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Strong hurricane winds often cause severe infrastructure damage and pose social
and economic consequences in coastal communities. In the context of community
resilience planning, estimating such impacts can facilitate developing more risk-
informed mitigation plans in the community of interest. This study presents a new
framework for synthetically simulating scenario-hurricane winds using a parametric
wind field model for predicting community-level building damage, direct economic
loss, and social consequences. The proposed synthetic scenario approach uses
historical hurricane data and adjusts its original trajectory to create synthetic change
scenarios and estimates peak gust wind speed at the location of each building. In this
research, a stochastic damage simulation algorithm is applied to assess the buildings’
physical damage. The algorithm assigns a damage level to each building using the
corresponding damage-based fragility functions, predicted maximum gust speed at
the building’s location, and a randomly generated number. The monetary loss to the
building inventory due to its physical damage is determined using FEMA’s direct loss
ratios and buildings’ replacement costs considering uncertainty. To assess the social
impacts of the physical damage exposure, three likely post-disaster social disruptions
are measured, including household dislocation, employment disruption, and school
closures. The framework is demonstrated by its application to the hurricane-prone
community of Onslow County, North Carolina. The novel contribution of the
developed framework, aside from the introduced approach for spatial predicting
hurricane-induced wind hazards, is its ability to illuminate some aspects of the social
consequences of substantial physical damages to the building inventory in a coastal
community due to the hurricane-induced winds. These advancements enable
community planners and decision-makers to make more risk-informed decisions
for improving coastal community resilience.
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1 Introduction

Hurricanes are multi-hazard events that induce strong winds, storm surge, and heavy rain
in coastal communities, as well as flash flooding and riverine flooding in inland communities.
Hazard risk maps are effective tools that facilitate risk communication to engineers and
community resilience planners. For instance, the national storm surge hazard maps that are
generated by National Oceanic and Atmospheric Administration (NOAA) and the National
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Weather Service (NWS) help communities in hurricane-prone coastal
areas along the U.S. East and Gulf Coasts and Puerto Rico to evaluate
their risk to the hurricane-induced storm surge hazard. Similarly,
Federal EmergencyManagement Agency (FEMA) has developed flood
risk maps that communities use to know which areas have the highest
risk of flash and riverine flooding. However, wind speed maps that are
provided by building codes such as ASCE-7, despite their relative
maturity for design purposes, are not efficient tools for assessing the
resilience of a community against hurricane-induced winds. Severe
hurricanes (Categories 3–5) have highly non-uniform wind speeds
over a given geographical area. Wind risk maps in building codes
consider uniform wind speeds (and often constant intensity in small
communities) for buildings in the same risk category. Thus, these wind
risk maps can significantly overestimate damage and loss due to
hurricane-induced winds if applied at the community level.

As hurricanes approach coastlines, they impact large geographic
areas. Thus, understanding and evaluating community-level impacts is
an effective approach to advancing resilience. Between 1980 and 2021,
hurricanes were by far the costliest and deadliest billion-dollar disaster
events in the United States with $27.6B annual cost and 160 fatalities
per year (Smith 2020). Consequences of such catastrophic events are
only expected to rise as a result of climate change and urbanization.
Beyond dollar losses and human casualties, hurricanes cause
disruptions in the community’s social system, which amplify pre-
disaster disparities, including access to healthcare, education, and
employment (Enderami et al., 2021). Thus, a comprehensive
equity-informed community resilience plan must consider social
and economic impacts, alongside the physical impacts of natural
hazards. To move toward this goal, community planners need to
be provided with tools and actionable frameworks that enable them to
demonstrate disparate community level impacts to make equity-
informed decisions. The majority of available frameworks in the
literature, however, focus on estimating damage and direct
economic losses to the built environment at the individual property
level and consequently ignore the social impacts of such destructions
(e.g., Pinelli et al., 2004; Vickery et al., 2006a; Xu and Brown 2008;
Kakareko et al., 2017; Wang et al., 2020; Adhikari et al., 2021).
Therefore, we focus the scope of our study on hurricane-induced
wind hazards. This paper presents a novel framework for synthetically
simulating scenario-hurricane winds using a parametric wind field
model for predicting community-level building damage, direct
economic loss, and social consequences to help fill the identified
gap in knowledge. The framework is illustrated on the Onslow
County, North Carolina testbed, and provided to the user
community as an open-source Python Jupyter Notebook
(Mazumder et al., 2020; https://doi.org/10.17603/ds2-jzcv-he68).

2 Literature review

Hurricanes pose multiple hazards to coastal communities,
including intense winds, storm surges, heavy rains, and flooding.
Strong hurricane winds can cause physical damage to building
systems (i.e., interior, exterior, and content losses), and storm
surges can cause extensive structural damage in severe cases. In
addition, content losses occur due to wind-driven rain and surge
heights entering buildings (Baradaranshoraka et al., 2017). Intense
winds often lead to severe damage to buildings, and subsequent
building functionality loss, leading occupants to leave their houses

(Park et al., 2013). The nature of impact due to hurricanes varies
significantly from coastline to inland and is very complex to model.
Studies focusing on analyzing the combined impact of hurricane
winds and storm surges could not properly allocate damages
between these hazards (Baradaranshoraka et al., 2017; Nofal et al.,
2021). While the combined storm surges and winds often impact
buildings near the coastline, buildings in inland are primarily
impacted by hurricane winds. While some of the most recent
hurricanes that hit the U.S. coastline were primarily flood and
storm surge events (e.g., 2016 Hurricane Matthew), some other
hurricanes (e.g., 2018 Hurricane Michael) were very intense upon
landfall, and hurricane wind caused the most destruction. In this
study, we focus on understanding the impact of hurricane wind on
coastal buildings at a community scale.

