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The high seismic hazard of the Italian territory and the vulnerability of its historic
masonry heritage require the development of fragility curves that must be
increasingly reliable and robustly correlated to exposure. To date, national-scale
seismic risk analyses mainly use empirical curves derived from the statistical analysis
of damage induced by past events. These curves have shown good reliability, but
they correlate only with a few typological-structural characteristics of the building,
such as the number of floors, the vertical structure typology or the construction
period. The present research paper aims to overcome this limitation with a hybrid
approach that provides a better exposure characterisation. Specifically, the proposed
strategy integrates the SAVE and Piecewise Rigid Displacement (PRD)methods. SAVE
is an empirical approach based on the damage assessment due to past seismic
events used to identify a seismic behaviour of a structure, while the PRD method is a
numerical approach that solves the boundary value problem for normal, rigid, no-
tension material. It can model different structural typologies, and as a result, it also
provides the value of the horizontal static multiplier that drives the masonry
construction to collapse. An extended numerical campaign is carried out
considering a sample of 750 masonry buildings distributed throughout the Italian
territory and extracted from the PLINIVS typological database. Looking at each
construction, first, a PRD analysis is conducted to define its seismic capacity,
paying special attention to modelling construction details. After that, the SAVE
method is used to classify the construction in a specific seismic vulnerability
class, i.e., from A to C, with decreasing vulnerability. All the buildings belonging
to the same class are then collected, and three fragility curves representative of the
collapse state (one for each vulnerability class) are derived and validated against
empirical and analytical ones commonly adopted in the Literature. The integrated
methodology shows a good agreement between simulations and observations,
confirming the viability of the proposed hybrid methodology for the large-scale
assessment of masonry buildings, providing an effective strategy to plan mitigation
and rehabilitation interventions.
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1 Introduction

Italy is a country exposed to a high seismic hazard as a relevant
part is estimated to be subjected to high seismic actions, i.e., with a 10%
probability in 50 years of acceleration values exceeding 0.225 g
(OPCM et al., 2006). The highest seismic values refer to Calabria,
south-eastern Sicily, Friuli-Venezia Giulia, and the central-southern
Apennines. Average seismic acceleration values refer to the Salento
Peninsula, the Tyrrhenian coast, between Tuscany and Lazio, Liguria,
most of the Po Valley, and the entire Alpine Arch. Sardinia is the least
dangerous region, as only moderate shaking values are expected.
Additionally, the corresponding seismic risk drastically increases as
most areas show a vast presence of old civil buildings, either designed
with outdated rules or suffering from deterioration due to age.
According to ISTAT Census (2001), 60% of residential buildings
were constructed before 1980, and 42.5% are over 50 years old.

Additionally, more than one-half of such buildings were built
before 1970 without paying attention to any seismic rule, especially for
masonry buildings in the historical centres. The combination of the
elevated hazard and the vulnerability of civil buildings has already
resulted in considerable high damage to building heritage and
population, as evidenced by the catastrophic events of the last
50 years. Starting from the earthquake in the Belice area (1968),
15 seismic events with a magnitude greater than 5.5 occurred, and
more than 120 billion euros were allocated to interventions due to
damage. This condition has strongly fostered the development of
structures for managing seismic risk to protect people and building
heritage.

Starting with the 1976 Friuli earthquake, the Italian Civil
Protection system has consolidated the DRM cycle (preparedness,
response, recovery, mitigation) so much that it has become an
international reference, boosting scientific research to develop
models for the assessment of the seismic vulnerability of buildings.
As a result of Civil Protection actions, such effort has been addressed
to the development of shared analysis for the national seismic risk
assessment (Dolce et al., 2021), according to European Guidelines
(Poljansek et al., 2019), in response to the specific requirement of the
Sendai Framework for Disaster Risk (UNDRR, 2015). The last
National Risk Assessment for Italy dated back to the end of
2018 and was promoted by the Department of Civil Protection
(Dolce et al., 2021) through empirical fragility curves based on
available damage and vulnerability data for buildings inspected
after past seismic events (Irpinia 1980; L’Aquila 2009). The
methodology adopted has allowed the seismic risk assessment for
the whole Italian territory thanks to a procedure based on the
convolution of the hazard (OPCM et al., 2006), exposure (ISTAT
Census 2001) and vulnerability.

A seismic vulnerability model represents the expected damage due
to a given level of Peak Ground Acceleration (PGA) for a building
having known typological features. Different approaches can be
adopted to construct a vulnerability model (Calvi et al., 2006): in
particular, observation-based approaches require previous survey
activities in areas that have experienced seismic events. Through
specific post-earthquake seismic forms (i.e., AeDES (Baggio et al.,
2007), Palazzi (Presidenza del Consiglio dei Ministri, 2006), and
Churches (Presidenza del Consiglio dei Ministri, 2013) forms),
devoted to rapid visual screening and structural safety checks
through expert judgments, the information on the buildings’
typological characteristics and level of damage are collected and

reported in a damage database. This information is combined with
shakemaps provided by geology and volcanology research centres,
such as the National Institute of Geophysics and Volcanology—INGV
in Italy, to associate a PGA to each surveyed building based on its
position. Finally, it is possible to derive the correlation among
collected typological characteristics, reached levels of damage and
associated hazard. In the Literature, several observation-based
approaches have been proposed in the context of the development
of seismic fragility curves (the reader is referred to (Benedetti et al.,
1988; Riuscetti et al., 1997; Rossetto et al., 2013; Zuccaro et al., 2021)
and references therein).

