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This paper presents a method of equilibrium path analysis and stability analysis

of an equilibrium state for a rigid origami, which consists of rigid flat faces

connected by straight crease lines (folding lines) and can be folded and

unfolded without deformation of its faces. This property is well suited to the

application to deployable structures and morphing building envelopes

consisting of stiff panels. In this study, a frame model which consists of

hinges and rigid frame members is used to model the kinematics of a rigid

origami. Faces and crease lines of a rigid origami are represented by frame

members and hinges, respectively. External loads are applied to the nodes of a

frame model, and the displacements of some nodes are fixed. Small rotational

stiffness proportional to the length of a crease line is assumed in each hinge to

uniquely determine the equilibrium state, which is obtained by solving the

optimization problem for minimizing the total potential energy under the

conditions so that the displacements of the nodes and the members are

compatible. The optimization problem is solved by the augmented

Lagrangian method, and the positive definiteness of the Hessian of the

augmented Lagrangian is investigated to determine the stability of the

equilibrium state. Equilibrium path analyses are carried out and bifurcations

of the equilibrium paths are investigated for examples withwaterbomb patterns.
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1 Introduction

Origami is widely recognized as a traditional play and art form in which one or more

pieces of paper are folded to create various two- or three-dimensional shapes. In addition,

the continuous transition and the mechanical properties of shapes produced by folding

have many engineering applications (Meloni et al., 2021) such as foldable shelters (Lee

and Gattas, 2016), shock absorbers (Ma and You, 2013), medical devices (Kuribayashi

et al., 2006), and metamaterials (Silverberg et al., 2014). Rigid origami is a kind of

polyhedral origami that can be folded and unfolded without deformation of its faces

(Tachi, 2010). The deformation mechanism of a rigid origami which is often called a rigid-
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fold mechanism can be applied to deployable structures

consisting of stiff panels connected by hinges (Zirbel et al.,

2013), and also to kinematics modeling of robots (Belke and

Paik, 2017). Applications in architecture and civil engineering

also exist, e.g., the movable sunshade of Al Bahr Towers and

Rolling Bridge which can be rolled up (Reis et al., 2015). Rigid

origami also has wide potential for the development of new

construction methods of roofs and walls with distinctive shapes

like the Panta-dome (Kawaguchi, 1991). There are many studies

on the kinematics and the mechanical properties of rigid origami.

Various techniques such as optimization and graph theory of

mathematics and structural engineering are utilized; e.g.,

simulation of the folding process based on the projection to

the constraint space (Tachi, 2009), origami design based on the

Bayesian topology optimization (Shende et al., 2021), rigidity

analysis based on the theory of combinatorial rigidity (Katoh and

Tanigawa, 2011), and assigning mountain or valley fold to each

crease line based on graph theory and mixed-integer linear

programming (Chen et al., 2020).

It is important to understand the deformation properties to

design a structure that can be efficiently and safely deployed by

the rigid-fold mechanism. However, the deformation process of

rigid origami is very complicated, and it is difficult to obtain an

analytical solution because it is generally a multi-degree-of-

freedom mechanism except for some special folding patterns

such as Miura-ori (Miura and Pellegrino, 2020) shown in

Figure 1A. Therefore, a numerical solution is generally used to

iteratively obtain the folding states tracing the deformation path,

and a rigid origami is regarded as a mechanism consisting of

panels connected by hinges. Analysis of the deformation path can

be categorized into two types. One is the pure mechanism

analysis that considers only geometric constraints based on

the assumption that faces are completely rigid. The other is

the structural analysis that finds an equilibrium state under

external loads or forced displacements assuming rotational

stiffness of crease lines (folding lines) and/or elastic

deformation of the faces. A path traced by a pair of the load

factor and the folding state is called an equilibrium path. There

may exist a singular point on a path called a bifurcation point

where one or more branching paths exist and a limit point where

a snap-through behavior can be observed. Special consideration

should be given to these singular points since the degrees of

freedom of the mechanism may change at these points. In the

analysis of pure mechanisms, it has been shown that the second-

order or higher-order terms are necessary at the singular point to

trace the path (Salerno, 1992; Tachi, 2012; Demaine et al., 2016).

Besides, in the analysis of an equilibrium path, various studies

exist based on the general theory of elastic stability (Thompson

and Hunt, 1973; Gillman et al., 2018). Although there are many

studies on mechanisms and equilibrium path analysis, the

method for investigating the equilibrium path of a rigid

origami with strictly rigid faces is rarely studied. This hybrid

analysis of the pure mechanism and the structural analysis is

important to understand the foldability (Tachi and Hull, 2017) of

a crease pattern and for the prototyping of the deployable

structure using a rigid-fold mechanism.

It is also important to develop a numerical model suitable for

the analysis of a rigid origami. In the study of kinematics of a

rigid origami, a rotational hinge model shown in Figure 1B and a

truss model shown in Figure 1C are often used. A rotational

hinge model represents the folding state of a rigid origami using

the folding angles of the crease lines (Tachi, 2009; Watanabe,

FIGURE 1
Numerical models representing Miura-ori for the analysis of kinematics of rigid origami. (A) Crease pattern of Miura-ori. (B) Rotational hinge
model. (C) Truss model. (D) Frame model.
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2018). The positions of the vertices are computed from the

complicated nonlinear equations of the folding angles and the

inner angles of faces. Therefore, a rotational hinge model has a

disadvantage for the analysis with the constraints on the

displacements of vertices, and it is usually used for pure

mechanism analysis. Rigid Origami Simulator1 by Tachi

(2009) can trace an exact rigid-fold deformation path without

deformation of faces. Although the study on the equilibrium of a

rotational hinge model is also provided by He and Guest (2022),

the physical interpretation of the loads and the internal forces

considered in their study are torques applied at crease lines; this

makes it difficult to understand the equilibrium state intuitively.