Hurricane wind hazard models have been developed using
numerical simulation (Georgiou 1986), probabilistic approach
(Simiu and Scanlan 1996), empirical hurricane track models
(Vickery et al., 2000a; b; 2006a; 2009a; b), and data-driven
techniques (Guo and van de Lindt 2019). Modelling and
simulation of hurricane wind has advanced significantly over the
last 2 decades (Powell et al., 1998; Vickery et al., 2006a; b; Xu and
Brown 2008; Guo and van de Lindt 2019). However, solving non-
linear primitive equations for hurricane numerical simulation and risk
estimation involves extensive computation analysis. Therefore,
researchers investigated parametric models as an alternative to
numerical simulation techniques to gain higher computational
efficiency. To generate non-uniform wind over a distributed area,
several wind field models exist in the literature (e.g., Russell 1969;
Schwerdt et al., 1979; Holland 1980; Batts et al., 1984). Among the
existing models, Holland’s (1980) wind profile model, which allows
estimating spatially distributed wind speeds of a hurricane, is used to
generate non-uniform wind at a community level for high
computation efficiency. Holland parameter is widely used in past
studies for predicting wind hurricane wind speeds (e.g., Vickery et al.,
2000a; b; Vickery andWadhera 2008; Salman and Li 2018;Wang et al.,
2020). Besides wind hazard modelling, extensive research has been
conducted to characterize hurricane storm surge (Weisberg and
Zheng, 2008; Dietrich et al., 2013; Sebastian et al., 2014), surge-
induced coastal inundation (Torres et al., 2015; van Berchum et al.,
2019), and combined hurricane wind-storm surge behavior (Li et al.,
2012; Unnikrishnan and Barbato 2017; Bushra et al., 2019). Despite
the fact that hurricane wind modeling matured remarkably over the
past 3 decades, wind speed estimation presented in many existing
hazard models and in building codes and design standards primarily
focus on the performance evaluation of individual buildings or
facilities against constant design speed over a large area (Pant and
Cha 2018; Adhikari et al., 2021) and do not provide guidelines to
account for spatial variation of wind speeds over a large area.

Although hurricanes are widespread destructive events, previous
research has mainly focused on estimating damage and loss following
such events at the individual facility-level, as opposed to predicting
building portfolio performance against spatially-varied hazardous
winds at a community scale. Specifically, past research has focused
on risk assessment of individual residential buildings (Pinelli et al.,
2004; Masoomi et al., 2019; Wang et al., 2020) and infrastructure
systems, including electrical power network (Salman and Li 2018),
transportation network (Wu et al., 2013), bridges (Snaiki et a. 2020),
and evacuation modelling (Blanton et al., 2020; Davidson et al., 2020).
Outcomes of hazard models are then used to estimate the performance
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of buildings using deterministic approaches (Emanuel et al., 2006),
probabilistic approaches (Pinelli et al., 2004; Li and Ellingwood 2006),
and Bayesian capacity modelling approaches (Mishra et al., 2017;
Kakareko et al., 2020). Other studies have focused on analyzing
building performance against multiple hazards (Masoomi et al.,
2019; Nofal et al., 2021), and subsequent loss estimation (Vickery
et al., 2006b; Baradaranshoraka et al., 2017; Kakareko et al., 2017).
Previous studies (e.g., Vickery et al., 2006b; Li and Ellingwood 2006;
Baradaranshoraka et al., 2017; Kakareko et al., 2017; 2020; Salman and
Li 2018; Masoomi et al., 2019; Wang et al., 2020; Nofal et al., 2021)
often used fragility functions as reliable tools for estimating the various
level of damage probabilities for structures given hurricane-induced
hazard intensity. Many of these studies are based on probabilistic
approaches and have evaluated damage and losses to residential
buildings subject to hurricane wind under stationary conditions
(Pinelli et al., 2004; Deierlein et al., 2020; Adhikari et al., 2021).
Overall, past studies have contributed to gaining a better
understanding of the performance (i.e., damage and loss) of
various structures against hurricane hazards as single or combined
loads (Huang et al., 2001; Pinelli et al., 2004; Li and Ellingwood 2006;
Salman and Li 2018; Bushra et al., 2019). Even still, most of these
existing methods for estimating hurricane damage and loss are limited
to evaluating individual facility/structure’s performance.

Post-hurricane report (e.g., NIST 2017) addressed research needs
and challenges at the community scale to mitigate the risk of natural
hazards. To mitigate the impact of future hurricane hazards, the
probable damaging effect of a potential hurricane must be
quantified considering spatially varied wind intensities at a
community scale.

Of the studies that operate at the community-level, a major
challenge is capturing hazard-damage-loss relationships accurately
(Deierlein et al., 2020). Researchers have developed community-scale
loss models for insurance purposes, including private (RMS 2010; AIR
2015) and public (FEMA 2010; Hamid et al., 2010) models for
residential buildings. Regional hurricane risk analysis models
include event-based simulations (Huang et al., 2001) and
probabilistic non-stationary processes (Khajwal and Noshadravan
2020). Other studies performed community-level hurricane risk
analysis using distributed computing platforms (Abdelhady et al.,
2019; Abdelhady et al., 2020) and data-driven techniques (Guo and
van de Lindt 2019). However, these probabilistic approaches are
unable to account for the spatial distribution of hurricane
intensities as the probabilistic hazard map represents an aggregated
effect of numerous hurricane events (Adachi and Ellingwood 2010),
limiting their application in community risk-management decision-
making. Another challenge is that assessing a large number of
buildings in a community following these approaches is
computationally extensive, which indicates the need to develop a
simple framework to speed up the simulation.

Damages to building and infrastructure systems often result in
disruption of functionality, leading to a socioeconomic crisis in severe
cases (Masoomi et al., 2020). Besides physical impacts, socioeconomic
impacts also shape post-disaster recovery of a community, which is
necessary to account for in community risk management (Masterson
et al., 2014; van de Lindt et al., 2020). Unfortunately, hurricane risk
assessment modules have often been limited to estimating physical
damages to the built environment (e.g., Pinelli et al., 2004; Vickery
et al., 2006a; Xu and Brown 2008; Kakareko et al., 2017; Wang et al.,
2020; Adhikari et al., 2021). Studies used various proxy indicators,

including health condition, age, race, gender, poverty, and income, to
estimate the social vulnerability of community (Fekete 2009;
Bjarnadottir et al., 2010; Abbas and Routray 2014; Rufat et al.,
2019; Drakes et al., 2021). Such proxy measures have been used to
understand the social impacts of disaster on society, including
economic losses, damage to residential households, property loss,
displacement, migration, shelter use, public assistance, and
mortality (Myers et al., 2008; Burton 2010; Finch et al., 2010; Yoon
2012; Liu and Li 2016; Tate et al., 2016). Few other studies investigated
the influence of social connection in their evacuation decision after
hurricanes (Collins et al., 2017; 2018; Yabe and Ukkusuri 2020).
However, these studies heavily relied on an individual disaster or
were limited to geographic context.

