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Soil is a naturally heterogeneousmaterial and can show significant spatial variation
in strength and other properties. For silty and clayey soils, these variations are often
more pronounced. Despite such variation, many past studies considered these
soils as homogeneous and only considered a single set of soil parameters. This
may lead to underestimation of the failure potential of geo-structure such as
natural slopes, water retaining dams, retaining walls, etc. A finite element method
considering soil variability should be an ideal tool to investigate the behaviour of
these soils. This study adopted a 2D random finite elementmethod to evaluate the
effect of such variability on slope stability. The spatial variability was implemented
by using the coefficient of variation (COV) and the spatial correlation length (θ) for
cohesion. It was found that the soil slope with higher COV would have a higher
chance of failure, whereas the soil slope with lessCOVmight not show any failure.
In addition, the soil with a higher θ, in general, show less potential of failure. In the
literature, most studies considered an isotropic condition for the soil, i.e., θ in x and
y directions are the same θx = θy, which is not realistic. Therefore, the soil
anisotropy (i.e., θx ≠ θy) was considered carefully in this study. It was found that
the probability of failure for anisotropic soil might be significantly higher than the
isotropic soil.
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Introduction

Soil slopes, i.e., cuttings or embankments, are an integral part of our transport network.
Since the variability of material quality is common in soils, especially for silty or clayey soils
(Karim et al., 2011; Devkota et al., 2022; Karim et al., 2022), the uncertainty on the stability of
these slopes is an inherent challenge (Griffiths, 1982; Huang et al., 2006; Gould et al., 2011;
Kasama and Whittle, 2011; Karim et al., 2021). Further, the mechanics for slope stability
analysis that involves the conventional limit state approach uses simplifications and
approximations, which adds to the uncertainty of their design. Thus designers often use
a highly conservative estimation of strength parameters (Griffiths and Lane, 1999). The
assumption of homogenous soil is also common in geotechnical designs, even though the
strength parameters may vary spatially (Idriss et al., 1978; Huang et al., 2013; Rahman and
Nguyen, 2013). Therefore, an alternative approach that allows natural soil characteristics of
spatial variability is needed to quantify the related risk of failure.

In recent years, an advanced numerical technique that uses a combination of the finite
element method (FEM) and random field model (RFM) has been gaining popularity and is
capable of capturing the soil characteristics of spatial variability in soil properties (Griffiths
and Lane, 1999; Griffiths and Fenton, 2001; Fenton and Griffiths, 2003; Fenton and Griffiths,
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2008; Rahman and Nguyen, 2012; Huang et al., 2013; Li et al., 2019).
Griffiths and Fenton, (2001) adopted a technique called local average
subdivision (LAS) for generating a random field for undrained shear
strength. This technique was first introduced by Fenton (1990), and
then it was revisited by others (Fenton and Vanmarcke, 1990;
Fenton and Griffiths, 2007) based on the probability density and
spatial correlation functions for soil parameters. The main
advantage of this approach is the capability of capturing the
complex behaviour of soil with high spatial variability.

In this study, the FEMwith a random field generator is used for
slope stability analysis. This method is also referred to as the
random finite element method (RFEM), as proposed by Griffiths
and Fenton, (2001). RFEM has been applied in many different
areas of geotechnical engineering, such as bearing capacity under
foundation, slope stability, pile foundation, etc. (Smith and
Griffiths, 1998; Griffiths and Lane, 1999; Fenton and Griffiths,
2008; Jiang et al., 2022a; Jiang et al., 2022b; Nguyen et al., 2022; Shu
et al., 2023). It allows the soil properties to be changed spatially but
still correlated with the neighbouring soils (Fenton and
Vanmarcke, 1990; Fenton and Griffiths, 2007). Griffiths and
Fenton, (2001) proposed correlation length (θ) as a measure for
investigating the correlations between neighbouring soils. Based
on the correlation length and soil variability, the random field for
soil parameters can be generated. One of the most efficient random
field generation techniques is the local average subdivision (LAS),
which was introduced in Vanmarcke (1984). This technique
considers a global average for a parent cell. Then, the cell is
subdivided multiple times. The local average in each child cell
is recalculated. This technique ensures a reasonable transition in
soil parameters between the neighbouring cells. It should be noted
that there have been different studies considering other techniques
for generating a random field. One notable approach, the
numerical limit analysis (Kasama and Whittle, 2011) (NLA) is
based on the numerical formulations of upper and lower bound
limit analyses for rigid perfectly plastic materials, using finite
element discretisation and linear (Sloan, 1988; Sloan and
Kleeman, 1995) or non-linear programming methods (Lyamin
and Sloan, 2002a; Lyamin and Sloan, 2002b). According to Kasama
andWhittle (2011), both upper and lower bound analysis treats the
soil elements as three-node triangular elements. By applying the
upper and lower bound limits, the calculated failure load was
covered into a range. However, the NLA technique may produce
results that do not align well with the theoretical data, whereas the
LAS technique can produce the best-fit results with the theoretical
values. Therefore, this research considered the LAS technique for
generating a random field.