On the other hand, a rigid origami is represented by pin-jointed

bars in a truss model, where the nodal coordinates are the

variables. The rigidity of each face can be guaranteed by

simply placing the rigid bars along the edges for the rigid

origami with only triangular faces. However, to constrain the

in-plane and out of plane deformation of faces with more than

three edges, it is necessary to constrain the nodal displacements

(Schenk and Guest, 2011; Filipov et al., 2017) or to introduce

diagonal bars and construct a bar-joint structure in a three-

dimensional manner (Saito et al., 2015; Zhang et al., 2018), which

tends tomake themodel complicated. Since the nodes of the truss

model are located at the vertices of the origami, it is easy to

incorporate the constraints on the nodal displacements and the

equilibrium with nodal loads. Therefore, it is often used for the

analysis of the equilibrium path under the external loads or the

forced displacements; e.g.,MERLIN22 by Liu and Paulino (2018)

and Origami Simulator3 by Ghassaei et al. (2018). However, they

allow deformation of the faces of a rigid origami, and an exact

rigid-fold path may not be obtained. An exact rigid-fold path

reflecting the equilibrium can be obtained by the method

proposed by Li (2020), although the equilibrium condition is

not strictly satisfied. The conventional FE methods using shell

elements are also often used for the elastic analysis of rigid

origami. They are suited to the analysis of detailed mechanical

properties of rigid origami, such as local deformation, but are not

as suited as elastic truss models to tracing the exact rigid-

fold path.

To overcome the difficulty in a rotational hinge model, a

truss model, and a FE model as mentioned above, the authors

have proposed a frame model (Hayakawa and Ohsaki, 2019a;

b, 2021) shown in Figure 1D based on the concept of a partially

rigid frame (Tsuda et al., 2013; Ohsaki et al., 2016; Watada and

Ohsaki, 2018). Frame members are connected by hinges

whose axes are parallel to the crease lines, and rigidly

connected on the faces. Details of the configuration of a

frame model are shown in Section 2.1. A frame model is

used for the analysis with the assumption that the faces of a

rigid origami is completely rigid, and the exact rigid-fold path

can be obtained. However, it cannot represent elastic

deformation of the faces, which can be represented by FE

methods using shell elements. A frame model has the

advantage of being able to represent a rigid origami with a

simpler configuration than a rotational hinge model and a

truss model. Analysis with boundary conditions can be easily

performed compared to a rotational hinge model since the

nodal coordinates are variables in the frame model. In

addition, there is no need to constrain nodal displacements

or arrange members three-dimensionally, as is the case with a

truss model, to constrain the deformation of faces with more

than three edges since each face is composed of multiple

rigidly-joined frame elements.

In this study, the frame model is utilized to perform an

equilibrium path analysis and stability analysis of equilibrium

state when an external load is applied to a rigid origami. As in

most equilibrium path analyses using truss models, rotational

springs are introduced at the hinges of the frame model to

stabilize the equilibrium under nodal loads. The proposed

method in this paper has the following features.

• By incorporating the rotational stiffness of the hinges, the

deformation path is uniquely determined except for the

possible existence of singular points. This enables us to

avoid the difficulty in tracing the deformation path caused

by many multiple bifurcation points (Ohsaki and Ikeda,

2006, 2007) which may exist on the deformation path if the

rotation stiffnesses of the hinges are not incorporated.

• Instead of solving the equilibrium equations directly, the

equilibrium state is obtained by minimizing the total

potential energy. This enables us to use the stability

theories based on the energy principle and to obtain the

equilibrium state by utilizing sophisticated optimization

techniques.

• The total potential energy minimization problem with the

compatibility equations of the mechanism is solved by the

augmented Lagrangian method (Hestenes, 1969; Birgin

and Martínez, 2012), which often has better convergence

than the conventional Lagrangian and penalty methods.

• Stability analysis of the equilibrium state is performed by

eigenvalue analysis of the Hessian matrix of the augmented

Lagrangian.

The structure of this paper is as follows. Section 2 shows

the configuration of a frame model and the formulation of the

compatibility equations for a frame model. In Section 3, a

method of equilibrium path analysis under nodal loads is

presented using the augmented Lagrangian method. Examples

of equilibrium path and stability analyses using the proposed

method are shown in Section 4. First, the analysis of a two-

1 http://www.tsg.ne.jp/TT/software/.

2 https://paulino.ce.gatech.edu/software.html.

3 https://origamisimulator.org/.
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dimensional two-member model which can analytically

determine the singularity on the equilibrium path is

performed to confirm that the proposed method can

accurately detect the singularity phenomenon. Then, the

analysis is carried out for a waterbomb cell that has a

single inner vertex and multiple degrees of freedom of

rigid-fold mechanism. A waterbomb cell is a well-known

rigid-foldable pattern that has a multi-degrees of freedom

mechanism, and there are some examples of the deformation

path analyses including a bifurcation and a limit point; e.g.,

Gillman et al. (2018). However, the stability of a fully

developed flat state and a bifurcation path from the flat

state have not been investigated well. The flat state is a

singular point on the deformation path of a rigid origami

as pointed out in Tachi (2012), and the degrees of freedom of

the mechanism decreases when the out-of-plane deformation

occurs. In this paper, the stabilities and the equilibrium paths

of the flat states with two types of boundary and load

conditions are investigated. Note that the equilibrium path

can be determined uniquely by the rotational springs although

the waterbomb cell has the multiple degrees of freedom

mechanism. The possible existence of the multiple

bifurcation at the flat states investigated in Chen and

Santangelo (2018) also can be avoided by assigning the

initial imperfection in addition to the rotational springs.

Finally, the conclusions of this paper are given in Section 5.

2 Frame model for the analysis of a
rigid origami

In this section, the configuration and the compatibility

conditions of a frame model are shown. The compatibility

conditions are derived based on Watada and Ohsaki (2018)

and Géradin and Cardona (2007). They are formulated with

respect to the generalized displacements including translational

and rotational displacements of nodes andmembers and rotation

angles of hinges.

2.1 Configuration of a frame model

A frame model is a kind of partially rigid frame (Tsuda

et al., 2013; Ohsaki et al., 2016; Watada and Ohsaki, 2018)

representing a rigid origami mechanism (Hayakawa and

Ohsaki, 2019a; b, 2021). Figure 2 shows an example of

Miura-ori modeled by a frame model. A frame model

consists of nodes, members (frame elements), and hinges.

The basic structure of a frame model is shown by gray bold

lines in Figure 2 which represents a shape of the rigid origami,

and nodes and members shown by blue bold lines are added to

apply loads and boundary conditions. A face with more than

three edges is divided into triangles by the dividing edges.