Oppositely, mechanical approaches are based on analytical or
numerical structural evaluations, which directly take into account type
of materials, real geometries, the presence of reinforcements or any
other structural feature. However, a high computational and
modelling effort is required to assess several hundreds of buildings.
In the scientific Literature, a few simplified approaches have been
proposed to lower the computational effort for the large-scale
assessment of the seismic vulnerability of masonry buildings. In the
context of masonry structures, mechanical-based methods can be
grouped into three main categories (Shabani et al., 2021):

(i) collapse mechanism-based methods, in which kinematic chains
are used to define and evaluate the collapse multipliers
corresponding to possible failure mechanisms. Non-linear
static or pushover analyses are then adopted to define capacity
curves (Bernardini et al., 1990; Lagomarsino and Podesta, 2004;
Zuccaro et al., 2017);

(ii) capacity spectrum-based methods whose use allows to compute
predetermined capacity curves for each building typology. The
capacity curve is then intersected with the seismic demand to
derive the performance points for different damage thresholds
(D’Ayala et al., 2013; Ansal, 2012; Fajifar, 2000);

(iii) fully displacement-based methods, where buildings are modelled
through an equivalent single-degree-of-freedom system. The
displacement capacity for each damage threshold is compared
to the displacement demand in each corresponding period of
vibration to derive the possibility of crossing the damage
thresholds (Calvi, 1999; Crowley and Pinho eBommer, 2004;
Borzi and Pinho, 2008; De Angelis et al., 2020).

Several methods have been proposed to provide collapse
multipliers for in- and out-of-plane collapse mechanisms of
ordinary masonry building stocks (Bernardini et al., 1990;
Bernardini et al., 2008a; Bernardini et al., 2008b; Zuccaro et al.,
2017; Donà et al., 2020), churches (Lagomarsino and Podesta,
2004; DPCM, 2011) and towers (Torelli et al., 2019) at the building
scale. Sophisticated limit analysis-based methods have also been
developed to define the most probable failure mechanism of 3D
masonry towers at the building scale (Milani, 2019) considering
predefined mechanisms such as rocking, Heyman’s diagonal
cracking, and base shear sliding; an optimisation algorithm finds
the most probable mechanism by minimising the corresponding
failure multipliers. The kinematic limit analysis theorem performed
on NURBS-based elements has been developed to assess the buildings’
aggregates and the ‘domes’ failure behaviour subjected to static
horizontal loads (Grillanda and Milani, 2020a; Grillanda et al.,
2020). Other strategies based on the kinematical approach include
the Discrete Element Method (Cascini and Gagliardo ePortioli, 2018;
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Malena et al., 2019; Gobbin and Lemos, 2021) and Rigid Block Models
(Gilbert and Melbourne, 1994; Baraldi eCecchi, 2017; Portioli and
Cascini, 2017; Angelillo et al., 2018), ore, more in general, methods
based on energy minimization (Gesualdo et al., 2019; Gesualdo et al.,
2020; Fortunato et al., 2022). Other numerical approaches based on
the Static theorem have been proposed. The collapse load is evaluated as
the maximum load for which at least a statically admissible and
equilibrated solution exists. Examples of applications of the Static
theorem on masonry buildings are provided in (Monaco et al., 2018;
Cusano et al., 2021a; Nodargi and Bisegna, 2021a; Cusano et al., 2021b;
Cusano et al., 2021c; Montanino et al., 2021; Montanino et al., 2022).
These mechanical-based approaches allow for numerically computing
the collapse load of specific masonry structures and are independent of
specific seismic events. Analytical methods for seismic fragility curves
have also been proposed for different typologies of buildings, in
particular, for Reinforced Concrete (RC). The most common
approaches are based on non-linear dynamic analyses (Folić and
Čokić, 2021; Manfredi et al., 2022; Ruggieri et al., 2022). The
proposed methods often require a relevant modelling effort in
defining the geometry and a high computational effort to solve the
numerical problem. Some of them also require a detailed material
characterisation to describe the mechanical response correctly
(Monaco et al., 2021). A material description that all too often is
impossible to achieve, particularly when looking at large-scale problems.

This research aims to fill the gap between observation- and
mechanical-based approaches by proposing a novel methodology to
define fragility curves that, on the one hand, can directly take into
account geometrical and material aspects and, on the other hand,
provide a fast strategy for the large-scale assessment of masonry
buildings. This approach founds upon a pipeline that combines the
SAVE methodology (Zuccaro eCacace, 2015), the extensive PLINIVS
database (Cacace et al., 2018) and the Piecewise Rigid Displacement
(PRD) method (Iannuzzo et al., 2018; Iannuzzo and VanMele eBlock,
2020). The PRD approach is a fast energy-based method that allows
framing and solving the Limit Analysis kinematic problem for no-
tension materials through linear or second-order cone programming.
Using a suitable objective function, PRD allows to take any boundary
condition into account and to model several typological features.
Based on the PRD results of the buildings sample extracted from
the PLINIVS database, the SAVE method is then applied to define
fragility curves. Specifically, the first step of the pipeline consists in
defining a sample of structures from the PLINIVS database, which
contains information on the structural-typological features of
hundreds of thousands of Italian buildings. This sample comprises
750 buildings extracted through the most recurrent typologies in the
PLINIVS databasea. The SAVE procedure is then applied to assign to
each building a vulnerability class, which is defined as a function of the
building’s main structural-typological features and calibrated on
damages observed after past seismic events. The analysis is
conducted on the 2D main façade of the building, and a
parametric description of their geometry is provided to generate
digital models. The PRD is then applied to the corresponding
digital models to find the pseudo-static collapse loads. Because of
the fast numerical PRD solving, several hundred buildings are
analysed, and the related results are used to construct fragility
curves for each building vulnerability class.

The paper is organised as follows. Section 2 describes the
theoretical framework, referring to the SAVE procedure and the
mechanical framework on which the PRD method is based; Section

3 introduces the process employed to select the buildings sample and
the numerical approach used to discretise the energy problem in a
mathematical programming optimisation. Section 4 details
geometries, material properties and typological features and how
these are framed in a numerical optimisation referring to 2D
buildings. The results are then presented and discussed in Section
5. A final section outlines the pro and cons of the present methodology
along with future outcomes.