Most RFEM studies in slope stability considered an isotropic
condition in which the correlations between neighbouring soils in
lateral and vertical directions are the same (Griffiths and Fenton,
2004; Griffiths et al., 2015; Kasama and Whittle, 2016; Zhu et al.,
2017). However, an anisotropic condition is more common in
nature. Soils in their natural states deposit in layers, and their
strength and other properties can be different in vertical and
lateral directions, i.e., anisotropic conditions prevail. Most
previous studies often found the correlation lengths in the
horizontal direction were higher than in the vertical direction
(DeGroot and Baecher, 1993; Vessia et al., 2009; Rahman and
Nguyen, 2013).

There have been some studies that incorporated soil anisotropy
(Rahman and Nguyen, 2013; Nguyen and Rahman, 2015;
Pieczyńska-Kozłowska et al., 2015; Li et al., 2016; Zaskórski et al.,
2017) in bearing capacity problems. Some studies were done for
slope stability. Akbas and Huvaj (2015) only evaluated different
combinations of correlation length with a single value of the
coefficient of variation (COV) of 0.2, which represented slightly
varied soil. Liu et al. (2018) investigated the stability of 3D slope with
one combination of correlation length (θx = 2H and θy = 0.4H, where
H is the height of the slope) and COV of 0.3 for undrained cohesion.
The studies using COV less than 1.0 may not be able to capture the
randomness of highly varied materials such as tailings, etc. Other
studies (Huang et al., 2013; Li et al., 2019) examined the finite
element strength reduction analysis in RFEM; however, the ranges of
COV and correlation are not wide enough to explore different
possibilities of a factor of safety. Therefore, the combined effect
of soil anisotropy and variability on the probability of slope failure is
not fully understood, mostly due to a limited number of past studies
incorporating anisotropy and limited data sets available. Therefore,
this research adopts the RFEM approach from Griffiths’ group
(Griffiths and Lane, 1999; Griffiths and Fenton, 2001) with LAS
to consider the soil variability, simulates both isotropic and
anisotropic conditions by combining a wide range of coefficients
of variation (COV) of soil properties and correlation lengths in the
vertical and horizontal directions and then investigate the combined
effects of correlation length and soil anisotropy on slope stability.
This study produces a comprehensive data set of anisotropic
conditions for correlation lengths for the main investigation.

A probabilistic method for slope
stability

The stability of a soil slope in the undrained condition is often
analysed using a set of soil properties/parameters consisting of the
undrained shear strength (cu), the undrained friction angle (ϕu), and
the saturated unit weight (γsat). In the deterministic approach, these
parameters are assumed to be constant, i.e., a homogenous soil. The
friction angle, ϕu, for silty or clayey soils can be taken as zero. For

FIGURE 1
An illustration of the slope geometry in this study.
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simplicity, γsat is also held constant at 20 kN/m3. Other important
parameters for the slope are the slope inclination (ß), the height of
slope (H) and the depth of foundation indicated by nd. An
illustration of the slope used for analysis is shown in Figure 1.
The soil strength parameters are reduced during the analysis to
capture the failure of the slope.

The undrained cohesion (cu) is allowed to vary spatially, and its
effect on slope stability is examined. To compare with the
deterministic approach, cu is generalised and expressed in terms
of a dimensionless parameter (C) by normalising against the
multiplication of unit weight and slope height.

