AUTHOR=Lewis Nicolette S. , Winter Andrew O. , Bonus Justin , Motley Michael R. , Eberhard Marc O. , Arduino Pedro , Lehman Dawn E. TITLE=Open-source simulation of strongly-coupled fluid-structure interaction between non-conformal interfaces JOURNAL=Frontiers in Built Environment VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/built-environment/articles/10.3389/fbuil.2023.1120518 DOI=10.3389/fbuil.2023.1120518 ISSN=2297-3362 ABSTRACT=
Design code-based “life-safety” requirements for structural earthquake and tsunami design offer reasonable guidelines to construct buildings that will remain standing during a tsunami or seismic event. Much less consideration has been given to assessing structural resilience during sequential earthquake and tsunami multi-hazard events. Such events present a series of extreme loading scenarios, where damage sustained during the earthquake influences structural performance during the subsequent inundation. Similar difficulties exist with respect to damage sustained during tropical events, as wind and fluid loading may vary with structural response or accumulated damage. To help ensure critical structures meet a “life-safety” level of performance during such multi-hazard events, analysis software capable of simulating simultaneous structural and fluid dynamics must be developed. To address this gap in understanding of non-linear fluid-structure-interaction (FSI), an open-source tool (FOAMySees) was developed for simulation of tsunami and wave impact analysis of post-earthquake non-linear structural response of buildings. The tool is comprised of the Open-source Field Operation And Manipulation software package and OpenSeesPy, a Python 3 interpreter of OpenSees. The programs are coupled