2 Methodology

The present Section briefly recalls the pipeline at the base of the
proposed methodology, whose main structure is depicted in Figure 1.
The first step looks at selecting a sample of 750 building typologies
from the extensive PLINIVS database, which comprises about
240,000 buildings. All the sample buildings are assumed to be
different from each other and have the same frequency of
occurrence for each construction typology. Each building is then
separately analysed using the SAVE procedure to assign a
vulnerability class and the PRD method to define the maximum
horizontal pseudo-static multiplier.

Specifically, as detailed in Section 2.1, the SAVE method reduces
the uncertainty provided by the European Macroseismic Scale EMS98
(Grünthal, 1998) and is applied to link each building to a specific
vulnerability class. Simultaneously, from an analytical standpoint,
each building is numerically processed by the PRD method to find
the maximum allowable horizontal load. The PRDmethod is based on
a pure Heyman material model, i.e., explicitly considering the no-
sliding material failure. Indeed, whenever rigid block models are
applied to model unilateral continua, such as old masonry
buildings, the need for modelling diagonal cracks forces the
introduction of a yield criterion to consider the shear-sliding
behaviour. This criterion is usually represented by the classic
Mohr-Coulomb relation. However, from a computational
perspective, when a non-associative behaviour is considered,
searching for a solution to the boundary value problem for which
normal forces vanish in the presence of normal detachments requires
more sophisticated computational and modelling strategies. Non-
linear programming methods (Nodargi and Bisegna, 2021b; Kao
et al., 2022; Nodargi and Bisegna, 2022) have to be used for such a
purpose, or heuristic, linear or convex algorithm procedures, to lower
the computational burden, although the convergence is not
mathematically proven.

The collapse multiplier is found as the maximum horizontal load
that a building can sustain. It is later translated into a Peak Ground
Acceleration (PGA) according to the Italian Technical Code for
buildings (Ministero delle Infrastrutture e dei Trasporti, 2018) and
used to construct fragility curves.

This Section is organised as follows. In section 2.1, the SAVE
methodology and its procedure for the quick assignments of the
vulnerability classes are briefly recalled. In section 2.2, the PRD’s
theoretical framework is illustrated.

2.1 SAVE methodology

The SAVE method provides an empirical procedure to quickly
describe the overall seismic response of a building through the
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assignment of the seismic vulnerability classes. The 1998 European
Macroseismic Scale, EMS’98 (Grünthal, 1998) considers five
vulnerability classes (see Figure 2), denoted with letters ranging
from A to E with decreasing levels of fragility, and assigns to each
building the most likely vulnerability class as a function of the
vertical structure typology, neglecting the influence of the other
typological-structural characteristics (age, floor number,
horizontal structure, etc).

The SAVE procedure reduces the level of uncertainty on the
attribution of vulnerability classes considering the effects on the
building seismic response of additional typological features, defined
modifiers, such as the horizontal structural typology, the number of
floors, the presence of ties and other features. The method is empirical

and built on the extensive PLINIVS database in which typological and
damage information of about 250,000 masonry buildings are collected.
In the first step, the correlation between the vertical typologies and the
level of damage is estimated. The vertical structures defined in the
SAVE method are three: generic masonry, denoted with V0,
characterized by the absence of information on the quality of the
wall structure; V1, weak and irregular masonry; V2, regular and good
quality masonry. The levels of damage follow the EMS’98 scale and
are: D0, that is, no damage; D1, light, non-structural damage; D2, light
structural damage; D3, high structural damage; D4, partial collapse;
and D5, global collapse. Referring to the vertical structure Vi, SPDVi is
the Synthetic Parameter of Damage index, and it is computed as the
barycentric abscissa of the damage distribution (Zuccaro eCacace,

FIGURE 1
Flowchart summarising the methodological pipeline at the base of the present research.
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2015). As an outcome of this step, three SPD ranges representing the
vertical structures are defined (Table 1): class A includes most of the
buildings with weak and irregular masonry; class B includes most of
the buildings with generic masonry; and class C includes most of the
buildings characterized by good quality masonry.

In the second step, the influence of the parameters affecting the
average seismic behaviour of the building is estimated through the
Synthetic Parameter of Damage (SPD) variation. To this purpose,
buildings with vertical structure Vi, typology k of the j parameter are
classified with the number SPDViPjk, where j refers to the horizontal
structure and k to the floor deformability. The influence of the
modifier k on the parameter Pj on the vertical structure Vi is defined
as the difference between the SPDViPjk and SPDVi. It is essential to
point out that some typological parameters that characterise the
seismic response of the building could be mutually dependent. For
example, the presence of ties within a horizontal structure may be
recurrent in the case of deformable floors. When calculating the
influence of the presence of tie rods and deformable floors, it is,
therefore, possible that the SPDViPjk value is calculated on the same
sample for both parameters. To avoid overestimation when
determining the influence of a parameter, it is necessary to define
its correlation with the remaining dependent parameters. For
parameters independent of the others (e.g., the location of the
building in the aggregate), it is not necessary to evaluate
correlation factors. After that, once the typological characteristic
of a building is known, the corresponding SPD can be calculated as
follows:

SPD � SPDv +∑n

s�1qs +∑m

j�1∑m

i�1
pi + pj( ) · cij

2m
, (1)

where q is the influence of each independent parameter, p is the
influence of the dependent parameter, n is the total number of
independent parameters, m is the number of dependent
parameters, and cij is the correlation coefficient between the classes
of parameters pi and pj.