C � cu
γsatH

(1)

Two different approaches are adopted to generate the spatial
variation of C in the slope geometry, namely, the single random
variable approach and the random variable approach considering
spatial correlation length. In the single random variable approach, a
lognormal distribution function for C was adopted to avoid the
unreasonable negative value of C and to ensure positive shear
strength by the random field generator. After Griffiths and
Fenton (2004), the probability density function of C is expressed
as a log-normal distribution function (see Figure 2):

f C( ) � 1
Cσ lnC

���
2π

√ exp −0.5 lnC − μlnC
σ lnC

( )2[ ] (2)

where μlnC and σlnC are the mean and standard deviation of the
natural logarithm of C. μlnC and σlnC are determined by the
dimensionless coefficient of variation (COV), which is defined as
the ratio μC and σC as shown below.

COVC � σC/μC (3)
According to Eq. 1, the COV of the dimensionless parameter (C)

was equal to COVcu (COVcu � σcu/μcu), as γsat and H were kept
constant in this study. The distribution of ln(C) is then
characterised by:

σ lnC �
�������������
ln 1 + COVC

2( )√
(4a)

μlnC � ln μC − 0.5σ lnC
2 (4b)

To continue with the calculation of the probabilistic failure, the
chance of failure has to be defined by the probability of random C less
than the characteristic value of C. For this, a random value of C from
the probability function of Eq. 2 was assigned for the entire slope.
Therefore, the slope is still homogeneous. According to Griffiths and
Fenton (2004), the relationship between C and the factor of safety
(FOS) of the homogeneous slope can be presented in Table 1. The data
in Table 1 shows a linear relationship (plotted in Figure 3) between C
and FOS with a very high coefficient of determination (R2~1).

Based on the data in Table 1 and Figure 3, the characteristic
value of C for a slope with FOS of 1.00 is 0.17. Hence, the chance of
failure of the slope in this probabilistic study can be expressed as:

pf � p C< 0.17[ ] � Φ ln 0.17 − μlnC
σ lnC

( ) (5)

In the second analysis with the spatial correlation, one of the
important parameters will be the spatial correlation length (θlnC)
(Griffiths and Fenton, 2001). When C is log-normally distributed, its
logarithm yields an underlying Gaussian field. θlnC, which is the
measure of this Gaussian field, ensures that the neighbouring soils in
the slope are still correlated. A normalised dimensionless measure of
θlnC (ΘlnC) can be presented by the ratio of θlnC and H. The
representative value of θlnC for clay has not been clearly defined
in the literature (Griffiths and Fenton, 2001), especially in the
horizontal directions. This is because the soil normally deposits
into layers and the higher variation in the vertical direction is more
likely to be observed. This analysis is presented in the following
section.

It should be noted that the Monte Carlo simulation was adopted
in this study. This method uses the estimation of randomly
stochastic soil property based on its distribution type, mean and
standard deviation. The Monte Carlo simulation also uses the
correlation function or spectral density function, which is also a
characteristic of spatial variability for cohesion. Each test considered
1,000 Monte Carlo simulations.

Effect of soil variability and anisotropy
on slope stability

As mentioned previously, the elastoplastic FEM coupling with
the probabilistic approach is an effective tool that can better capture
the effect of variability of soil in the slope stability problem (Akbas
and Huvaj; Griffiths and Fenton, 2004; Vessia et al., 2009; Huang
et al., 2013; Rahman and Nguyen, 2013; 2015; Pieczyńska-
Kozłowska et al., 2015). The discretised geometry used in this
study is presented in Figure 4 and the LAS technique is adopted
for generating the random field due to its efficiency and accuracy.
Themean undrained cohesion is chosen as 100kPa, and the standard
deviations for the undrained cohesion are 25kPa, 50kPa, 100kPa,
200kPa, 400kPa and 800 kPa respectively.

Each mesh in Figure 4 has a corresponding value of C
throughout the generating process in the LAS technique. The

FIGURE 2
Log-normal distribution function for C.
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correlation function between two distant points is defined by the
Markovian function (Fenton and Griffiths, 2008) as

ρ Xij

∣∣∣∣ ∣∣∣∣, Yij

∣∣∣∣ ∣∣∣∣( ) � exp −√ 2Xij/θx( )2 + 2Yij/θy( )2{ } (6)

where Xij and Yij are the distances between two random points in
horizontal and vertical directions respectively. The correlation field
of C will be different with different combinations of θx andθy.
Figure 5 demonstrates the capacity of different combinations of
θx andθy to generate the correlation field or correlation coefficient
(ρ). Figures 5A–C show the symmetrical distributions of ρ for the
isotropic conditions.