Basically, nodes are located at the center points of crease lines,

perimeters, and dividing edges and at the barycenters of

triangular faces. As shown by gray in Figure 2B, two

members are connected to the node on a crease line in the

basic structure of a frame model, and a member is connected

to the node rigidly and another member is connected to the

node via a hinge. In this study, the member end connected to a

node rigidly is called the rigid end, and the member end

connected via a hinge is called the hinged end. The axis of

each hinge coincides with the corresponding crease line. The

additional nodes are placed at the vertices to which the loads

or the boundary conditions are applied, and the additional

members shown in blue in Figure 2 are placed along the edges

which have rigid ends. The positions of the vertices of a rigid

origami where the additional nodes do not exist can be

calculated by the positions of nodes on the edges. Details of

the calculation of the positions of vertices can be found in

Hayakawa and Ohsaki (2021).

2.2 Compatibility condition at the rigid end

The number of nodes, members, and hinges are denoted

by nN, nM, and nH, respectively. As shown in Figure 3, the

translation vector of the center point of member i (= 1, . . . ,

FIGURE 2
Detailed configuration of a frame model. (A) Overall view. (B) Enlarged view of the region surrounded by dotted lines in the overall view.
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nM) in the global coordinate system (x1, x2, x3) is denoted by

Vi � (V(1)
i , V(2)

i , V(3)
i )T ∈ R3, and the rotation vector is

denoted by Ψi � (Ψ(1)
i ,Ψ(2)

i ,Ψ(3)
i )T ∈ R3. Let rij ∈ R3 denote

the vector directing from the center point to the j-th end (j = 1,

2) of member i at the initial configuration. Defining

R(Ψi) ∈ R3×3 to be the Rodrigues’ rotation matrix (Géradin

and Cardona, 2007) with respect to the rotation vector Ψi,

the vector obtained by rotating rij with member i can be

represented as R (Ψi) rij. The Rodrigues’ rotation matrix

R (Ψi) is defined as follows:

R Ψi( ) � cos ‖Ψi‖( )I3 + 1

‖Ψi‖2 1 − cos ‖Ψi‖( ){ }ΨiΨi
T

+ 1
‖Ψi‖ sin ‖Ψi‖( ) Ψi[ ]× (1)

where I3 ∈ R3 is the identity matrix and [Ψi]× represents the

cross-product matrix with respect to Ψi, which is defined as

follows:

Ψi[ ]× �
0 −Ψ 3( )

i Ψ 2( )
i

Ψ 3( )
i 0 −Ψ 1( )

i

−Ψ 2( )
i Ψ 1( )

i 0

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦
The detailed calculation of Eq. 1 is shown in Supplementary

Material S1. Let Uk � (U(1)
k , U(2)

k , U(3)
k )T ∈ R3 and Θk �

(Θ(1)
k ,Θ(2)

k ,Θ(3)
k )T ∈ R3 denote the translation and rotation

vectors of node k (= 1, . . . , nN), respectively. When j-th end

of member i is connected to node k, the following equation

should be satisfied because the translation of the member end is

equal to the translation of the node:

Uk − Vi − R Ψi( ) − I3{ }rij � 0 (2)

In addition, if member i is rigidly connected to node k, the

rotation of member i is equal to the rotation of node k, and the

following equation should be satisfied:

Θk −Ψi � 0 (3)

2.3 Compatibility condition at the
hinged end

As shown in Figure 3, the unit vector parallel to the rotation

axis of hinge h (= 1, . . . , nH) at the undeformed state in the global

coordinate system (x1, x2, x3) is denoted by t〈1〉h ∈ R3. t〈2〉h and

t〈3〉h ∈ R3 are defined as the unit vectors satisfying the following

equations:

t〈1〉h × t〈2〉h � t〈3〉h

t〈2〉h × t〈3〉h � t〈1〉h

Then, the reference frame of hinge h in the undeformed state is

represented by the three vectors t〈l〉h (l = 1, 2, 3). Consider the case

where the j-th end of member i is connected to node k via hinge h.

The translation between the center point of member i and node k

satisfies Eq. 2. Since the relative rotation of member i and node k

is constrained except around the rotation axis of hinge h as

shown in Figure 3, the following equations hold:

R Ψi( )t〈1〉h( ) · R Θk( )t〈2〉h( ) � 0

R Ψi( )t〈1〉h( ) · R Θk( )t〈3〉h( ) � 0
(4)

Let φh denote the increment of the rotation angle of hinge h due

to the deformation of the structure. φh is treated as an

independent variable to simplify the calculation of the total

potential energy and its derivatives introduced in Section 3.3.

Note that φh is not a variable inWatada and Ohsaki (2018), and it

is calculated from the displacements of the node and the center

point of the member. When Ψi and Θk satisfy Eq. 4 and

R(Ψi)t〈1〉h and R(Θk)t〈1〉h always coincide during the

deformation process, the ideal value of φh which is denoted

by �φh and shown in Figure 3 can be determined from the

following equations:

sin �φh � R Ψi( )t〈3〉h( ) · R Θk( )t〈2〉h( )
� − R Ψi( )t〈2〉h( ) · R Θk( )t〈3〉h( ) (5)

FIGURE 3
Displacements of member i and node k and rotation angle of hinge h.
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cos �φh � R Ψi( )t〈2〉h( ) · R Θk( )t〈2〉h( ) � R Ψi( )t〈3〉h( ) · R Θk( )t〈3〉h( )
(6)

Therefore, assuming that |φh − �φh|< 2π holds throughout the

deformation process, the compatibility equation for φh can be

expressed as follows (Géradin and Cardona, 2007):

sin φh − �φh( ) � 0
5 R Ψi( )t〈2〉h( ) · R Θk( )t〈2〉h( ){ }sin φh + R Ψi( )t〈2〉h( ) · R Θk( )t〈3〉h( ){ }cosφh � 0

5 R Ψi( )t〈2〉h( ) · sinφh R Θk( )t〈2〉h( ) + cos φh R Θk( )t〈3〉h( ){ } � 0

(7)

The left-hand side of Eqs 4, 7 are simply represented by the

functions of Ψi, Θk, and φh as follows:

Φ 1( )
ij Ψi ,Θk,φh( ) � R Ψi( )t〈1〉h( ) · R Θk( )t〈2〉h( )

Φ 2( )
ij Ψi ,Θk,φh( ) � R Ψi( )t〈1〉h( ) · R Θk( )t〈3〉h( )