2.2 Boundary value problem and limit
condition

This Section illustrates the boundary value problem (BVP) at
the base of the PRD method referring to a no-tension Heyman
material. Specific mathematical restrictions on the stress and latent
strain are introduced to model the masonry response. A 2D
masonry structure is modelled as a continuum occupying the
region Ω of the Euclidean space E2. T denotes the stress, u the
displacement of the material points x ∈ Ω, while E the infinitesimal
strain field assuming small displacements. The Heyman model is
enforced through the so-called Normal Rigid No-Tension (NRNT)
material restrictions:

T ∈ Sym−,E ∈ Sym+,T · E � 0, (2)

with Sym−, Sym+ the mutually polar cones of negative and positive
semidefinite symmetric tensors. Equations 2 are equivalent to the well-
known normality rule:

T ∈ Sym−, T − T*( ) · E≥ 0,∀T* ∈ Sym−, (3)
representing the necessary conditions to rigorously apply the

classic theorem of limit analysis to unilateral masonry materials.
For more information, the reader is referred to (Kooharian, 1952;
Livesley, 1978; Giaquinta and Giusti, 1985; Fortunato et al., 2014;
Fortunato et al., 2016; Chiozzi et al., 2017). Therefore the BVP on
domains made up of NRNT material reads

E � sym ∇u( ),E ∈ Sym+, u � �u on zΩD,

divT + b � 0,T ∈ Sym−,Tn � �s on zΩN,

T · E � 0, (4)
with n is the unit outward normal to the boundary zΩ partitioned into
its constrained zΩD and loaed zΩN parts. A BVP solution is a triplet
(u,E(u),T) satisfying Equations 4. Moreover, because of Equation 4,
u and E are linked each other. For NRNT materials, strain and stress
are bounded measures and can be decomposed in the sum of regular
(.)r and a singular (.)s parts:

E � Er + Es,T � Tr + Ts, (5)
In the present formulation, only singular strains and stresses are

considered, meaning that the displacement u and the stress vector s
can admit jump discontinuities. The sets K and H of the admissible
displacements and stresses are defined as follows:

K � u ∈ S / E � sym ∇u( ) ∈ Sym+ & u � �u on zΩD{ },
H � T ∈ S′ / divT + b � 0,T ∈ Sym−,Tm � �s on zΩN{ }, (6)

with S, S′ two suitable function spaces. For more mathematical details
about the regularity of these spaces, the interested reader is referred to
(Giaquinta and Giusti, 1985). Thereafter, only potential jumps whose
supports are lines lying within the domain are considered. Therefore,
stress and strain fields are everywhere zero except for those curves,
where they are modelled with Dirac delta lines. The BVP can be solved
using two possible variational strategies, i.e., either solving the
equilibrium problem through the minimisation of the
complementary energy or the kinematic problem by minimising
the total potential energy (TPE). The PRD method uses the latter
through a straightforward displacement approach, which results in the
search for a displacement u ∈ K for which there exist a stress T ∈ H
such that T · E(u) � 0. The TPE for an NRNT material reads:

℘ u( ) � − ∫
zΩN

�s · u ds − ∫
Ω

b · u da, (7)

with u ∈ K, i.e. the space of kinematically admissible displacements. This
function depends exclusively on the displacement u, and for the case at
hand, reduces to the potential energy of the external loads only. Notably,
the minimiser u°, i.e., the element (if unique) or the elements of K on
which the potential energy attains the minimum value (if bounded)

℘ u°( ) � min
u∈K

℘ u( ), (8)

implicitly guarantees the equilibrium of the loads imposed on the
structure. From a mathematical standpoint, the minimiser u° can
also be not unique, which means that multiple energy solutions to the
same BVP can coexist. For detailed information, the interested

TABLE 1 SPDV range as a function of the corresponding vulnerability class.

Class A Class B Class C

SPDVmax 5.00 2.20 1.60

SPDVmin 2.20 1.60 0.00
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reader can refer to (Giaquinta and Giusti, 1985) and (Anzellotti,
1985), where the existence of the minimum is proven for Elastic
Normal No-Tension materials assuming as kinematically admissible
space the set BD(Ω) and an additional restriction on the given loads,
i.e., the safe load condition. For a discussion about the safe load
condition and its numerical applications, the reader is referred to the
CDF method (Iannuzzo et al., 2021). To the scope of the present
paper, it must be noted that the TPE ℘(u) is always bounded from
below as long as the load is compatible, i.e., the setH is not void. This
concept provides a strategy to apply the TPE to find collapse
multipliers. As it will be shown, it will also reconnect its use to
classic lower-bound approaches.

Indeed, the main idea is to describe the external loads as an affine
distribution so they remain proportional to the original self-weight
through a scalar parameter. From a physical standpoint, many
experimental tests are commonly performed through a tilting test
to look at possible collapse mechanisms (DeJong, 2009; Ochsendorf,
2022). The numerical modelling of those tests is straightforward and
can be performed through two different strategies. The first one is a
pure geometrical strategy, and it consists of directly and fictitiously
rotating the original angle geometry of an angle α until the structure
collapses. An equivalent strategy to model horizontal actions is to
consider an additional distribution of horizontal pseudo-static forces
b⊥ such that the total volume forces are:

bλ λ( ) � bg + λ b⊥g , (9)
with (·)⊥ the linear operator that clockwise rotates a vector of π/2, and
λ is the scalar load multiplier. This strategy is equivalent to classic
pushover analysis. In this regard, the value of the horizontal scalar
multiplier represents the gravity loads’ percentage applied on a
horizontal plane that drives the structure to its last stable
equilibrated configuration. This value λc is called a pseudo-static
horizontal collapse multiplier. The previous formulation refers only
to body (mass) loads b. However, it must be extended whenever
additional loads or tractions �s depending on the mass are also
involved. Because of (9), TPE reads:

℘ u,λ( ) � − ∫
zΩN

�sg ·uds−∫
Ω

bg ·uda−λ⎛⎝ ∫
zΩN

�s⊥g ·uds+∫
Ω

b⊥g ·uda⎞⎠ .