• For a lower correlation length (θx = θy = 1.0), the highest
correlation is achieved when the random points are closer to
each other i.e., Xij and Yij are nearly zero. When the two
random points are far away from each other, ρ reduces
significantly.

• For a higher correlation length (θx = θy = 10 or 100), ρ only
reduces slightly, when the two random points are far away
from each other.

In Figures 5D–I, the distributions of ρ for the anisotropic conditions
are shown.When θx >θy, ?y reduces faster than ?x in the case of two far
random points, and vice versa. It should be noted that when θx orθy is
very high and approaching infinity, the correlation coefficient, ρ is
approaching 1. This means 100% correlation between two random
points, which is an optimistic assumption in the design.

The correlation coefficient (ρ) between separated points in
anisotropy was much different with different combinations of the
correlation lengths. ρ tends to increase to 1 in the x-direction while
θx is continuously increasing up to infinity. The random set of
variables obtained from the correlation function is later used to
transform the random field of c within the random field with
available mean and standard deviation. The lognormal
transformation is defined as

TABLE 1 The factor of safety of a homogeneous slope in a deterministic
approach (Griffiths and Fenton, 2004).

Dimensionless undrained shear
strength (C)

Factor of
safety (FOS)

0.15 0.88

0.17 1.00

0.20 1.18

0.25 1.47

0.30 1.77

FIGURE 3
The relationship between C and FOS of a homogeneous slope.

FIGURE 4
The discretised geometry of the slope for RFEM study.
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FIGURE 5
The correlation coefficient, pin 2-D: (A) θx � θy � 1; (B) θx � θy � 10; (C) θx � θy � 100; (D) θx � 10& θy � 1; (E) θx � 100& θy � 1; (F) θx � 1& θy � 10; (G)
θx � 1& θy � 100; (H) θx � 10& θy � 100; (I) θx � 100& θy � 1 0.

FIGURE 6
Slope stability for soils with slight variation (COV = 0.25, θx � θy � 8m). (A) deformed meshes and (B) displacement vectors’.
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TABLE 2 The details of RFEM simulations used in this study.

COV θx θy pf COV θx θy pf

0.25 0.2 0.2 0.000 0.5 0.2 0.2 0.000

0.25 0.2 0.5 0.000 0.5 0.2 0.5 0.000

0.25 0.2 1 0.000 0.5 0.2 1 0.000

0.25 0.2 2 0.000 0.5 0.2 2 0.001

0.25 0.2 4 0.000 0.5 0.2 4 0.001

0.25 0.2 8 0.000 0.5 0.2 8 0.001

0.25 0.5 0.2 0.000 0.5 0.5 0.2 0.000

0.25 0.5 0.5 0.000 0.5 0.5 0.5 0.008

0.25 0.5 1 0.000 0.5 0.5 1 0.015

0.25 0.5 2 0.000 0.5 0.5 2 0.019

0.25 0.5 4 0.000 0.5 0.5 4 0.016

0.25 0.5 8 0.000 0.5 0.5 8 0.018

0.25 1 0.2 0.000 0.5 1 0.2 0.004

0.25 1 0.5 0.000 0.5 1 0.5 0.035

0.25 1 1 0.000 0.5 1 1 0.072

0.25 1 2 0.000 0.5 1 2 0.083

0.25 1 4 0.000 0.5 1 4 0.077

0.25 1 8 0.000 0.5 1 8 0.077

0.25 2 0.2 0.000 0.5 2 0.2 0.014

0.25 2 0.5 0.000 0.5 2 0.5 0.097

0.25 2 1 0.000 0.5 2 1 0.150

0.25 2 2 0.001 0.5 2 2 0.160

0.25 2 4 0.002 0.5 2 4 0.144

0.25 2 8 0.003 0.5 2 8 0.138

0.25 4 0.2 0.000 0.5 4 0.2 0.034

0.25 4 0.5 0.000 0.5 4 0.5 0.127

0.25 4 1 0.003 0.5 4 1 0.192

0.25 4 2 0.006 0.5 4 2 0.224

0.25 4 4 0.009 0.5 4 4 0.218

0.25 4 8 0.012 0.5 4 8 0.206

0.25 8 0.2 0.000 0.5 8 0.2 0.046

0.25 8 0.5 0.001 0.5 8 0.5 0.139

0.25 8 1 0.004 0.5 8 1 0.204

0.25 8 2 0.012 0.5 8 2 0.256

0.25 8 4 0.019 0.5 8 4 0.259

0.25 8 8 0.021 0.5 8 8 0.252

1 0.2 0.2 0.947 2 0.2 0.2 1.000

1 0.2 0.5 0.942 2 0.2 0.5 1.000

(Continued in next column)

TABLE 2 (Continued) The details of RFEM simulations used in this study.