Φ 3( )
ij Ψi ,Θk,φh( ) � R Ψi( )t〈2〉h( ) · sinφh R Θk( )t〈2〉h( ) + cos φh R Θk( )t〈3〉h( ){ }

(8)

From Eqs 4, 7, when the j-th end of member i is connected to

node k via hinge h, the rotations of member i and node k and the

change of the rotation angle of hinge h satisfy the following

equations:

Φij Ψi,Θk,φh( ) � Φ 1( )
ij Ψi,Θk,φh( )

Φ 2( )
ij Ψi,Θk,φh( )

Φ 3( )
ij Ψi,Θk,φh( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ � 0 (9)

2.4 Compatibility equations for the entire
structure

The compatibility equations of a frame model with respect to

the generalized displacements are formulated by summarizing

the compatibility equations formulated in Sections 2.2, 2.3. Let nB
denote the number of fixed degrees of freedom of the nodal

displacements. The components of nodal displacements Uk and

Θk that are not constrained are collected for all nodes to

U ∈ R6nN−nB , and the components of member displacements

Vi and Ψi for all members are collected to V ∈ R6nM . In

addition, let φ ∈ RnH denote the vector consisting of φh,

which is the amount of change in the rotation angle of the

hinge. The generalized displacement vector is defined as the

assemblage of U, V, and φ as W � (UT, VT, φT)T ∈ RnD . The

number of components ofW is calculated as nD = 6nN − nB + 6nM
+ nH. Note again that although φ is not included in the

generalized displacement vector in the formulation of Watada

and Ohsaki (2018), it is included in this paper to simplify the

formulation of the total potential energy to be described in

Section 3. According to Eqs 2, 3, 9, when the j-th end of

member i is connected to node k rigidly or via hinge h,

translational and rotational incompatibility vectors represented

by ΔUij ∈ R3 and ΔΘij ∈ R3, respectively, are defined as follows:

ΔUij � Uk − Vi − R Ψi( ) − I3( )rij (10)

ΔΘij � Θk −Ψi (Rigidly connected)
Φij Ψi,Θk,φh( ) (Connected by hinge h){ (11)

In Eqs 10, 11, the components of fixed nodal displacements are

assumed to be equal to 0. The translational and rotational

incompatibility vectors ΔUij and ΔΘij are combined into the

incompatibility vector C(W) ∈ RnC as the nonlinear function of

the generalized displacement vector W. Accordingly, the

compatibility equations are represented as follows:

C W( ) � 0 (12)

Since the compatibility equations should be satisfied at all

member ends, the number of components of C(W) is nC = 12nM.

3 Energy minimization for equilibrium
path analysis

This section presents an energy minimization approach to

the analysis of the equilibrium path and stability of the

equilibrium state when nodal loads are applied to a frame

model with rotational springs introduced at the hinges.

Assuming that the members of the frame are rigid, the

equilibrium state is derived by minimizing the total potential

energy consisting of the strain energy of springs and the work by

the nodal loads. In this paper, we call the pair (W, Λ) the

equilibrium point where Λ is a load factor and W is the

corresponding generalized displacement vector which

minimizes the total potential energy. An equilibrium path is a

curve in the space of the load factor and the generalized

displacements which is the trajectory drawn by the

equilibrium points. Stability analysis of the equilibrium state is

also performed based on the stability condition at the stationary

point of the total potential energy. In the following, the reference

generalized displacement for calculating the total potential

energy is W = 0. The initial displacement for the analysis is

assigned as W � W0 � (UT
0 , V

T
0 , φ

T
0 )T.

3.1 Energy minimization problem

The nodal load vector corresponding to the free degrees of

freedom of the nodal displacement is represented as ΛPU where

PU ∈ R6nN−nB is a constant vector. The residual rotation angles of

the springs at the hinges are considered at the initial state W =

W0, and the assemblage of them is represented by ~φ ∈ RnH .

Therefore, the rotation angles of the springs atW can be denoted

by φ − ~φ. If they are set to zero at W = W0, ~φ is assigned as
~φ � φ0. Defining KH ∈ RnH×nH as the diagonal matrix whose

diagonal component is the rotational stiffness of the spring at

each hinge, the total potential energy with the constant load

Frontiers in Built Environment frontiersin.org06

Hayakawa and Ohsaki 10.3389/fbuil.2022.995710

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.995710


factor Λ is defined as Πρ
Λ(ρ,U) which is the function of φ and U

as follows:

Πφ
Λ φ,U( ) � 1

2
φ − ~φ( )TKH φ − ~φ( ) − UT ΛPU( ) (13)

Note again that the reference generalized displacement for

calculating the total potential energy is W = 0. Incorporating

W � (UT, VT, φT)T, the total potential energy can be

reformulated as the function of W as follows:

ΠΛ W( ) � 1
2

W − ~W( )TK W − ~W( ) −WT ΛP( ) (14)

where ~W, P, and K are the constant vectors and a matrix defined

as follows:

~W � 0nD−nH
~φ

( ) ∈ RnD

P � PU

06nM+nH
( ) ∈ RnD

K � O nD−nH( )× nD−nH( ) O nD−nH( )×nH
OnH× nD−nH( ) KH

[ ] ∈ RnD×nD

The equilibrium state under the constant nodal loadΛPU without

deformation of members is obtained as the solution (stationary

point) of the following optimization problem:

min.
W

ΠΛ W( )
s.t. C W( ) � 0

{ (15)

Although general contact between nodes and members is not

considered in this study, it is confirmed that no contact occurs at

each equilibrium point of the examples shown in Section 4.

