally, using a newer version of YOLO that can handle
higher-resolution inputs might also improve the model’s accuracy. It
will allow the model to capture finer details and enhance its ability to
distinguish between corrosion and other textures or elements. These
improvements will be addressed in future work to enhance the
accuracy and robustness of the model.

Figure 14 highlights some limitations of the model trained in this
work. In the first photograph, although there is corrosion damage in
almost all of the area, the model only detects a specific spot. It could
be because the corrosion is merged with white elements, which were
not common in the training set. It indicates the necessity of more
diverse data to train the model. In the second photograph, the model
fails on the delimitation at the lower box. It detects a small corroded
bar, but the bounding box is too large for the detected element. In the
third photograph, the model fails to detect two objects: the top one is
a steel mesh that simulates a mesh of reinforcing steel on a concrete
element, and the bottom one is a rock with a color similar to the
corroded bar. It is crucial to mention that even the human eye may

FIGURE 13
Corrosion damage localization on concrete structures using the built detector.

FIGURE 14
False positives and no satisfactory detection on concrete structures.
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find the third photograph challenging. However, in general terms,
the model performs well on various concrete structures, as shown in
Figure 13.

5 Conclusion

Nowadays, technological innovations are being applied to
various fields of science. However, some crucial areas of national
development still have not fully benefited from these innovations.

This research provides an image dataset that contains
presentations of corrosion damage on concrete structures. The
dataset is used to train a state-of-the-art framework called
YOLOv3, which can detect corrosion damage on concrete
structures. The framework hyperparameters were modified
through several experiments to achieve the best performance of
the model.

It is crucial to highlight that the images need to be cleaned
and filtered to achieve a homogeneous distribution in the dataset
used to train the model. Although the data distribution was
heterogeneous (with different scales, varying capture devices,
and sizes) in this work, the adjustment of the hyperparameters
was useful for reducing and avoiding overfitting problems.

The results provided by the model with their respective
modifications show that it is possible to spot the damage
corrosion on concrete structures accurately. However, to build a
more robust model, it is suggested to build a larger dataset (a task
that will be addressed in future work).

Today, detecting corrosion tasks on concrete structures using
mobile devices is a real challenge because the corrosion problem
presents a wide range of features to be considered. These features
include different color levels of the corrosion process, the correct
detection of the spalling problem, coloration of the concrete that has
stored corroded steel, accommodating patterns of the reinforced
steel, the reinforced steel exposed over different surfaces,
impregnated dust over the steel (which is common in concrete
structures), and many others.

The corrosion damage problem on concrete structures is a topic
that needs to be taken seriously by governments because it affects the
infrastructure durability, increases maintenance costs, denotes a lack
of correct designs, and indicates poor construction processes.
Therefore, the advancements in the detection of corrosion on
concrete structures made in this research are significant and
relevant because they demonstrate that detecting corroded bars
on concrete is achievable.

Next, the authors conclude with a list of the main findings in this
research:

• The authors provide an image dataset for detecting corrosion
damage on concrete structures using the YOLOv3 framework.

• Frameworks such as YOLOv3 are able to detect objects in
different scenarios. However, the training process of a custom
dataset requires a deeper analysis.

• Generally, when the model is trained as is (using the YOLO
weights by default), the model suffers overfitting problems.

• The acquisition of the images for labeling and training the
dataset must be in approximately the same conditions as
possible.

• An exhaustive hyperparameter fine-tuning might lead to the
best performance of the model.

• The advancements in the detection of corrosion on concrete
structures made in this research contribute to the state-of-the-
art for addressing this problem.
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