COV θx θy pf COV θx θy pf

1 0.2 1 0.836 2 0.2 1 1.0001 0.2 2 0.865 2 0.2 2 1.000

1 0.2 4 0.700 2 0.2 4 1.000

1 0.2 8 0.671 2 0.2 8 0.999

1 0.5 0.2 0.894 2 0.5 0.2 1.000

1 0.5 0.5 0.898 2 0.5 0.5 1.000

1 0.5 1 0.881 2 0.5 1 1.000

1 0.5 2 0.841 2 0.5 2 0.996

1 0.5 4 0.686 2 0.5 4 0.990

1 0.5 8 0.665 2 0.5 8 0.987

1 1 0.2 0.836 2 1 0.2 1.000

1 1 0.5 0.830 2 1 0.5 1.000

1 1 1 0.812 2 1 1 0.996

1 1 2 0.796 2 1 2 0.980

1 1 4 0.651 2 1 4 0.964

1 1 8 0.627 2 1 8 0.957

1 2 0.2 0.763 2 2 0.2 1.000

1 2 0.5 0.747 2 2 0.5 0.996

1 2 1 0.718 2 2 1 0.980

1 2 2 0.706 2 2 2 0.946

1 2 4 0.625 2 2 4 0.909

1 2 8 0.578 2 2 8 0.884

1 4 0.2 0.700 2 4 0.2 1.000

1 4 0.5 0.686 2 4 0.5 0.990

1 4 1 0.651 2 4 1 0.964

1 4 2 0.625 2 4 2 0.906

1 4 4 0.607 2 4 4 0.853

1 4 8 0.551 2 4 8 0.808

1 8 0.2 0.765 2 8 0.2 0.995

1 8 0.5 0.745 2 8 0.5 0.964

1 8 1 0.693 2 8 1 0.924

1 8 2 0.655 2 8 2 0.858

1 8 4 0.590 2 8 4 0.809

1 8 8 0.548 2 8 8 0.748

4 0.2 0.2 1.000 8 0.2 0.2 1.000

4 0.2 0.5 1.000 8 0.2 0.5 1.000

4 0.2 1 1.000 8 0.2 1 1.000

4 0.2 2 1.000 8 0.2 2 1.000

4 0.2 4 1.000 8 0.2 4 1.000

(Continued on following page)
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c i, j( ) � eμ+σG i,j( ) (7)
where G is a standard lognormal variable, which is defined
throughout the LAS process. Then the function used to subdivide
the mesh in the LAS process is adopted:

G � ATQ + LU (8)
where U is indicated as the vector of independent standard normal
random variables with mean zero and unit standard deviation. The

covariance describing the relationship between the cells can be
calculated by the matrix multiplication with a transpose

R � E QQT[ ] (9)
S � E QGT[ ] (10)
B � E GGT[ ] (11)

where R is the covariance between the parent cells, S is the
covariance between the parent and child cells and B is the
covariance between the child cells. Then the matrices A and L in
Eq. 8 can be determined by

A � R−1S (12)
LLT � B − STA (13)

The study considers a wide range of θx,θy and COV to investigate
the combined effect of correlation length and COV on the
probability of failure.

• Six of values of θx: 0.2, 0.5, 1.0, 2.0, 4.0 and 8.0 m
• Six of values of θy: 0.2, 0.5, 1.0, 2.0, 4.0 and 8.0 m
• Six of values of COV: 0.25, 0.5, 1.0, 2.0, 4.0 and 8.0

One combination of θx,θy and COV gives one pf. In total, there
are 216 simulations in this study. The details can be found in
Table 2.

The slope with a small variation of soil parameters (i.e., low COV
of 0.25–0.50 and high θ of 8 m), a smooth random field can be
observed (see Figure 6). Figure 6A shows the variation of cu and the
deformations of the cells; whereas Figure 6B shows only
displacement vectors. It should be noted the darker colour in
Figure 6A means a higher value for cohesion. There is no failure
surface appearing in this case, as the displacement vectors do not
reach the right side of the slope in Figure 6B. As mentioned before,
the elements were assigned different C parameters. The failure
mechanism will pass through these elements by find the weakest
zone based on the assigned parameters. The slope will fail if the
deformation or displacement is significant. It noted that this
research also considered the shear strength reduction technique
for the slope stability analysis (Griffiths and Lane, 1999).