Population dislocation is one of the common consequences of
disasters and it has become a growing concern in the United States
after Hurricane Katrina in 2005 (van de Lindt et al., 2020). When
community members have to dislocate from a community, which can
even be a neighborhood, their social networks will be interrupted
(Erikson, 1978). Population dislocation can happen as a result of direct
damages to residential buildings or other disaster impacts including
utility outages, physical access disruption, concerns about safety, and
loss of community capitals (Sutley and Hamideh 2020; Enderami et al.,
2021; Daniel et al., 2022). Disasters also can disrupt community
members’ access to their jobs and students’ access to their schools;
such disruptions can be caused due to several reasons such as
significant damage to the organization’s building, employee loss
caused by household dislocation, etc. Hence, this study developed a
new approach for estimating disaster impacts on society by evaluating
household dislocation, employment disruption, and school closure.
Estimating these measures will help decision-makers and stakeholders
better plan disaster preparedness and recovery. In addition to
estimating physical damage to buildings, the proposed framework
also connects building damages with building occupancy data to
estimate social impacts (i.e., population dislocation, school closure,
and employment disruptions) on the community.

3 Proposed framework

Figure 1 illustrates the proposed framework for assessing
community-level building damage and social and economic losses
due to hurricane-induced winds. The framework consists of three
modules including hazard analysis, vulnerability analysis, and loss
estimation. In the hazard analysis module, a hurricane scenario is
selected by analyzing the frequency of past hurricanes and risk
mitigation objectives. Characteristics of historical hurricanes are
obtained from the HURDAT2 database, including path trajectory
and wind speed distribution. Then, synthetic hurricane scenarios are
generated by adjusting the original event characteristics to estimate
probable consequences due to similar events. Building-specific
maximum peak gust wind speed is then determined for the
selected hurricane scenario following procedures described in
Section 3.1. In the vulnerability analysis module, the probability of
building damage exceeding four discrete damage levels is determined
using fragility functions and estimated peak gust wind speed. Damage
level is then assigned to a building stochastically by comparing the
maximum peak gust wind speed, probabilities of damage states, and a
randomly generated number. Detailed steps of vulnerability analysis
are presented in Section 3.2. Finally, in the loss estimation module,
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direct financial losses resulting from physical damages are evaluated
using a building damage ratio and building replacement values. To
account for the uncertainty in loss prediction, a coefficient of variation
is assumed for damage ratios based on engineering judgment. Social
impacts are assessed by estimating the number of dislocated
households, potential employment disruption, and the number of
students who may lose their access to school. Details of the loss
estimation module are described in Section 3.3. To perform the
proposed framework efficiently, this study also develops an open-
source python tool for future users, described in Section 3.4.

3.1 Synthetic scenario analysis

In the context of community resilience research, scenario-based
approaches are more common to estimate natural hazard demands. A
scenario event (or a portfolio of scenarios) lets researchers more
effectively communicate risk to decision-makers and community
resilience planners by evaluating what may happen if a certain
natural hazard occurs in their community. Scenario-hurricane
analysis can be performed based on either selecting the historical
hurricane track or simulating a synthetic hurricane (Salman and Li
2018). Due to the shortness of data on past hurricanes, and their often
poor quality, the datasets of such events are highly uncertain. Thus,
using a historical hurricane model to produce large sets of synthetic
hurricane tracks is an alternative strategy. Synthetic scenario models
are simplified and fast-to-compute mathematical surrogate models to
inform the probabilistic risk of storms in an area. A synthetic scenario
modeling approach allows researchers to change the attribute of the
scenario event and generate a suite of storms by making realistic but
user-driven incremental adjustments in the original storm’s features
(Jia et al., 2016; Fereshtehnejad et al., 2021). The framework presented
in Figure 1 applies a deterministic synthetic scenario approach and
considers a set of plausible hypothetical hurricanes, in addition to the
original scenario, to determine the hazard demand. The original

scenario is a historical hurricane with a specified strength passing
close to the community of interest. To create the hypothetical
scenarios, the original hurricane’s track is replicated parallel to the
coastline, at interval distances equal to the desired area’s coastline
length, with the same central pressure and intensity as the original
hurricane. The appropriate historical scenario event for a particular
region can be selected based on the frequency of hazard occurrence
and the community’s risk perspective (Lin and Wang 2016). Past
hurricane characteristics (e.g., hurricane wind speeds, hurricane track)
can be retrieved from various sources, such as the National Hurricane
Center (NHC) and the Revised Atlantic hurricane database
(HURDAT2) prepared by National Oceanic and Atmospheric
Administration (NOAA) (Vickery et al., 2009a; NOAA 2021).
Original scenario selection, the number of hypothetical scenarios,
and replica orientation are tied to the resolution of the desired
community’s model and are situation-specific factors that should
be determined based on the user’s analysis goal and engineering
judgment.

To assess damage to the building inventory of a community, the
peak gust wind speed at the location of each building at various time
instants within the community needs to be estimated using a hurricane
wind field model. The most commonly used hurricane wind speed
estimation technique is numerical simulations (e.g., Georgiou 1986;
Vickery et al., 2000a) which require solving non-linear primitive
equations, and subsequent risk estimation involves extensive
computation analysis. Researchers investigated parametric models
as an alternative to numerical simulation techniques to gain higher
computational efficiency. To generate non-uniform wind over a
distributed area, several wind field models exist in the literature
(e.g., Russell 1969; Schwerdt et al., 1979; Holland 1980; Batts et al.,
1984). Among the existing models, the simplest form of a parametric
model for high computational efficiency is Holland (1980) wind
profile model (Guo and van de Lindt 2019). Hence, the proposed
framework applies the widely adopted Holland (1980) wind profile
model for this purpose (see Wang et al., 2020; Guo and van de Lindt

FIGURE 1
Hurricane damage and loss estimation framework.
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2019; Salman and Li 2018; Vickery and Wadhera 2008; Vickery et al.,
2000a for examples).

Holland’s model employs a pressure profile parameter, known as
the ‘Holland parameter’, that allows for estimating spatially
distributed wind speeds of a hurricane. The strongest hurricane
wind occurs at the eye wall; wind intensity decays as the location
moves away from the hurricane center (Xu and Brown 2008). Gradient
wind speed at building location is estimated using the radial wind
profile model provided by Holland (1980) expressed as

VG � Rmax

r
( )B

·
BΔp · exp − Rmax

r( )B[ ]
ρ

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ + r2f2

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
2

− rf

2
(1)

where Rmax is the radius of the maximum wind speed, r is the distance
from hurricane eye to the building site, B is the Holland pressure
profile parameter, Δp is the central pressure difference estimated
subtracting central pressure from atmospheric pressure of
1,013 millibars (Xu and Brown 2008), ρ is the air density, f is the
Coriolis parameter, and VG is estimated in m/s. The radius to
maximum wind is estimated using the model provided by FEMA
(2012) expressed as

lnRmax � 2.556 − 0.000050255Δp2 + 0.042243032ψ (2)
where ψ is the storm latitude and Δp is the central pressure difference.
Holland pressure profile parameter is estimated using the model
developed by Powell et al. (1998) expressed as

B � 1.881 − 0.00557Rmax − 0.01097ψ (3)
The Coriolis parameter is determined by the following expression

(Xu and Brown, 2008):

f � 2Ω · sinφ (4)
where φ is the local latitude and Ω is the earth’s angular velocity
(7.292x10E-5 rad/s).