(10)
The last stable configuration, along with the collapse multiplier,

can be defined through the following min-max problem:

℘ u°, λc( ) � max
λ∈R+ min

u∈K
℘ u, λ( )( ), (11)

Because of the uniqueness of the multiplier due to the normality
rule, this min-max problem can be solved following two strategies: the
first one translates this in classic limit-analysis approaches, while the
second one solves the problem through a sequence of minimisation
problems until a solution can still be found. The present contribution
follows this last procedure as it directly considers different typological
features in the objective function as specified in Section 4.

3 Numerical methodology

The present Section illustrates the statistical procedure adopted to
generate the buildings’ sample from the data from the PLINIVS
database to define the buildings sample (Section 3.1) along with
the numerical strategy used to frame problem (11) in a linear
programming problem (Section 3.2).

3.1 Sample of buildings

Following the SAVE method, the most relevant parameters in the
vulnerability class assignment are the vertical and the horizontal
structures, the presence of ties, the number of floors and the
construction age. The first four parameters are used to generate the
sample of virtual façades. Conversely, the last one is related to the
exposure and cannot be directly considered to construct the analytical-
fragility model. The construction age is a fundamental parameter
when approaching the problem from an observational standpoint, as it
often provides sufficient information about construction technology.
When adopting an analytical approach, the construction technology is
explicitly modelled, and the importance of including the construction
age in the model vanishes. The four SAVE parameters used to scan the
variability of the building stock under consideration:

1) vertical structure, which is defined in terms of hollow bricks, tuff,
filled brick, irregular stonework, and regular stonework;

2) horizontal structure, which can vary among steel, reinforced
concrete (RC), wooden floors as well as vaulted floor systems;

3) tie rods, whose presence is assumed as a binary variable, i.e., they
can be considered or not considered at all. Moreover, when they are
modelled, they are not considered at each floor level;

4) the number of floors, which ranges from 1 to 5.

From a technological perspective, not all horizontal structures are
compatible with tie roads, and thus, parameters 2 and 3 are collected in

TABLE 2 Summary of the parameters used to define the buildings’ sample and their corresponding ranges.

Vertical structure Horizontal technology Wall’s length and number of openings Floor’s number

hollow bricks steel L4 O1 1

tuff RC L5 O1 2

filled brick wooden w/ ties L5 O2 3

irregular stonework wooden w/o ties L6 O2 4

regular stonework vaulted floor w/ ties L7 O2 5

vaulted floor w/o ties
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a unique variable called horizontal technology. Therefore, these four
parameters allow the definition of the following six horizontal
technology classes: steel, RC, wooden with ties, wooden without tie
rods, vaults with tie rods and vaults without tie rods. In addition to the
SAVE parameters, other geometrical variables are considered, such as
the façade baseline length and thickness, inter-storey height, and
openings, whose size and numbers are assumed as variables. The
inter-storey height has been fixed in all the analyses at 3.5 m. The
façade baseline length ranges from 4.00 m to 7.00 m, which statistically
includes most of the 2D masonry geometries catalogued in the
PLINIVS database. The possible intermediate heights range from
5.00 m to 6.00 m. The dimensions of the openings have been fixed
at 1.2 m x 2.5 m, while the number of openings per floor is:

- at least one opening per floor when the façade baseline length is
4.00 m;

- one or two openings per floor if the façade baseline length is
5.00 m;

- two openings per floor, with a façade baseline length longer than
5.00 m.

Combining this information, the parameter “length and openings”
can be labelled as:

- L4O1: Length 4.00 m Opening 1;
- L5O1: Length 5.00 m Openings 1;
- L5O2: Length 5.00 m Openings 2;
- L6O2: Length 6.00 m Openings 2;
- L7O2: Length 7.00 m Openings 2.

The wall’s thickness has been considered as a function of the
number of floors, and its variation over the height goes from 0.60 m to
0.45 m, as detailed in Section 4.1. Table 2 collects all the typological
parameters used to define the building stocks. As the reader can note,
combining all of them, the number of façades under consideration
is 750.

TABLE 3 Vulnerability class for masonry buildings with 1–3 floors.

Floors number 1,2,3 Hollow bricks Tuff Filled block Irregular stonework Regular stonework

Steel C C C B C

RC C C C B C

Wooden w/ B B B A B

Wooden w/o A A A A A

Vaulted floor w/ B B B A B

Vaulted floor w/o A A A A A

TABLE 4 Vulnerability class for masonry buildings with 4 floors.

Floors number 4 Hollow bricks Tuff Filled block Irregular stonework Regular stonework

Steel C B B A B

RC C B B A B

Wooden w/ A A A A A

Wooden w/o A A A A A

Vaulted floor w/ A A A A A

Vaulted floor w/o A A A A A

TABLE 5 Vulnerability class for masonry buildings with 5 floors.

Floors number 5 Hollow bricks Tuff Filled block Irregular stonework Regular stonework

Steel B B B A B

RC B B B A B

Wooden w/ A A A A A

Wooden w/o A A A A A

Vaulted floor w/ A A A A A

Vaulted floor w/o A A A A A
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For each of these typologies, the following information has to be
defined: the vulnerability class on the base of the SAVE parameters, the
collapse multiplier, which will be found through numerical
simulations, and the frequency of occurrence in a typological database.

Looking at the vulnerability class assignment, the exploitable
parameters for the SAVE method are the vertical structure, the
horizontal technology, and the number of floors. Based on these
parameters, Table 3; Table 4; Table 5 report the vulnerability class
assignments for buildings with 1–2, 3-4 and 5 floors, respectively.
These values are used to develop the fragility curves as reported in
Section 4.