3.2 Equilibrium path analysis

In this section, a procedure of equilibrium path analysis is

presented. Equilibrium points are iteratively obtained by solving

problem (15) while updating the load factor. First, the process of

the augmented Lagrangian method (ALM) (Hestenes, 1969;

Birgin and Martínez, 2012) for solving problem (15) is

presented. Let s ∈ R denote the positive penalty parameter,

and the augmented Lagrangian Ls (W, λ) is defined as follows:

Ls W, λ( ) � ΠΛ W( ) + C W( )Tλ + s

2
C W( )TC W( )

� 1
2

W − ~W( )TK W − ~W( ) −WT ΛP( ) + C W( )T λ + s

2
C W( )( )

(16)

Defining Γ(W) � ∇WC(W) ∈ RnC×nD , the gradient of Ls (W, λ)

with respect toW and λ can be calculated, respectively, as follows:

∇WLs W, λ( ) � K W − ~W( ) − ΛP + Γ W( )T λ + sC W( )( ) (17)
∇λLs W, λ( ) � C W( ) (18)

Γ(W) is called the compatibility matrix, and the degrees of

kinematic indeterminacy of the frame model can be calculated

as nD − rank Γ(W). In addition, the degrees of statical

indeterminacy can be calculated as nC − rank Γ(W) (Tsuda

et al., 2013; Watada and Ohsaki, 2018). The detailed

calculation of Γ(W) is shown in Supplementary Material S2.

When W* and λ* are the solution and the corresponding

Lagrange multiplier, respectively, of problem (15), the

following equations hold:

∇WLs Wp, λp( ) � 0 (19)
∇λLs Wp, λp( ) � C Wp( ) � 0 (20)

Hence,W* is the solution to the following optimization problem

with λ = λ*:

min.
W

Ls W, λ( ) (21)

Conversely, if �W satisfies the compatibility equation (12) and is

the solution to problem (21), �W is obviously the solution to

problem (15) since the stationary conditions of problem (15) are

satisfied. Therefore, instead of solving the optimization problem

(15) directly, we can solve the optimization problem (21) and

check that the solution satisfies the constraints to obtain the

equilibrium point. Since the appropriate Lagrange multiplier λ*

corresponding to the solution to problem (15) is unknown, λ* is

estimated by iteratively solving problem (21) while updating λ as

follows:

λ ← λ + sC �W( )
The value of penalty parameter s is automatically adjusted in

the process of the ALM by the algorithm proposed by Birgin

and Martínez (2012). The maximum absolute value among the

components of C(W) can be restricted below the tolerance

ϵtol > 0 by their algorithm. The procedure of the ALM is

provided in Supplementary Material S3. The ALM has good

global convergence property and robustness under the

degenerate constraints, and thus there is some flexibility in

the choice of the initial value of λ (Izmailov and Solodov,

2015).

The equilibrium path is estimated by successively solving

problem (15) by the ALMwhile updating the load factor asΛ←Λ
+ dΛ (dΛ > 0), i.e., the equilibrium path is traced by the

incremental loading analysis. The equilibrium path analysis

starts from Λ = 0 and continues until one of the following

termination conditions is satisfied:

• The specified componentWi ofW reaches the targetWmax
i

or Wmin
i (Wmin

i <Wmax
i ).

• The load factor Λ is greater than the specified maximum

value Λmax > 0.

• The load factor increment dΛ is less than the specified

minimum value dΛmin > 0.

Let dΛ0 denote the initial value of the load factor increment.

Defining a and b (0 < a < 1, b > 1) as the user-specified update
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ratios of dΛ, dΛ is updated as dΛ←max{b (dΛ), dΛ0}, if the ALM

terminates successfully, otherwise, dΛ is reduced as dΛ← a (dΛ).

3.3 Stability of equilibrium state

Stability of the equilibrium point at a given load factor Λ is

achieved if the solution to problem (15) is an isolated localminimum

(Bažant and Cedolin, 2010). Assume that �W and λ are the local

minimum solution to problem (21) and the corresponding Lagrange

multiplier, respectively, and �W satisfiesC( �W) � 0with the specified

tolerance ϵtol. Then, Ls( �W, λ)<Ls( �W + δ �W, λ) holds for any

neighborhood �W + δ �W of �W. Furthermore, if a neighborhood

satisfies C( �W + δ �W) � 0, ΠΛ( �W)<ΠΛ( �W + δ �W) always holds

from Eq. 16 because δ �W involves hinge rotation and KH is positive

definite. Hence, the isolated localminimum solution of problem (21)

which satisfies the compatibility Eq. 12 is the isolated localminimum

solution of problem (15) (Hestenes, 1969). Accordingly, it is a stable

equilibrium point for a certain load factor Λ. When C( �W) � 0

holds, �W is an isolated local minimum solution of problem (21), if

and only if∇WLs( �W, λ) � 0 holds and the followingHessianmatrix

∇2
WLs( �W, λ) ∈ RnD×nD is positive definite (Forst and Hoffmann,

2010).

∇2
WLs

�W, λ( ) � K + ∇W Γ �W( )Tλ( ) + sΓ �W( )TΓ �W( ) (22)

Here, HC(W, λ) ∈ RnD×nD is defined as

HC(W, λ) � ∇W(Γ(W)Tλ), and its (i, j) component HC, ij (W, λ)

is calculated as

HC, ij W, λ( ) � ∑nC
k�1

z2Ck

zWizWj
λk (23)

Note that K and sΓ( �W)TΓ( �W) are both positive semi-definite

when s > 0. Therefore, if HC(W, λ) is positive definite,

∇2
WLs( �W, λ) is also positive definite. As a result, the

equilibrium point ( �W,Λ) is stable if the Hessian matrix

∇2
WLs( �W, λ) is positive definite. Conversely, if ∇2

WLs( �W, λ) is

not positive definite, ( �W, Λ) is an unstable equilibrium point. In

particular, if one or more eigenvalues of ∇2
WLs( �W, λ) are equal to

zero, the corresponding load factor and the equilibrium point are

referred to as the critical load factor and the critical point in this

paper. In addition, the infinitesimal displacement mode obtained

from the eigenvector corresponding to a zero eigenvalue of

∇2
WLs( �W, λ) is called the critical eigenmode. A critical point is

a candidate for a bifurcation or limit point.

4 Numerical examples

First, an example of a three-node two-member planar frame,

for which an analytical solution can be easily obtained, is

presented in Section 4.1. Validity of the proposed method is

verified by comparing the results obtained by the proposed

method with the analytical solution. In Sections 4.2, 4.3,

examples are shown for the analysis of a waterbomb cell,

which is a unit of the waterbomb tessellation and has a rigid-

foldable crease pattern. Each analysis is carried out by using a

Python 3.7 program. The optimization problem (21) is solved

using an NLP software library L-BFGS-B (Morales and Nocedal,

2011) available in Python library SciPy. The units of length and

force are omitted because they do not have an effect on the result.