To assess the physical vulnerability of the building it is required to
convert gradient wind speed to surface wind speed. A conversion
factor of 0.83 near the eyewall, reducing to 0.75 away from the eyewall
is used to convert gradient wind speed to surface (10 m above ground/
water level) wind speed (Batts et al., 1984; Georgiou, 1986; Vickery
et al., 2009b). Structural damage during a hurricane is generally
associated with peak gust wind speed. Hence, the surface wind
speed is further converted to 3-sec gust wind speed, multiplying
surface wind speed by a gust wind factor of 1.287 with a standard
deviation of 0.02 (Xu and Brown 2008; Salman and Li 2018).

3.2 Physical vulnerability analysis of building
inventory

A community’s building portfolio is composed of many different
types of structures. To lower the computational cost, it is often
desirable to use reduced-order models, such as fragility functions, to
approximate a community’s building portfolio. HAZUS fragility
functions and defined damage states (FEMA 2012) were adopted
in the proposed framework. Four potential damage states, as defined
in Figure 2A, are considered for a building subjected to hurricane
wind hazards (FEMA 2012). Maximum peak gust wind speed is
estimated at the location of each building using Eqs 1–4. The
expected damage state is then assigned to the building
stochastically based on the control axis value on the fragility
curve (i.e., wind speed), and a random number generated on a

FIGURE 2
(A) Damage States, (B) Generalized fragility curves correspond to damage states, and (C) Stochastic damage simulation, and (D) Distribution of building
damage ratio.
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uniform distribution U[0,1] (Klise et al., 2017; Mazumder et al.,
2020). The intersection of x-axis (i.e., wind speed) and y-axis
(i.e., random number) indicates the damage state for a particular
building for a single realization (Klise et al., 2017), as shown in
Figure 2C. Damage ratios represent the percent of the building value
required to repair the building and their repair cost typically varies
from one building to another. The uncertainty associated with the
expected damage ratio for a particular building is modeled assuming
a normal distribution with a coefficient of variation of 0.05, as shown
in Figure 2D (FEMA 2012). Figure 2D shows random normal
distributions of damage ratios corresponding to four damage
states (Friedland 2009).

3.3 Direct socioeconomic impacts of damage
to building inventory

3.3.1 Building repair/replacement cost
Direct financial loss caused by a hurricane is determined as a

portion of the building replacement value using damage ratios based
on the HAZUS hurricane loss model. Expected damage ratios (mean
values) for none, minor, moderate, severe, or complete damage states
are assumed as 0%, 2%, 10%, 50%, and 100%, respectively (FEMA
2012, p 7-11). Uncertainty in damage ratio for each building is
modeled using a normal distribution with a mean damage ratio
and a coefficient of variation (COV) (Lin and Wang 2016). Mean
(μ) and COV values of the damage ratio for four damage states are
shown in Figure 2D. Total direct financial loss for a community is
estimated as

Cost($) � ∑n

i
di × BRVi (5)

where di and BRVi are damage ratio and building replacement
value for i-th building, respectively, and n is the total number of
buildings. For each building, di is generated through a Monte
Carlo simulation where random normal distribution is used for
the corresponding damage state of the building, as shown in
Figure 2D.

3.3.2 Social impacts indicators
To measure the social impacts of the disaster on the community,

population dislocation, employment disruption, and school closures
are taken as proxies for common post-disaster social disruptions
(Daniel et al., 2022). It is assumed that the residential buildings
experiencing either severe or complete damage states will lose
functionality, and occupants living or working in these buildings
will be dislocated (Daniel et al., 2022). The number of persons
dislocated at the community level can be estimated by
multiplying the number of residential units with severe and
complete damage by the average size of households, which is
2.72 in the U.S. between 2016–2020 (U.S. Census Bureau Quick
Facts., 2022a). Of note, the housing vacancy rate in coastal
communities’ housing market is higher than the national average
because of the greater number of seasonal properties in these areas.
The framework predicts the number of community members likely
to face unemployment and the number of students likely to (at least
temporarily) lose their access to education based on the number of
occupants of the commercial buildings and schools within the
community that are severely or completely damaged. The number

TABLE 1 Occupancy counts.

Residential buildings Number of residence per building

Duplex, Beach Duplex 2 units × (2.6 occupants per unita)

Beach House, Mixed-Use (Residential/Commercial), Multi-Section MH, Single-Family,
Singlewide M/H

1 unit × (2.6 occupants per unit)

Beach Condo, Beach Town Home, Condominium, Town Home Number of tax parcels in the building × (2.6 occupants per tax parcel)

Apartment, Multi-Family No. Of units × (2.6 occupants per unit)

Commercial Buildings Gross square feet per employeeb

Medical Building 225

Offices/Services 250

Restaurant 435

Retail 550

Auto Service 600

Conversion, Public Buildings 750

Theater/Recreation, Hotel/Club, Motel 1,500

Special/Institutional 3,000

Education, Daycare (DC) 630

Education, K-12 1,300

Education, Postsecondary (PS) 2,100

Warehouse/Industrial, Distribution 2,500

Warehouse/Industrial, Storage 20,000

Educational Buildings Gross square feet per studentb

Education, Daycare (DC) 550

Education, K-12 140

Education, Postsecondary (PS) 150

aU.S., census bureau(2022a).
bU.S., Green Building Council, (2019) and NFPA, (2021).

Frontiers in Built Environment frontiersin.org06

Mazumder et al. 10.3389/fbuil.2023.1005264

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1005264


of occupants is estimated using the occupant count criteria outlined
by (U.S. Green Building Council, 2019) and National Fire Protection
Association Life Safety Code (NFPA 2021). An overview of the
criteria used to estimate the number of occupants in each
building type is presented in Table 1.