3.2 Limit solution to the BVP by way of the
PRD method

The approximate solution to the minimum problem (11) is
obtained by restricting the search of the minimum in the class Kpr

of piecewise rigid displacements. This infinite-dimensional space is
discretised by considering a finite partition

Ωi( )i∈ 1,2,..,M{ }, (12)
of Ω (see Figure 3) into a number M of rigid pieces, such that

∑M
i�1
P Ωi( )< ∞, (13)

P(Ωi) being the perimeter of Ωi. In particular, restricting to convex
polygonal elements, the boundary zΩi of the n-polygon Ωi, is composed
of n segments Γ, of length , whose unit normal and tangent vectors are
denoted n, t, while the endpoints with 0 and 1. The edges shared by two
adjacent elements or lying on the constrained boundary are called
interfaces and are collected in the set Γ. KM

pr represents then the finite-
dimensional approximation of Kpr generated by this partition. The
discretised version of the minimum problem reads:

℘ û( ) � min
u∈KM

pr

℘ u( ) . (14)

A generic piecewise rigid displacement u ∈ KM
pr is in a one-to-one

correspondence with the vectorU of 3M components representing the

3M rigid body parameters. These parameters are restricted by the
assumption that the strain must be positive semidefinite. For piecewise
rigid displacements, the strain coincides with its singular part, namely:

E � Es � v δ Γ( ) n ⊗ n + 1
2
w δ Γ( ) t ⊗ n + n ⊗ t( ), (15)

Es being concentrated along the interfaces among blocks, that is,
within the present approximation, over the set Γ. From (4), it follows
that sliding is not allowed on any interface and only detachment is
possible:

v � u[ ] · n≥ 0,w � u[ ] · t � 0, (16)
In Equation 16, [u] is the retive displacement between two element

nodes of the discretisation. Notice that conditions (16), derived from
the normality assumption, represent a condition of unilateral contact
with no sliding among blocks. WithN the number of the interfaces Γ,
and v(0), v(1), w(0), w(1) the normal and tangential components of
the relative displacements on the endpoints 0, 1 of any segments
belonging to Γ, restrictions (16) are equivalent to the 2N inequalities

v 0( )≥ 0, v 1( )≥ 0, (17)
and the 2N equalities

w 0( ) � 0, w 1( ) � 0 . (18)
Assuming homogeneous boundary conditions, restrictions (16)

can be expressed in matrix forms as a function of the vector U
collecting the unknown Lagrangian parameters and can be rewritten:

AU≥ 0, BU � 0 . (19)
Finally, the discretised version of the minimum problem (14), which
approximates the minimum continuum problem (8), reads:

℘ U0( ) � min
U∈KM

− b + λ b⊥( )U, (20)

where the objective function representing the potential energy of the
external body loads b is minimised within the set:

KM � U ∈ R3M /AU≥ 0,BU � 0{ } . (21)
The limit analysis problem can be then solved through a sequence

of LP problems as:t

FIGURE 2
Geometric features of three-story buildings with one (A) or two (B) openings per floor.
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℘ U0, λc( ) � max
λ∈R+ min

U∈KM
℘ U, λ( )( )

The minimisation problem (20) transforms the original
minimisation problem (8) for a continuum, into a minimisation
problem for a structure composed of rigid parts, acted on by given
loads and given settlements and subject to unilateral contact
conditions along the interfaces. Problem (20) is a standard
linear finite-dimensional minimisation problem, as both
objective function and constraints are linear. The existence of
the solution of this approximate problem is trivially guaranteed
if the original problem is bounded from below. For small problems,
it can be solved exactly with the simplex method (Dantzig et al.,
1955), while for large problems, interior-point algorithms
represent efficient and fast alternatives (Mehrotra, 1992;
Vanderbei, 2015; Dantzig, 2016).

4 Numerical implementation

The present Section illustrates the numerical pipeline adopted
to define the fragility curves combining the SAVE and PRD
methods. In particular, Section 4.1 provides a detailed overview
of howmasonry buildings coming from the PLINIVS database have
been modelled, considering geometrical and mechanical
information. Section 4.2 shows how these features have been
modelled and, after that, framed in an LP problem to define the
collapse load multiplier for each case. It is worth noting that the
present analysis looks at the in-plane collapse load of the main 2D
façade of a masonry building.

4.1 Geometrical and mechanical description
of the buildings’ sample

The present Section gives an overview of the procedure adopted to
parametrically model geometries and mechanical features of the
buildings’ stock extracted from the PLINIVS database. The 2D
analysis of a building is carried out by referring to its main façade.
For example, looking at three-story buildings, Figures 4A, B describe
the geometries and loading conditions of two facades having one and
two openings per floor, respectively.

The inter-story height h is assumed to equal 3.5 m for all the
façades independently of the floor number, while the openings’
dimensions, as mentioned above, are fixed at 1.2 m x 2.5 m. The
façade’s depth dw varies over the building’s height Hb according to the
following relation

dw Hb( ) �
0.60m if 0≤Hb ≤ 2h
0.50m if 2h≤Hb ≤ 4h
0.45m if 4h≤Hb ≤ 5h

⎧⎪⎨⎪⎩ . (22)

Table 6 reports geometric data needed to generate a masonry
building of the sample referring to the symbols introduced in Figure 4.
It is worth emphasising that these geometrical features as well as the
openings number, do not depend on the building height but only on
the building baseline length. Indeed, structures with baseline lengths
equal to 4 m show only one opening per floor; the ones whose length is
equal to 6 m or 6.6 m, show two openings per floor; and façades with a
baseline length equal to 5 m can have one or two openings per floor as
illustrated in Table 6.

Regarding the loads, mass density values depend on the masonry
typology as reported in Table 7.