The parameters and the termination conditions of the

equilibrium path analysis are specified for each section.

4.1 Planar frame consisting of two
members

4.1.1 Analytical solution
Consider a three-node two-member planar frame, as shown

in Figure 4. The rotation axis of each hinge is parallel to the z-

axis, i.e., perpendicular to the paper, and the rotational stiffness

of each spring installed into the hinge is 1. The length of each

member is 1, and a load of magnitude Λ is applied to node 2 in

the negative direction of the y-axis. Let uk and vk denote the

translational displacements of node k (= 1, 2) in x- and y-

directions, respectively. Let θi denote the rotation angle of

member i (= 1, 2), with counterclockwise being positive as

shown in Figure 4. In this section, the compatibility equations

are condensed to be expressed using only translations of nodes

and rotations of members for simplicity, and the generalized

forms of displacement vector and the compatibility equations

FIGURE 4
Configuration and variables of planar frame.
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defined in Section 2 are not used for obtaining the analytical

solution. Accordingly, the following compatibility equations are

to be satisfied between the nodal displacements and the member

rotation angles:

u1 � −sin θ1
v1 � cos θ1 − 1
u2 � −sin θ1 − sin θ2
v2 � cos θ1 + cos θ2 − 2

(24)

Therefore, the total potential energy ΠΛ(θ1, θ2) of the frame and

its Hessian matrix with respect to θ1 and θ2 can be calculated as

follows:

ΠΛ θ1, θ2( ) � 1
2
θ21 +

1
2
θ2 − θ1( )2 + Λv2

� 1
2

2θ21 + θ22 − 2θ1θ2( ) + Λ cos θ1 + cos θ2 − 2( )
(25)

∇2ΠΛ θ1, θ2( ) �

z2ΠΛ

zθ21

z2ΠΛ

zθ1zθ2

z2ΠΛ

zθ1zθ2

z2ΠΛ

zθ22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 2 − Λ cos θ1 −1
−1 1 − Λ cos θ2

[ ] (26)

When θ1 = θ2 = 0, the determinant of ∇2ΠΛ(0, 0) is calculated as

follows:

det∇2ΠΛ 0, 0( ) � Λ2 − 3Λ + 1

� Λ − 3 − �
5

√
2

( ) Λ − 3 + �
5

√
2

( ) (27)

Since det ∇2ΠΛ(0, 0) = 0 if an equilibrium point is a critical point,

two critical load factors Λcr1 and Λcr2 can be derived as follows at

θ1 = θ2 = 0:

Λcr1 � 3 − �
5

√
2

≃ 0.382

Λcr2 � 3 + �
5

√
2

≃ 2.618
(28)

The eigenvectors xcr1 and xcr2 of ∇2ΠΛ(0, 0) corresponding to

zero eigenvalues at Λ = Λcr1, Λcr2 are calculated as follows:

xcr1 � 1���������
10,−, 2 �

5
√√ −1 + �

5
√

2
( ) ≃ 0.526

0.851
( )

xcr2 � 1���������
10,+, 2 �

5
√√ −1 − �

5
√

2
( ) ≃ −0.851

0.526
( ) (29)

4.1.2 Stability of undeformed shape
In this section, the stability of the equilibrium state of the

two-member frame shown in Figure 4 is evaluated by the

eigenvalue analysis of the Hessian matrix of the augmented

Lagrangian introduced in Section 3. Let W = 0 for the initial

shape θ1 = θ2 = 0 of the frame. Assuming thatW is fixed toW = 0,

the Lagrange multiplier λ in the augmented Lagrangian is

calculated as follows:

λ � −Λ Γ 0( )+( )TP (30)

where the superscript + denotes the Moore-Penrose generalized

inverse. If λ is determined from Eq. 30, it satisfies the stationary

condition ∇WLs (0, λ) = 0 for any Λ, i.e., the frame is in the

equilibrium state for any Λ at W = 0. Therefore, the critical load

factors are investigated at W = 0 by successively increasing the

load factor Λ. Since the penalty parameter s in the augmented

Lagrangian can be any value large enough at the equilibrium

point, it is fixed to s = 1 × 106 in this section for simplicity.

Figure 5A shows the smallest and second smallest eigenvalues

of the Hessian matrix ∇2
WLs(0, λ) when the load factor Λ is

sequentially increased from 0 to 3. As shown in the figure, an

eigenvalue becomes zero when Λ ≃Λcr1, Λcr2. The load factors at

which an eigenvalue of the Hessian matrix of the augmented

Lagrangian becomes zero coincide with the critical load factors at

the undeformed equilibrium state obtained in Section 4.1.1. In

addition, Figure 5B shows the critical eigenmodes. The values of

θ1 and θ2 calculated from the eigenmodes are also shown. It can

easily be confirmed that the eigenmodes (0.224, 0.362)T and

(0.348,−0.215)T obtained from ∇2
WLs(0, λ) are identical

(proportional) to xcr1 and xcr2 in Eq. 29, respectively, obtained

analytically. From the above results, it is expected that the

stability of the equilibrium state can be determined from the

eigenvalues of the Hessian matrix of the augmented Lagrangian.

4.2 Waterbomb cell (1)

4.2.1 Stability of fully developed shape
Equilibrium path of the waterbomb cell shown in Figure 6 is

investigated. The number of nodes, members, and hinges of the

frame model are nN = 22, nM = 22, and nH = 6, respectively.

Hence, the number of components of the generalized

displacement vector and the incompatibility vector are nD =

264 and nC = 264, respectively. As shown in Figure 6, the nodal

loads are applied in the positive x-direction, and the boundary

conditions are assigned to constrain the rigid-body motion of the

model. The rotational stiffness of each spring installed in the

hinge is determined to be proportional to the length of the

corresponding crease line; 1 for a crease line of length 5 and�
2

√
for a crease line of length 5

�
2

√
. Let W = 0 be a perfectly flat

and developed state in which all nodes of the frame model lie on

the xy-plane. The degrees of kinematic and static indeterminacy

calculated from the rank of the compatibility matrix are both

4 atW = 0. Since the equilibrium state can be realized for any Λ at

W = 0, the critical load factors are investigated at W = 0 by

increasing the load factor and evaluating the eigenvalues of the

Hessian matrix ∇2
WLs(0, λ). As in Section 4.1.2, the Lagrange
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multiplier for each load factor is obtained from Eq. 30, and the

penalty parameter is fixed at s = 1 × 106.