3.4 Open-source tool

Hurricane risk simulation at a community scale often requires
analyzing building portfolio damage for many buildings, which is
computationally extensive. Performing hurricane risk analysis models

FIGURE 3
(A)Onslow County, (B) Hurricanes passed through within 100 km of the radius of the Onslow County, (NOAA 2020) (C) Helene track (NOAA 2020), and
(D) Annual frequency and return periods of hurricanes based on past hurricane events between 1857 and 2020.

FIGURE 4
(A) Hurricane Helene, and (B) six hurricane scenarios (P1-P5 denote the synthetic tracks).
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requires extensive training and expertise and is computationally
demanding. Hence, the current study develops an easy-to-use
open-source python tool, Scenario-based Hurricane Risk Analysis
(SHRA), executable on Jupyter Notebook and other platforms. This
tool is relied on commonly used open-source python packages, such as
NumPy, Matplotlib, and Pandas, and is designed to simulate the
proposed hurricane scenario analysis. This tool is computationally
efficient and allows plotting the physical damage outputs interactively
on OpenStreetMap and estimating social impacts to support decision-
making. This tool’s source codes, and illustrative examples are
available on DesignSafe-CI. The analysis can be easily repeated for
any testbed using SHRA with reasonable modification of scenario
hurricane track characteristics, and fragility curves (Mazumder et al.,
2022; https://doi.org/10.17603/ds2-jzcv-he68).

4 Illustrative example: Onslow County,
North Carolina

To demonstrate the proposed framework described in Section 2, a
case study is performed for the hurricane-prone community of
Onslow County, North Carolina. The county is located in the
southeastern coastal region of North Carolina, about 190 km east
of Raleigh and 80 km north of Wilmington. The county is spread over
a terrain of about 2,000 square km with a population of more than
204,000 people, with a median household income of $50,278, and
45.1% of the population is female. The county is home to 64.5% of

non-Hispanic White, 15.6% of Black or African American, 13.4%
Hispanic Latino, 2.2% Asian, 1.1% American Indian, and 3.2% Other
Races (U.S. Census Bureau 2022a). Approximately 12.5% of the
county’s population is living below the poverty level, which is less
than the national average. An estimated 24.6% of the population is
under 18 years of age, whereas 9.6% is 65 years and over (US Census
Bureau 2022b; Onslow County 2021). Onslow County has experienced
17 hurricanes in the past 40 years (NOAA 2021), making it an
important area for hurricane research, resilience analysis, and
adoption of such findings in practice.

4.1 Synthetic hurricane scenario simulation

4.1.1 Selection of original scenario
Past hurricane events that travelled through a buffer distance of

100 km radius of the Onslow testbed were retrieved from the historical
hurricane tracks database (NOAA 2020), as shown in Figure 3. Any
hurricane that passes through a 100 km radius of Onslow County
would be highly damaging to the area. In total, 50 hurricanes have hit
within 100 km of Onslow County between 1857 and 2000, as listed in
Supplementary Table S1 and shown in Figure 3B; the majority
occurring between August and October. Figure 3D presents the
annual frequency and return period for these 50 records, as well as
for each hurricane intensity (category). The annual frequency and
return period of category 4 hurricanes are estimated as 0.01 and
82 years, respectively.

FIGURE 5
(A) Vortex shape for wind speed estimation, (B) Hurricane Helene track and (C) wind speed trajectory measured at 59,692 building sites in Onslow
County.
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Hurricane Helene (1958), the strongest hurricane to pass within
100 km of Onslow County in the past 160 years, is applied here for
assessing the potential damage and losses of the Onslow County due to
a major hurricane. As shown in Figure 3C, while Helene has been the
strongest hurricane in this region, Helene’s trajectory offers an
approximate typical path for the history of hurricanes that have
passed within 100 km of Onslow County. Since Helene was the
strongest hurricane in this region, the objective of this study was
limited to examining hurricane scenarios that are closely related to
hurricane Helene’s size and angle of approach.

Hurricane Helene made landfall in September 1958 and severely
impacted coastline counties of North Carolina including New
Hanover County, Brunswick County, Pender County, Onslow
County, Carteret County, and Dare County including a
widespread power outage and telecommunication disruption
(NWS 2021). Due to the mandatory evacuation of coastal islands
and beach towns, Hurricane Helene caused no direct fatalities.
However, significant property damage was observed within
approximately 15 km of the coast. Many small buildings and
houses were destroyed by the hurricane winds and resulting in
$11 million in 1958 USD economic losses in North Carolina.
Hurricane Helene caused greater damage to New Hanover, and
Brunswick Counties compared to other counties, resulting in
$7.28 and $2.34 millions in 1958 USD, respectively. Significant
roof and window damage were observed in many buildings
located in Onslow County (NWS 2021). Although Hurricane
Helene caused a lesser impact on Onslow County compared to
New Hanover and Brunswick Counties, a future reoccurrence of
Hurricane Helene or a similar hurricane event with closer proximity
to Onslow County is likely to cause severe damage and loss to
Onslow County given the urban development since 1958. Hence,
this study examined the impact of a reoccurrence of Hurricane
Helene following the actual path of Hurricane Helene and five
hypothetical (synthetic) paths maintaining the same size and
angle of approach. The five synthetic paths are shifted towards
Onslow County; the process for generating these five synthetic tracks
is described next.

4.1.2 Generate synthetic tracks and estimate peak
gust wind speed

The 24-hour hurricane track, at 6-hr intervals, for HurricaneHelene
(1958) was retrieved from the HURDAT2 data that includes peak
intensity of hurricanes, as shown in Figure 4A with red dots. A
linear interpolation was performed at 30-minute intervals to obtain
finer records of the actual hurricane track, as represented by the yellow
dots in Figure 4A. Linear interpolation of wind speeds is suggested for
HURDAT2 data since non-linear interpolation could incorrectly boost
wind data for the interpolated points (RDA 2020). To examine potential
hurricane risk scenarios for Onslow County, five synthetic hurricane
tracks were projected by offsetting the original track to the northeast at
50 km intervals while maintaining the original central pressures and
intensities of Hurricane Helene. Figure 4B mapped the six hurricane
tracks, where P1-P5 denote the five synthetic tracks. Ranges of the
maximum wind speed radius, central pressure difference, and Holland
parameters were found as 36.2–42.0 km, 70.0–83.0 millibars, and
1.27–1.32, respectively, for the synthetic hurricane scenarios. A
synthetic track shifted towards Onslow County is expected to
produce stronger wind and storm surges in Onslow County due to
the counterclockwise rotation of wind forces (Sebastian et al., 2014).
Using these six synthetic hurricane tracks, the current study explores a
wider range of possible risk scenarios for Onslow County.