The presence of slabs and the corresponding transmitted live loads
are modelled through additional linear loads placed as in Figure 4, and
whose gross values are reported in Table 8. The liner loads adopted in
the numerical analyses can be derived by multiplying these values by
the slab’s net orthogonal length, assumed to equal 5 m.

Lastly, the presence of tie roads depends on the number of floors
and, according to the PLINIVS database, whenever they are present
(i.e., for wooden and vaulted slabs only), one assumes:

- One-, two- and three-story façade has only one tie-rod at the
uppermost level;

- Four-story facades have two tire rods at the second and fourth
levels; and,

- Five-story facades show two tire rods at the third and fifth levels.

FIGURE 3
The infinite-dimensional space Kpr of piecewise rigid displacements having Ω as support (A) is discretised by partitioning the domain into convex
polygonal elements (B). In (B), the partition of the domain Ω into M squares generates the discretised set KM

pr .

TABLE 6 Summary of the geometric features needed to generate a masonry
façade of the sample according to Figure 4. The symbol * refers to facades with
two openings per floor (Figure 4B).

Geometric features Façade baseline length

4 m 5 m 5 m * 6 m * 6.6 m *

LW 1.40 1.90 0.80 1.20 1.40

LO 1.20 1.20 1.20 1.20 1.20

HO 2.50 2.50 2.50 2.50 2.50

HL 1.00 1.00 1.00 1.00 1.00
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TABLE 7 Density values [kg/m3] adopted for the five masonry typologies considered in the present analysis.

Hollow bricks Tuff Filled block Irregular stonework Regular stonework

1,200 1,600 1,800 2,000 2,100

TABLE 8 Live loads q [kg/m2] due to the different slab typologies and also including the slab’s self-weight.

Steel RC Wooden w/ties Wooden w/o ties Vaulted floor w/ties Vaulted floor w/o ties

620 820 600 600 800 800

TABLE 9 Compressive strength values [MPa] adopted for the five masonry typologies.

Hollow bricks Tuff Filled block Irregular stonework Regular stonework

150 140 240 200 260

FIGURE 4
The two strategies adopted to model horizontal loads in the presence of deformable (A) or rigid slabs (B).

FIGURE 5
Overview of five geometrical models and corresponding discretisations used to describe three-story masonry buildings. Yellow stripes denote linear
loads due to and transmitted by the slabs, while red lines show the presence of tire rods. (A) L4O1; (B) L5O1; (C) L5O2; (D) L6O2; (E) L7O2.
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Buildings with reinforced concrete and steel slabs are assumed not
to show any tire rod systems. The tie-rod strength (Tr), i.e., the
maximum stress it can withstand depends on the strength of the
cable (Tc) and of the anchor plate (Ta) as well as on the compressive
resistance of the masonry (Ca), as from the following relation:

Tr � min Tc,Ta,Ca( ) . (23)
It is assumed that the square anchor plate edge length is 0.30 m,

the cable has a net diameter of 30 mm, and it is made up of steel with a
yield tension of 240 MPa. Moreover, the calculation assumes a
confidence factor of 1.35 according to the Italian national code
(Ministero delle Infrastrutture e dei Trasporti, 2018) and the
masonry compressive strength values as detailed in Table 9.

Based on these assumptions, once the masonry typology has been
fixed, Eq. 23 yields the maximum tensile force that the tie-rod can sustain
and that will be used in energyminimisation, as detailed in the next Section.

4.2 PRD numerical modelling of the buildings’
sample

The minimum energy problem is formulated as an LP problem
whose most general version reads:

min − bg + λ b⊥g( ) · U − Bqs qs · U − λQ⊥
s · U − BFt Ft · ΔU( ) (24)

FIGURE 6
Vulnerability class assignment according to the 1998 European Macroseismic Scale, EMS’98 (Grünthal, 1998).

TABLE 10 The number of elements adopted to discretise the buildings’
geometries. The symbol * refers to buildings with a horizontal length of 5 m but
with two openings per floor. In red are the numbers of digital models elements
depicted in Figure 6.

Number of floors Length of the building’s baseline length

4 m 5 m 5 m * 6 m 6.6 m

1 1,320 3,102 2,017 3,360 3,369

2 3,120 6,468 4,140 6,864 6,911

3 6,194 9,195 5,871 9,777 9,862

4 7,610 11403 7,220 12063 12182

5 8,722 13059 8,291 13893 14046

FIGURE 7
PRD-based fragility curves for the three vulnerability classes as from
the SAVE procedure.

FIGURE 8
Approximation of the PRD-based fragility curves through
lognormal functions.
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As U � 0

An U≥ 0

At U � 0

with bg the vector modelling volume forces as lumped to the blocks’
centroid, qs the vector representing the live loads transmitted by the slabs
and translated to the blocks’ centroid by the operator Bq. It is worth
pointing out that Q⊥

s is the vector representing the seismic effects of the
slabs’ loads, as detailed below; BFtFtr is the vector collecting the forces
exerted by the tie rods and translated to the block’s centroids closest to the
tie-rod endpoints, while ΔU collects the unknown relative displacements
between these blocks. The term BFtFtr is implemented only on digital
models with deformable floors, such as wooden or vaulted floor systems,
when tired rods are explicitly considered. It should be mentioned that the

horizontal rotated component of the loads Q⊥
s is modelled following two

strategies depending on the slab’s typology Figure 5. For deformable
floors (i.e., vaulted and wooden floor systems), it results:

Q⊥
s � Bqs q

⊥
s (25)

while for rigid slabs (i.e., steel and RC):

Q⊥
s � BF⊥qs

F⊥
qs
� BF⊥qs

Lq⊥s q
⊥
s (26)

where F⊥qs = Lq⊥s q
⊥
s is the force vector that lumps the linear horizontal

load q⊥s through the operator Lq⊥s and is concentrated on the blocks’
centroids placed on the left side of the building through the operator
BF⊥qs

. Looking at the constraints, the first enforces homogeneous
boundary conditions, the second inequality the non-overlapping
relation and the third one the no-sliding conditions.