When the load factor Λ is increased from 0 to 5, the four

smallest eigenvalues of∇2
WLs(0, λ) change as shown in Figure 7A.

The fifth smallest eigenvalue is about 10000 times larger than the

fourth smallest one. Three critical load factors are obtained as

Λcr1 ≃ 0.280, Λcr2 ≃ 0.788, and Λcr3 ≃ 3.750, respectively. The

critical eigenmodes at Λ = Λcr1, Λcr2, Λcr3 are shown in Figures

7B–D. Note that the number of critical load factors is equal to the

degrees of kinematic indeterminacy at the folded state to be

investigated in Section 4.2.2. The obtained critical points are the

FIGURE 5
Eigenvalues of the Hessian matrix and the critical eigenmodes (A) Transition of the smallest and second smallest eigenvalues. (B) Critical
eigenmodes at W = 0.

FIGURE 6
Configuration of analysis model, load, and boundary
conditions; The frame model is represented by bold lines, and the
edges of waterbomb cell are represented by dotted lines.

FIGURE 7
Eigenvalues and critical eigenmodes. (A) Smallest to the fourth smallest eigenvalues. (B) First critical eigenmode. (C) Second critical eigenmode.
(D) Third critical eigenmode.
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symmetric bifurcation points; i.e., denoting a critical eigenmode

as Wcr, Ls (Wcr, λ) = Ls (−Wcr, λ) holds.

4.2.2 Equilibrium path analysis with initial
imperfection

The equilibrium path analysis is carried out for the initial

shape with the imperfection assigned by scaling each eigenmode

shown in Figure 7. The three scales of imperfection modes are

assigned and each analysis starts from W = W0 so that the

maximum nodal translation is w = 0.05, 0.1, 0.5, respectively. The

maximum absolute value among the components of C(W0) is

about 1.07 × 10–2 which corresponds to the component of the

translational incompatibility vector and is about 1/1000 of the

span of the model. To regard the rotation angles of the springs at

W =W0 as the undeformed state φ − ~φ � 0, the rotation angles of

the hinges atW0 multiplied by − 1 are assigned to ~φ. WhenW =

W0, Λ = 0, and λ = 0, they approximately satisfy the stationary

conditions of problem (21), and λ = 0 can be a good estimation of

the multiplier corresponding to the stationary point of problem

(15) atW =W0 andΛ = 0. Therefore, the initial value of λ is given

as λ = 0. The tolerance of the maximum error of C(W) is set as

ϵtol = 1 × 10–8. In this section, the penalty parameter s is updated

automatically for the stability of the equilibrium path analysis.

The initial increment of the load factor is dΛ0 = 5.0, ×, 10–3, and

the update ratios of dΛ are a = 0.125 and b = 2.0. The maximum

value of the load factor and the minimum value of the load factor

increment are specified as Λmax = 10.0 and dΛmin = 1 × 10–10,

respectively. The reference displacement is the translation in the

x-direction of node A at the lower left in Figure 6, with Wmax
i �

10 and Wmin
i � −1. In order to investigate in detail the region

where the reference displacement approachesWmax
i orWmin

i , the

increment of the load factor is adjusted appropriately to a value

smaller than 5.0, ×, 10–3.

Figure 8 shows the translation in the x-direction of node A

for the analyses with nine different initial imperfections. Figure 9

shows the shape of the model on the equilibrium path with w =

0.05. The deformed shapes shown in Figures 9A,B are

symmetrical with respect to the xy-plane. The degrees of

kinematic and static indeterminacy are both 3 after the out-

of-plane deformation occurs. The displacement progresses

significantly in both cases around the first critical load factor

Λcr1 ≃ 0.280. As shown in Figure 8, when the initial imperfection

based on the first eigenmode is applied, the displacement

progresses gradually before the load factor reaches the first

critical load factor. On the other hand, when the initial

imperfection based on the second or third eigenmode is

applied, the displacement hardly progresses until the load

factor exceeds the critical load factor. The deformed shapes at

the end of the analysis are similar for all examples except for the

symmetry about the xy-plane. The reason for the similarity of the

final shapes is that the deformation occurs before the load factor

reaches the second and third critical load factors since the critical

load factors are isolated from each other. The equilibrium paths

approximately converge to the deformation in the direction of

the first eigenmode, i.e., the bifurcation path corresponding to

the first critical point. The load factor is less than the second and

third critical load factors even at the end of the equilibrium path

analysis. The smallest eigenvalue of the Hessian matrix

FIGURE 8
Displacement of node A in the x-direction with three different initial imperfection modes with three different magnitudes, respectively.
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∇2
WLs(W, λ) on each equilibrium path is shown in Figure 10. The

minimum value of the eigenvalue on each equilibrium path is

also plotted in Figure 10 by × mark. The overall trend is that the

eigenvalues have minima near the first critical load factor. It

corresponds to the drastic increase of the deformation around the

first critical load factor. The eigenvalues with the initial

imperfection corresponding to the second and third critical

FIGURE 9
Deformed shapes withw = 0.05. (A) Imperfection corresponding to the first critical eigenmode. (B) Imperfection corresponding to the second
critical eigenmode. (C) Imperfection corresponding to the third critical eigenmode.

FIGURE 10
Transition of the smallest eigenvalue for each initial
imperfection mode.

FIGURE 11
Configuration of analysis model, load, and boundary
conditions.
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eigenmodes oscillate in the range where the load factor is less

than the first critical load factor. These oscillations are caused by

the oscillations of the penalty parameters, and the drastic change

of the penalty parameter in the range Λ < Λcr1 indicates the

instability of finding the equilibrium point. It is reasonable that

the equilibrium point with a small imperfection in the shape of

the second or third eigenmode is difficult to find.

4.3 Waterbomb cell (2)

4.3.1 Stability of fully developed shape
Equilibrium path of the waterbomb cell shown in

Figure 11 is investigated. The loading and boundary

conditions are different from the previous example. This

way, we can generate various deformation patterns of the

FIGURE 12
Eigenvalues and critical eigenmodes. (A) Smallest to the fourth smallest eigenvalues. (B) First critical eigenmode. (C) Second critical eigenmode.
(D) Third critical eigenmode.