Hurricane wind intensity estimation for a particular location due
to a hurricane scenario can be presented by a generalized vortex shape
wind speed hazard curve that provides the gust wind speed given the
distance from the hurricane eye to the building site. Figure 5A shows
generalized vortex shape wind speed hazard curves estimated for
Onslow County due to Hurricane Helene (1958). This curve
provides a general trend of wind speed variation given a site
distance from the hurricane eye. The maximum wind intensity
occurs at the radius of maximum wind, and intensity decays as the
hurricane eye moves further away from the location of interest.

Figure 5 illustrates how buildings in Onslow County experienced
wind intensity over 24 h during Hurricane Helene. The time between
two dots in Figure 5C represents a 6-hour interval, where linear
interpolation was performed to obtain finer records of the

FIGURE 6
Onslow building inventory: (A) spatial distributions, and (B) number of each archetype.
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hurricane at 30-minute intervals. Each hurricane scenario analysis was
performed for 24 h at 30-min intervals, thus using 49-time instants of
peak gust wind speed estimates, as shown in Figure 5C. At a given
building site, the wind intensity increases as the hurricane eye
approaches, with the maximum peak gust wind experienced when
the distance between the hurricane eye and the building site is the
shortest (represented by a solid arrow). As shown in Figure 5C, while
passing by Onslow County, Helene’s track remains parallel to the

Onslow coastline. Hence, wind intensity decays as a function of
distance to the hurricane eye and distance from the coastline.

4.2 Community-level Building Inventory

The Onslow County building inventory is a collection of geospatial
data on existing buildings’ physical characteristics, market values, and

FIGURE 7
Wind speed trajectory for 59,692 buildings due to hurricanes: (A) P1, (B) P2, (C) P3, (D) P4, (E) P5, and (F) Helene, and Maximum peak gust wind speed
maps for hurricanes: (G) P1, (H) P2, (I) P3, (J) P4, (K) P5, and (l) Helene.
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corresponding fragility-based vulnerability functions. The
information necessary to initiate the inventory was obtained mostly
from the open-to-public datasets provided by Onslow County’s
government (Onslow County 2021). The retrieved data were
cleaned and spatially joined to initiate the intended community-
level building inventory. The accuracy of the initiated building
inventory was verified through cross-referencing and comparing
the mutual attributes with well-known private datasets, including
Microsoft Building Footprint that is released as open data and
available to download free of charge, and ReferenceUSA
(ReferenceUSA 2020) that is available with a subscription. We also
used OpenStreetMap (OSM 2020), Google satellite and street view
images to visually validate some physical attributes of approximately
1% of randomly selected buildings in the inventory. Collectively, we
were able to procure the location, footprint outlines, year built,
number of stories, occupancy type, square footage, structural type,
exterior wall material, market value, number of households and
dwelling type (for residential buildings only) for 59,692 properties
in Onslow County.

For the fragility assignment, we estimated the terrain surface
roughness as 0.35 m and 0.70 m according to the county topography.
Information regarding roof shape, cover material, sheathing, nailing
pattern, and wall connection type are also needed to assign the most
closely related HAZUS damage function. These types of data often
are scarcely available and could not be obtained here. Thus, we
adopted the concept of building portfolio to model the different
building types within the community. A building a portfolio is a
collection of building archetypes with different attributes that are

supposed to represent a community’s building stock in a community
resilience analysis (Nofal and van de Lindt 2020). In this study, the
Onslow building inventory was simplified to 49 building archetypes
as described in Supplementary Table S2. Based on the assumption
that the most recent building code was used at the time of
construction, a mapping algorithm was developed to map each
building to its corresponding archetype. The mapping algorithm
first specifies the corresponding archetype group for a building based
on the building’s occupancy type and structure material. Then,
according to the building’s wall type and/or the number of
stories, the algorithm identifies all possible archetypes for that
particular building and classifies them into three classes based on
their year built. The classes are before 1950, between 1950 and 2000,
and after 2000. These thresholds were selected since significant
evolution occurred in building codes before and after these
periods. Subsequently, since more recent codes tend to produce
higher quality buildings, the roof sheathing nailing pattern and roof/
wall connection are allocated randomly but biased to the building.
For instance, based on expert opinions and engineering judgment,
the probability of using an 8 days nailing pattern was assumed 80%
and 20% if the building’s construction year is after 2000 or before
1950, respectively. Finally, the mapping algorithm randomly assigns
the damage model such that all mapped fragility functions are
equally likely if more than one archetype could correspond to a
particular building. For example, Archetypes A2 and A6, which
differ only in roof shape, have an equal chance to be assigned to a
building. More details on the mapping algorithm can be found by
Enderami et al. (2021). Figure 6 provides the spatial distribution and

FIGURE 8
Building fragility curves for damage state: (A) minor, (B) moderate, (C) severe, and (D) complete.
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number of each building archetype within the Onslow building
inventory. The colorful dots in Figure 6A represent the centroids
of the buildings’ footprints. As evident in Figure 6B, the majority
(i.e., 79.6%) of buildings within the study area are residential
buildings (Group A archetypes), 9.3% of buildings are

manufactured homes (Group B archetypes), 1.7% of buildings are
non-engineered hotel/motel or multi-family homes (Group C
archetypes) and rest of the buildings are commercial, and
industrial buildings. Across all buildings, 76.4% are one-story,
22.9% are two-story, and 0.6% are three-story buildings.

FIGURE 9
Building damage state probability maps for four damage states and six hurricane scenarios in Onslow testbed.
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4.3 Results

Figures 7A–F plot the peak gust wind speeds estimated at
59,692 building sites at 49-time steps for the six hurricane
scenarios. Figures 7A, F show a similar and opposite skew for
hurricanes P1 and Helene. The eyes of these two hurricanes are
further away from Onslow County compared to
P2—P5 trajectories. For hurricanes P2—P5, the hurricane eyes are
closer to many buildings than the radius of the maximum wind for a
particular period, resulting in wind intensity drops for many buildings,

as reflected in Figures 7B–E. This phenomenon is also explained by the
vortex shape shown in Figure 5.

Figures 7G–I displays the spatial gradient of estimated maximum
peak gust wind speeds for the six hurricane scenarios across the
Onslow testbed, where dark red is faster wind speeds, and blue is
lower wind speeds. Conversion factors 0.83 near the eyewall and
0.75 away from the eyewall to convert gradient wind speed to surface
wind speed and a factor 1.287 were used to covert surface wind speed
to 3-sec gust wind speed, respectively. Average maximum peak gust
wind speeds for the testbed buildings due to hurricanes P1, P2, P3,

FIGURE 10
Building damage maps for hurricanes: (A) P1, (B) P2, (C) P3, (D) P4, (E) P5 and (F) Helene.