On the other hand, if the soils have high variation (i.e., high
COV) and small correlation (i.e., small θ), the cohesion field is
ragged. In this case, cohesion values of neighbouring soils are mostly
random at the final state of the slope analysis as shown in Figure 7A,
and the probability of failure is 100%. The failure line appears on the
slope and follows the weakest path traversing the weakest points in
the slope geometry. The directions of the displacement vectors also
follow the same weakest path as shown in Figure 7.

The traditional approach for slope stability analysis often
assumes a deterministic value for soil strength as mentioned
previously. This means that the soil parameters have no
variation, which is similar to the case presented in Figure 6. In
such a case, the chance of failure is very low. However, the
assumption of slight variation for a parameter is not always true
for most soils, especially mining materials. A big failure surface
appears when the variation increases (see Figure 7). Hence, it may
lead to underestimating the chance of slope failure in traditional
slope analysis.

TABLE 2 (Continued) The details of RFEM simulations used in this study.

COV θx θy pf COV θx θy pf

4 0.2 8 1.000 8 0.2 8 1.000

4 0.5 0.2 1.000 8 0.5 0.2 1.000

4 0.5 0.5 1.000 8 0.5 0.5 1.000

4 0.5 1 1.000 8 0.5 1 1.000

4 0.5 2 1.000 8 0.5 2 1.000

4 0.5 4 1.000 8 0.5 4 1.000

4 0.5 8 1.000 8 0.5 8 1.000

4 1 0.2 1.000 8 1 0.2 1.000

4 1 0.5 1.000 8 1 0.5 1.000

4 1 1 1.000 8 1 1 1.000

4 1 2 1.000 8 1 2 1.000

4 1 4 0.997 8 1 4 1.000

4 1 8 0.981 8 1 8 1.000

4 2 0.2 1.000 8 2 0.2 1.000

4 2 0.5 1.000 8 2 0.5 1.000

4 2 1 0.999 8 2 1 1.000

4 2 2 0.992 8 2 2 1.000

4 2 4 0.979 8 2 4 1.000

4 2 8 0.957 8 2 8 1.000

4 4 0.2 1.000 8 4 0.2 1.000

4 4 0.5 1.000 8 4 0.5 1.000

4 4 1 0.996 8 4 1 1.000

4 4 2 0.973 8 4 2 1.000

4 4 4 0.947 8 4 4 0.980

4 4 8 0.909 8 4 8 0.957

4 8 0.2 1.000 8 8 0.2 1.000

4 8 0.5 0.998 8 8 0.5 1.000

4 8 1 0.986 8 8 1 1.000

4 8 2 0.942 8 8 2 1.000

4 8 4 0.911 8 8 4 0.957

4 8 8 0.876 8 8 8 0.927
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FIGURE 7
Slope stability for soils with high variation (COV = 4.0, θx � θy � 0.2m). (A) deformed meshes and (B) displacement vectors’.

FIGURE 8
The probability of failure with varying θ: (A)COV = 0.50, (B)COV = 1.00, (C) COV = 2.00, (D)COV = 4.00 and (E) the surfacemap of distribution of pf

based on different combinations of COV and θ.
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Although acknowledging the variation of soil properties is
important for engineering design, the current practice is still
based on a deterministic approach. The probability of slope
failure (pf) is found to depend on COV and θ as shown in
Figure 8. With a small COV, i.e. 0.50, the pf is relatively small.
The pf value is approximately zero at small θ i.e. 0.20 m and increases
with an increase in θ. On the other hand, when COV is higher (from
1.00 to 4.00), the trend of pf seems reversed. At COV = 4.0, the pf
value at a small θ of 0.20 m is approximately 100%. This value

decreases when θ increases. This demonstrates that the soil with
higher soil variability (high COV and low θ) will have a much higher
chance of slope failure. Figure 8 also shows the difference between
isotropic and anisotropic θ. In some cases, considering an
anisotropic condition, which is more realistic, may give a higher
value of pf. Using isotropic θ, which is mostly considered in the
literature, may not be conservative in the case of highly varied soil
and the potential failure may not be accurately determined.