FIGURE 13
Displacement of node A in the x-direction with three different initial imperfection modes with three different magnitudes, respectively.
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waterbomb cell. The number of nodes, members, and hinges

of the frame model are nN = 22, nM = 22, and nH = 6,

respectively. Hence, the number of components of the

generalized displacement vector and the incompatibility

vector are nD = 264 and nC = 264, respectively. The

degrees of kinematic and static indeterminacy are both 4 at

W = 0. As in Section 4.2, the critical load factor at W = 0 is

obtained by evaluating the eigenvalues of the Hessian matrix

∇2
WLs(0, λ) of the augmented Lagrangian by successively

increasing the load factor. The penalty parameter is fixed at

s = 1 × 106.

Figure 12A shows the change of the four smallest eigenvalues

of ∇2
WLs(0, λ) when the load factor Λ is increased from 0 to 5.

The fifth smallest eigenvalue is more than 10000 times larger

than the fourth smallest one. Three critical load factors are

obtained as Λcr1 ≃ 1.137, Λcr2 ≃ 2.704, and Λcr3 ≃ 2.909,

respectively. Figures 12B–D show the critical eigenmodes at

Λ = Λcr1, Λcr2, Λcr3. The obtained critical points are the

symmetric bifurcation points.

4.3.2 Equilibrium path analysis with initial
imperfection

Equilibrium path analysis is performed for the shape with

initial imperfection based on the eigenmodes shown in Figure 12.

The conditions for analysis are the same as those in Section 4.2,

except for dΛ0 and Λmax, which are set as dΛ0 = 0.01 and Λmax =

15.0, respectively. The maximum absolute value among the

components of C(W0) is about 1.66 × 10–2 which corresponds

FIGURE 14
Deformed shapes withw = 0.05. (A) Imperfection corresponding to the first critical eigenmode. (B) Imperfection corresponding to the second
critical eigenmode. (C) Imperfection corresponding to the third critical eigenmode.

FIGURE 15
Transition of the smallest eigenvalue for each initial
imperfection mode.
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to the component of the translational incompatibility vector and

is about 1/600 of the span of the model. The displacement in the

x-direction of node A in Figure 11 is used as the reference

displacement.

Figure 13 shows the relation between the displacement at

node A and the load factor. The shapes of the model on the

equilibrium path with each initial imperfection mode with w =

0.05 are shown in Figure 14. The deformed shapes shown in

Figures 14A,B are symmetric with respect to the xy-plane. The

degrees of kinematic and static indeterminacy are both 3 after

the out-of-plane deformation occurs. As shown in the figure,

the displacement progresses significantly around the first

critical load factor Λcr1 ≃ 1.137 in both cases of initial

imperfection. As in Section 4.2.2, the final shapes of the

analysis are almost identical since the critical load factors are

isolated. The smallest eigenvalue of ∇2
WLs(W, λ) on each

equilibrium path is shown in Figure 15. Similarly to the

results in Section 4.2.2, the overall trend is that the

eigenvalues have minima near the first critical load factor.

The minimum values of the eigenvalues on the equilibrium

paths are plotted in Figure 15 by × marks. In contrast to the

example in Section 4.2.2, the load factor exceeds the second

and third critical load factors at the final stage of analysis.

However, when Λ exceeds Λcr1, a finite deformation occurs

and all eigenvalues are positive for each equilibrium path as

shown in Figures 13, 15. Therefore, the equilibrium state is

always stable after the load factor exceeds the first critical load

factor.

5 Conclusion

This paper has presented a method of equilibrium path and

stability analysis of a rigid origami represented by a frame model.

Rotational springs are installed into hinges and nodal loads are

applied to a frame model. The rotational springs allow the

equilibrium path to be uniquely determined locally except at

the critical points. An equilibrium state is achieved for a specified

load factor by minimizing the total potential energy of the frame

under the compatibility conditions so that the displacements of

nodes and members and the rotations of hinges are compatible.

The energy minimization problem is solved by the augmented

Lagrangian method. An equilibrium path is obtained by

successively solving the energy minimization problem while

increasing the load factor. Stability of an equilibrium point is

evaluated by the eigenvalues of the Hessian matrix of the

augmented Lagrangian. If the Hessian matrix is positive

definite at an equilibrium point, the total potential energy is

local minimum and the equilibrium state is stable. Conversely, if

the Hessian matrix has a zero eigenvalue, the equilibrium point is

a candidate for a bifurcation or a limit point.

The proposed method was first applied to a planar frame

consisting of two members whose analytical solution can be easily

obtained. It has been confirmed that the analytical solution and the

result of the stability analysis proposed in this paper agree with

good accuracy, i.e., critical load factors that may cause instability in

the equilibrium can be determined by the proposed method. After

verifying the validity of the proposed method, the method was

applied to fully developed flat waterbomb cells with two different

loads and boundary conditions. As shown in the numerical

examples, various equilibrium paths can be obtained from the

same crease pattern by changing the loads and boundary

conditions. At the flat state, three critical load factors are found

in each example. The number of critical load factors of each

example is equal to the degrees of kinematic indeterminacy at

the folded state, not at the flat state. The initial imperfection

based on a critical mode is assigned in the equilibrium path

analysis to avoid the multiple bifurcation at the flat state and to

investigate the impact of the initial imperfection on the

equilibrium path. The out-of-plane deformation drastically

progresses after the load factor exceeds the first critical load

factor. Although three different initial imperfection modes are

assigned with three different magnitudes, respectively, similar

final shapes are obtained because the critical points are isolated

and the equilibrium paths converge to the bifurcation path of

the first critical point. These results suggest that waterbomb

cells can be used to realize a structure that can be easily and

safely deployed.

Since the proposed method supports only the load increment

method at present, it is insufficient as a method for equilibrium

path analysis of mechanisms with strong nonlinearity. It is

expected in future work that the proposed method is extended

to include the incremental displacement method and the arc

length method. In addition, the augmented Lagrangian is

minimized using BFGS in this study, and the computation

cost is proportional to the square of the number of faces since

the number of variables in the optimization problem is

proportional to the number of faces of a rigid origami. This

leads to a substantial computational cost for the analysis of large-

scale origami. Therefore, the number of variables should be

reduced by eliminating the dependent variables for the

analysis of large-scale origami.
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