TABLE 2 Building damage summary for the 59,692 buildings in Onslow testbed.

P1 P2 P3 P4 P5 Helene

None 14,966 6,363 6,570 5,928 6,201 17,538

Minor 20,054 15,628 16,132 15,587 15,902 20,570

Moderate 13,289 15,980 15,785
15,426

16,027 15,987 12,052

Severe 5,720 9,746 9,566 9,898 9,716 4,823

Complete 5,663 11,975 11,639 12,252 11,886 4,709

Damaged (%) 44,726 (74.9%) 53,329 (89.3%) 53,122 (89.0%) 53,764 (90.1%) 53,491 (89.6%) 42,154 (70.6%)

Dislocated (%) 11,383 (19.1%) 21,721 (36.4%) 21,205 (35.5%) 22,150 (37.1) 21,602 (36.2%) 9,432 (15.9%)
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P4, P5, and Helene are estimated as 211.8, 231.0, 231.6, 233.4, 232.4,
and 207.1 km/h, respectively. Standard deviations of the maximum
peak gust wind speeds for hurricanes P1, P2, P3, P4, P5, and Helene
are found as 14.8, 9.64, 7.13, 4.75, 5.75, and 14.3, respectively. In
general, for all six hurricanes, the wind speed gradient is highest at
the coast and decays for buildings more inland. Among these
hurricane scenarios, wind speed is least dispersed over the testbed
area for hurricane P4, whereas wind speed is highly dispersed over
the study area for hurricanes P1 and Helene. In general, the wind
intensities increase as hurricane tracks move closer to the county and
decrease with hurricane tracks moving away from the country, as
expected.

Existing fragility functions in HAZUS were used for estimating
hurricane wind-induced damage. Figure 8 shows the fragility curves of
the four damage states for the 49 building structural archetypes. As
shown considering the width of the plotted curves in each subplot of
Figure 8, the fragility curves span a range of possible wind speeds
associated with hurricanes and thus are capable of capturing the
spectrum of performance experience during the hurricane
scenarios. Damage state 1, for minor damage, has the shortest
wind speed range, at approximately 145–225 km/h at the 50th
percentile, whereas damage state 4 for complete damage ranges
from approximately 200–250 km/h at the 50th percentile
(i.e., uncertainty in damage state assignment increases with damage
severity).

Once the maximum peak gust wind speed is determined for a
building, damage state probabilities are determined for the building
using the appropriate fragility functions provided in Figure 8. Figure 9
shows the estimated probability of exceeding four damage states for
the six hurricane scenarios, where dark purple is higher probabilities
and green is lower probabilities.

As shown in Figure 9, the probabilities of exceeding four damage
states are relatively higher for hurricanes P2-P4 compared with the
probabilities of exceeding four damage states for hurricanes P1 and
Helene. For hurricane P1, mean probabilities of exceedance for minor,
moderate, severe, and complete are 0.75, 0.41, 0.19 and 0.10,
respectively. For hurricane P2, mean probabilities of exceedance for
minor, moderate, severe, and complete are 0.87, 0.61, 0.36, and 0.19,
respectively. For the most severe hurricane P4, the mean probabilities
of exceedance for minor, moderate, severe, and complete are 0.90,
0.64, 0.37, and 0.21, respectively. Mean damage state probabilities of
other hurricanes P2-P3, and P5 are found to be similar to hurricane
P4. After estimating damage state probabilities, the damage state is
assigned stochastically to each building using the maximum peak gust
wind speed, damage state probabilities, and a random number (as
described in Section 3.2). Figures 10A–F show the resulting building
damage maps for the six hurricane scenarios. Table 2 summarizes the
outcomes of the damage simulation. All six hurricanes caused
significant damage to buildings in Onslow. Hurricane P4 is the
most severe, resulting in 37.1% of buildings being either severely or

FIGURE 11
Damage ratio maps for hurricanes: (A) P1, (B) P2, (C) P3, (D) P4, (E) P5, and (F) Helene.
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completely damaged. A similar level of damaged was observed due to
hurricanes P1-P3. Helene’s actual track caused the least damage
considering all six scenarios, as expected.

Damage ratio and building value are used to estimate direct
financial loss resulting from the building’s physical damage.
Building values are estimated using tax parcel data obtained from
the Onslow County website (Onslow County, 2021). As discussed in
Section 3.2, 2%, 10%, 50%, and 100% are assumed as the mean damage
ratios for a building that sustained minor, moderate, severe, and
complete damage, respectively. The actual damage ratio is
generated for each building through a random sampling in the

Monte Carlo Simulation. Figure 11 shows generated damage ratios
for the six hurricane scenarios. Using building values and damage
ratios, the financial losses are estimated as $5,536, $5,795, $9,338,
$9,137, $9,507, and $9,167 million USD for Hurricanes Helene, P1, P2,
P3, P4, and P5, respectively. As an overall trend, the reoccurrence of a
Category 4 hurricane following any of the six tracks will cause severe
physical damage to buildings near the coastline.

Figure 12 provides the spatial distribution of dislocated
households for the six hurricane scenarios. Hurricanes Helene and
P1 resulted in 15.9% and 19.1% of residential buildings experiencing
either severe or complete damage, respectively. Hurricanes P2-P4

FIGURE 12
Household dislocation map for hurricanes: (A) P1, (B) P2, (C) P3, (D) P4, (E) P5, and (F) Helene.

TABLE 3 Dislocated households, and employment and school disruption counts.

Building use Hurricane event

P1 P2 P3 P4 P5 Helene

Dislocated housing units 10,459 20,461 20,360 21,262 20,748 8,739

No. Of dislocated persons 28,448 56,373 55,379 57,832 56,434 23,770

Severely or completely damaged commercial buildings 2,473 3,637 3,703 4,052 3,739 2,200

No. Of employees impacted 27,014 43,832 43,578 45,575 44,223 22,586

Severely or completely damaged school buildings 164 249 248 256 252 136

No. Of students impacted 10,323 15,470 16,422 16,707 16,642 5,536
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resulted in more than 35% of residential buildings experiencing either
severe or complete damage. The pattern of damages and dislocation
are highly related to hurricane trajectories. Hurricane P1 resulted in
most of the damages and dislocation near the coastline. Hurricane
P2 resulted in a high dislocation concentration in the county’s north-
eastern part. Hurricanes P3-P5 resulted in a similar level of damage
and dislocation throughout the county. Although P1 and Helene
resulted in a similar level of damage to buildings, due to the
difference in hurricane paths, dislocation due to Helene is more
dispersed over the county. In general, the dislocation concentration
is higher near the coastline area.