Referring to three-story masonry buildings, Figure 6 shows five
digital models and the corresponding discretisations for different
façade baseline lengths. Particularly, the number of elements ranges
from 6,194 for a baseline of 4 m, to 9,862 for a baseline of 6.6 m.

Table 10 shows the number of elements used to discretise the digital
models as a function of the building’s baseline length and floor number.
The robustness of the proposed discretisation against two different
numerical approaches is validated here (Iannuzzo et al., 2021).

The computational time required to solve a single optimisation
problem is 0.15 s using an agile laptop with an AMD Ryzen 7 5700U
and using Mosek (Mosek, 2010) as a solver.

4.3 Results and discussions

PRD results, obtained in terms of load multipliers, are translated
into peak ground acceleration (PGA) according to the procedure
detailed in (Ministero delle Infrastrutture e dei Trasporti, 2018), as

PGA � λ q

S
g (27)

FIGURE 9
Comparison between PRD-based fragility curves (dashed lines) and the ones (solid line) related to the first damage mechanism proposed in (Zuccaro
et al., 2017).

FIGURE 10
Comparison among the PRD-based fragility curve for vulnerability
class B with the ones proposed in (Cattari et al., 2014) for different
damage levels. The PRD results match with the damage state D5.
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with q the ductility factor, here assumed as q � 2, S the subsoil factor,
fixed to 1.25, and g � 9.81 m/s2 the gravitational acceleration. Results are
then depicted in Figure 7 in terms of Damage State Probability (DSP) as a
function of the three vulnerability classes assigned by the SAVE
procedure. The DSP index represents the cumulative percentage of all
structures whose collapse is activated by a given PGA value.

The PRD results obtained are then approximated through
lognormal curves

F x( ) � 1����
2πσ2

√ ∫ x

0

1
s

e−
ln s−μ( )2
2σ2( )ds, (28)

and the corresponding smooth curves are represented in Figure 8,
again as a function of the three vulnerability classes. Equation 28
is the cumulative of a normal distribution with average value μ

and standard deviation σ. In the present research, the three
vulnerability classes are defined by the following values:

−Class A: μ � 0.234, σ � 0.631

−Class B: μ � 0.486, σ � 0.349

−Class C: μ � 0.729, σ � 0.235

In Figure 9, the PRD-based fragility curves are compared with the ones
proposed in (Zuccaro et al., 2017), which evaluate the minimum
acceleration triggering the first damage mechanism selected among
predetermined mechanisms (including also out-of-plane ones) on a
sample of buildings from the PLINIVS database. In this sense, it is
worth noting that the PRD-based curves are associated with higher PGA
levels since the curves evaluated in (Zuccaro et al., 2017) are strongly
influenced by the out-of-planemechanisms occuring at lower levels of PGA.

Restricting to vulnerability class B, shows the PRD-based fragility
curve together with the ones proposed in (Cattari et al., 2014) for
different damage levels. As expected, the numerical-based curve is in
good agreement with the damage level D5, corresponding to the global
collapse of the structure. Indeed, as applied, the PRD method can only
detect the mechanism driving the structure to collapse without the
possibility of accounting for lower damage levels.

5 Conclusion

The present paper proposes a novel analytic methodology to define
masonry structures’ fragility curves, employing a hybrid approach that
combines the SAVE and PRD methods. SAVE is an observation-based
approach to estimating the vulnerability class of buildings based on actual
damages after past seismic events. It provides a quick procedure to identify
the structure’s seismic behaviour. The PRD method is a numerical
approach to solving boundary value problems for normal, rigid, no-
tension materials. These two methods were combined on an extensive
sample of 750 masonry buildings extracted from the PLINIVS database,
which collects typological-structural information on about
250,000 ordinary masonry buildings distributed throughout the Italian
national territory. Each masonry structure of the sample was modelled
referring to its 2D main façade. After that, the SAVE procedure was
applied to assign a vulnerability class to each of them, while a PRD
numerical campaign was conducted to compute the corresponding
collapse loads. Specifically, PRD digital models were constructed to
account for the relevant typological-structural and geometrical features.
Lastly, the PRD and SAVE results were combined to produce fragility
curves related to the three vulnerability classes as from the SAVEmethod.

The results of the proposed approach were benchmarked against
other numerical strategies based on predetermined mechanisms. The
comparison showed a good agreement between the PRD results and the
fragility curves present in the Literature, confirming the robustness and
effectiveness of the proposed approach, particularly when referring to the
damage level D4-D5, as from EMS’98. The estimated curves can be used
for the National Risk Assessment in Italy and can also be adapted for the
seismic risk evaluation at different scales. Indeed, the main advantage of
this methodology is its possibility to analytically evaluate fragility curves
considering specific structural and geometric characteristics, which,
combined with the ease of modelling and the solving time, allows it to
be used on a large-scale assessment of masonry structures. Moreover, the
proposed procedure can also be used to localise fragility curves modelling
the seismic risk assessments of specific local areas (i.e., local, regional)
accounting explicitly for the frequency of occurrence of the related
typological-structural and geometrical features by also employing other
databases (Zuccaro et al., 2023). This strategy will be pursued in
forthcoming contributions while also validated against other empirical
fragility curves in the Literature.

However, the current methodology accounts only for 2D in-plane
collapse mechanisms. In contrast, out-of-plane ones, as well as
information on lower levels of damage, such as D1/D3, cannot be
provided. Further development will include extending the numerical
approach to overcome these limitations while exploiting data provided
by other databases.
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