Figure 8E shows the surface map of the 3D distribution of pf
based on different combinations of COV and θ. It can be clearly seen
that the pf surface bends upward when θ increases for low COV, i.e.
0.5. On the other hand, the pf surface bends upward when θ increases
for COV > 1.0. This clearly demonstrates that low COV and high θ

may result in higher pf, whereas high COV and low θ may result in
higher pf. According to Eq. 6, the correlation between the points is
calculated by θ. The highest correlation with small θ can be achieved,
when the points are closer to each other. In that case, the FOS values
from Monte Carlo simulations will be mostly higher than the FOS
values and pf is closer to 0. When the two random points are far
away, the correlation can be reduced significantly. A similar
observation was found in the study of the isotropic slope by
Griffiths and Fenton (2004).

Furthermore, pf is further investigated by considering COV and
dimensionless θ (Θ) in Figure 9. The effect of COV ranges from
0.5 to 8.0 on the failure potential of the slope in isotropic conditions.
The probability of slope failure, pf can increase from less than 20%
(COV = 0.5) to near 100% (COV = 8.0). This indicates that the soil
with high variability can have a much greater pf compared with the
soil with less variability. It should be noted that the x-axis in Figure 9
presents the dimensionless correlation length, Θ, which is the ratio

FIGURE 9
Effect of COV and θ on the probability of failure in isotropic
conditions.

FIGURE 10
Effect of COV and θ on the probability of failure in anisotropic conditions: (A) θy � 0.5m, (B) θy � 1.0m and (C) θy � 4.0m.
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of spatial correlation length to the slope height. It can be observed
that pf increases with Θ, when COV is less than 1. But this trend
changes when COV is more than 1. So, pf of a soil slope is not
affected by a single factor, but by the combination of soil variability
and correlation. This should be carefully considered in slope design.

As mentioned previously, this study also considers the effect of soil
anisotropy on the probability of slope failure. Figure 10 presents the
combined effect ofCOV and anisotropic θ. In Figure 10A (θy=0.5), the pf
values are almost 1.0, i.e. 100% chance of failure forCOV≥ 2.0. However,
when θy increases, the pf values start diverging at high COV (see Figures
10B, C). This observation aligns with the previous discussions that the
more correlation length is, the less chance of failure is.

In addition, Figure 10 presents the combined effect of the degree
of anisotropy (i.e., ratio of θx and θy) and COV on pf. Interestingly,
the lines representing different degrees of anisotropy crossover each
other in Figure 9. Before the crossover, the lower θx/θy ratio shows a
lower pf. After the crossover, the lower θx/θy ratio shows a higher pf.
The location of the crossover is highly dependent on the
combination of correlation length and COV. For instance, the
crossover for θy = 0.5 occurs at COV of 0.5, whereas the
crossovers for θy = 1.0 and 4.0 occur at COV of 0.6 and
0.75 respectively. So, such a reverse effect is clearly dependent on
the θy and COV. This is an interesting finding that may help in the
future study of risk assessment of slope stability. However, it should
be aware that other soils with more varying parameter sets (e.g.,
varying friction angle, stiffness, unit weight, etc.) may be different.

Conclusion

The study introduces amore reliable approach for the quantification
of risk in slope design. The combination of a random field generator and
FEM (RFEM) considers the variability of soil parameters, which is more
realistic than the common deterministic approach. The probability of
slope failure is found to be greatly dependent on the statistical variation
parameters, namely, COV and θ. This study produces a wide range of
different scenarios that can happen in the real design and outputs a set of
different pf values for a slope while the traditional approach assumes a pf
value. Hence, this approach can help to minimise the chance of
overestimation or underestimation of slope failure. The effect of
anisotropy, which is often neglected in the current engineering
practice, is also proposed in this research. In some cases, the pf
values of anisotropic θ are much higher than that of isotropic θ,
which helps to prevent possible design failure.

Interestingly, this was found that the combination of a low
COV and a high θ may result in a higher pf, and vice versa. The
knowledge from this RFEM study can be adopted in any future
research in the risk assessment of geo-structures such as
designing a slope of soil with high variability such as tailings.
In those cases, the practitioners may consider the additional
factor of safety or some possible soil improvement technique to
avoid potential failure.

It should be noted that for most natural soils, a reasonable COV
range is from 0.1 to 0.5. However, for the materials having very high
variability such as tailings, the COV value should be higher.
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