Onslow building inventory includes 53,840 residential buildings
(providing 64,950 housing units), and 5,214 commercial buildings,
440 school affiliated buildings, and 198 other types of buildings. The
estimated numbers for potential household dislocations, employment
disruptions, and educational interruptions for the six hurricane scenarios
are presented in Table 3. To estimate the number of dislocated persons a
vacancy rate of 14.3% is randomly assigned to damaged housing units
(ACS 2021). Hurricane P4 has the most severe impact on household
dislocation by the potential of dislocating approximately
21,262 households (with 57,832 residents) that representing about 28%
of the county’s population. In contrast, original Helene is the least
disruptive by probably dislocating about 12% of the total population
(i.e., about 23,770 persons). Based on Section 3.3.2 procedures, the
number of people likely to experience employment disruption and the
number of students likely to experience school disruption are estimated in
Table 3. As a result of hurricane P4, 45,575 persons experienced
employment disruption, and 16,707 students temporarily lost access to
school. Helene caused 22,586 employment disruption and resulted in
school closure for 5,536 students. About 50% of business buildings are
general office/service and retail buildings, and at least 60% of these
buildings are damaged due to hurricanes P2-P5. Hurricanes Helene
and P1 also resulted in more than 30% of general office/services and
retail buildings dislocation. Hence, people working in general office/
services and retail are expected to experience significant employment
disruption due to these hurricanes.

Thus, a future hurricane with the same central pressures and
intensities as Hurricane Helene, but with a likely different trajectory,
could cause more severe social impacts on the Onslow County
compared to the original Helene.

There is no damage data available from Hurricane Helene to be
used for validation of the predicted physical damage and social
impacts. Importantly, Hurricane Helene occurred in 1958 and the
community’s building inventory and population fabric have changed
significantly since 1958 due to urbanization, economic development,
building code and regulation changes, among other reasons. Thus,
true validation may not be possible for the presented analyses.
However, the accuracy of the hazard module in estimating peak
gust wind speed was verified by comparing predicted values with
recorded wind data during Hurricane Helene. For example, the
maximum wind speed due to Helene was recorded 241 km/h
(150 mph) for Onslow County; this study simulated a maximum
wind speed for Hurricane Helene of 240 km/h. Estimated peak gust
wind speeds for two stations (Wilmington airport and Cape Fear, NC)
also provided similar outcomes. Simulated and recorded peak gust
wind speeds were 212 km/h and 220 km/h, respectively, at
Wilmington airport. At Cape Fear station, simulated and recorded
peak gust wind speeds were 212 km/h and 220 km/h, respectively
(NWS, 2021). Onslow County has a 204,000 population (U.S. Census

Bureau 2022a), about 64,000 employments (U.S. Census Bureau
2022b), and about 26,000 students (U.S. News 2022). Using the
proposed occupancy counts (as shown in Table 1), we found that
78,904 residents (40% of total residents), 51,173 employees (about 80%
of total employees), and 17,087 students (above 65% of total students)
would be impacted due to most severe Hurricane P4. These numbers
show a reasonable estimate of social impact with respect to damage
data and verify a reasonable estimate of the framework’s results.

5 Conclusion

Community-level portfolio impact assessment is essential for
comprehensively addressing future disaster threats and improving
resilience. This framework provides two major contributions to the
state-of-the-art of hurricane risk analysis by: 1) introducing a
simplified procedure to perform synthetic scenario-based hurricane
risk analysis for estimating community-level damage and loss to
buildings due to strong hurricane winds; 2) connecting and
quantifying physical, economic, and social consequences for a
community resulting from severe hurricanes. Unlike other models,
the approach estimates peak gust wind speeds at building sites
considering the spatial variation of wind intensities. The framework
is illustrated with a virtual testbed of the hurricane-prone community
of Onslow County, North Carolina. The present study describes
testbed development procedures, where data was obtained, and the
verification and validation process for the hazard and building data.

Regional hurricane analysis revealed that the annual frequency of
hurricane categories decreases as hurricane category increases. Themost
probable hurricane scenario for Onslow County is a Category
1 hurricane. Although the most destructive scenario for Onslow
County would be a Category 5 hurricane, this region has not
experienced a Category 5 hurricane since 1857. The largest hurricane
to pass within 100 km of Onslow County in the past 160 years was
selected for analyzing potential risk scenarios. While a reoccurrence of
1958 Hurricane Helene (Category 4) will cause severe damage to
buildings, Hurricane Helene’s track shifted towards Onslow County
was shown to produce stronger winds, more severe damage to buildings,
and more severe social disruption. Five synthetic trajectories were
generated by shifting Hurricane Helene’s path northeast at 50 km
intervals. The six hurricane scenario analyses greatly improved
current understanding of how a future major hurricane event may
impact Onslow. These findings can assist decision-makers in shaping
future policies to improve community disaster resilience.

Estimated physical damage to buildings and resulting consequence
can be utilized for city-wide planning for mitigating the impact of the
future hurricane disaster, including resource allocation and distribution
disaster response needs; spatial damage distribution may help decision-
makers and stakeholders to plan for rehabilitation maintenance
planning. Future analysis should account for the effect of hurricane-
induced multiple hazards on the buildings.

While the social impacts of hurricanes on the community due to
the disruption of utilities and transportation networks are typically
significant immediately after a hurricane, including functionality loss
of buildings due to utility outages and physical accessibility loss to road
networks; however, the recovery of civil infrastructure systems is faster
than damaged buildings repair and recovery as individual buildings
failure depends on various recovery assistance and funding
mechanisms. The scope of the current study was limited to
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understanding intermediate and long-term social impacts due to the
failure of buildings.

For a large urban area, the process of hurricane scenario analysis
requires a large number of simulations and can be computationally
expensive. The presented study consisted of 49 iterations for
59,692 buildings in six hurricane scenarios. A soft-computing
algorithm was required to execute the presented hurricane analyses;
this algorithm is provided to interested readers as a python-based
program to execute the proposed hurricane analysis (Mazumder et al.,
2022; https://doi.org/10.17603/ds2-jzcv-he68).
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