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Nielsen–Lohse bridges are tied arch bridges with inclined cables that cross each

other and connect through intersection clamps. Estimating the tension acting on

the cables is essential for maintenance. Currently, methods for estimating the

tension of a single cable using natural frequencies are applied to each cable after

removing the intersection clamps. However, the removal and re-installation of

intersection clamps is time-consuming and laborious. To improve the efficiency of

tension estimation, the authors previously proposed a method for simultaneously

estimating the tension of two cables with an attached intersection

clamp. However, the previous method has the drawback of considering simple

support at both ends, even though the actual boundary is not a perfect simple

support. The objective of this study is to develop a newmethod for estimating the

tension of two cableswith unknownboundary conditions. The cable is assumed to

be supported by a rotational spring at both ends. The newly proposed method

estimates the tension, bending stiffness, and rotational stiffness of two cables from

the natural frequencies without requiring the removal of the intersection

clamp. The proposed method can handle arbitrary boundary conditions such as

simple support or fixed support. In the case of fixed support, the rotational spring

constant becomes infinity. To avoid infinity in the computation, normalization was

employed in the derivation of the estimation formula. The validity of the proposed

method was verified by numerical simulations and field experiments on an actual

Nielsen–Lohse bridge. In the field experiment, the tension of all eight cables was

accurately estimated and the estimation error was less than 10%. Even when

accelerometers were installed on only one of the two cables at a height near the

girder, the tension of both cables was estimated with good accuracy. The

proposed method improves the efficiency of tension estimation work, because

the tensionof twocables can be estimated simultaneously andwith goodaccuracy

by measuring the acceleration of only one cable at a height near the girder.

KEYWORDS

cable tension estimation, intersection clamp, Nielsen-Lohse bridge, natural frequency,
unknown boundary condition, rotational stiffness, field experiment

OPEN ACCESS

EDITED BY

Nizar Bel Hadj Ali,
École Nationale d’Ingénieurs de Gabès,
Tunisia

REVIEWED BY

Łukasz Jankowski,
Institute of Fundamental Technological
Research (Polska Akademia Nauk -
PAN), Poland
Shinta Yoshitomi,
Ritsumeikan University, Japan

*CORRESPONDENCE

Aiko Furukawa,
furukawa.aiko.3w@kyoto-u.ac.jp

SPECIALTY SECTION

This article was submitted to Structural
Sensing, Control and Asset
Management,
a section of the journal
Frontiers in Built Environment

RECEIVED 14 July 2022
ACCEPTED 25 August 2022
PUBLISHED 30 September 2022

CITATION

Furukawa A, Kozuru K and Suzuki M
(2022), Method for estimating tension of
two Nielsen–Lohse bridge cables with
intersection clamp connection and
unknown boundary conditions.
Front. Built Environ. 8:993958.
doi: 10.3389/fbuil.2022.993958

COPYRIGHT

© 2022 Furukawa, Kozuru and Suzuki.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 30 September 2022
DOI 10.3389/fbuil.2022.993958

https://www.frontiersin.org/articles/10.3389/fbuil.2022.993958/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.993958/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.993958/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.993958/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.993958/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.993958&domain=pdf&date_stamp=2022-09-30
mailto:furukawa.aiko.3w@kyoto-u.ac.jp
https://doi.org/10.3389/fbuil.2022.993958
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.993958


1 Introduction

In cable-supported bridges, cables play an important role in

supporting the load of structures. Because each cable has its own

load capacity, it is necessary to carry out maintenance work so as

to ensure that the tension acting on the cable is lower than the

cable’s load capacity. The cable tension can be measured directly

using a load cell, but direct measurement is disadvantageous in

terms of cost. Therefore, the cable tension is typically estimated

indirectly from the cable’s natural frequencies.

In Japan, the vibration method of Shinke et al. (1980) and Zui

et al. (1996) and the higher-order vibration method of Yamagiwa

et al. (2000) are often used to estimate the tension of a single

cable. The vibration method (Shinke et al., 1980; Zui et al., 1996)

estimates the cable tension by inputting the first- or second-mode

natural frequency and two parameters accounting for the cable’s

bending stiffness, sag, and inclination angle. Therefore, the

bending stiffness must be pre-evaluated. In practice, however,

the bending stiffness is often unknown, which makes pre-

evaluation difficult. The higher-order vibration method

(Yamagiwa et al., 2000) solves this problem by estimating the

tension and bending stiffness simultaneously from the natural

frequencies under simple support and fixed support conditions,

without requiring the pre-evaluation of bending stiffness. Fang

and Wang (2012) proposed an estimation formula similar to the

higher-order vibration method (Yamagiwa et al., 2000). Their

formula simultaneously estimates the tension and bending

stiffness of a cable with fixed end boundaries. Additionally,

they recommend using a curve-fitting technique to avoid the

iterative calculations required by the higher-order vibration

method. Nam and Nghia (2011) derived an estimation

equation that considers both the bending stiffness and sag of

the cable.

The complex boundary conditions of cables have also been

investigated. Utsuno et al. (1998) assumed that the cable is

supported by a rotational spring at both ends, and proposed a

method for estimating the cable’s tension, bending moment, and

rotational stiffness using the higher-order vibration method. Ma

(2017) proposed a method for estimating the tension of an

inclined cable with unknown boundary conditions from the

natural frequencies. Yan et al. (2019) proposed a method for

estimating cable tension; their method handles arbitrary

boundaries by using mode shapes. Ma (2017) and Yan et al.

(2019) modeled arbitrary boundaries using rotational springs.

Furukawa et al. (2021, 2022a, 2022b, 2023) proposed methods for

estimating the tension of a cable with a damper installed near the

cable boundary from the natural frequencies and mode shapes. A

damper is directly modeled with complex stiffness, and a formula

has been proposed to estimate the tension, bending stiffness, and

damper parameters simultaneously from the natural frequencies.

Chen et al. (2016, 2018) and Wu et al. (2018) proposed novel

tension estimation methods for handling asymmetric and

complex boundary conditions by using mode shapes. Their

methods avoid the direct modeling of complex boundaries by

focusing on cable deflections at locations away from the cable

boundaries with the help of mode shapes.

Although the above-mentioned methods can estimate the

cable tension under arbitrary boundary conditions, these tension

estimation methods consider a single cable.

The present study considered the Nielsen–Lohse bridge type,

which is an arch bridge characterized by two diagonal cables

connected by an intersection clamp, as shown in Figure 1.

Intersection clamps are installed to prevent the damage and

noise caused by the contact between cables. Owing to the

diagonal cables, Nielsen–Lohse bridges have less deflection

and horizontal vibrations compared with normal arch bridges

(Sakano et al., 2003). Owing to the vortex-induced vibration

caused by the diagonal cables, Nielsen–Lohse bridges rarely

oscillate (Yoneda, 2000). The diagonal cables reduce the

bending moments on the arch ribs and stiffening girders.

Therefore, diagonal cables play an important role in

Nielsen–Lohse bridges. Nevertheless, diagonal cables in

Nielsen–Lohse bridges are prone to fatigue, and cable

assessment is required.

Notably, in Nielsen–Lohse bridges, the cable loosens owing

to seismic motion in the bridge axial direction (Sakoda et al.,

2000). Therefore, the boundary conditions at both ends of the

cables change. Hence, the boundary conditions must be properly

handled when estimating the tension of Nielsen–Lohse bridge

cables.

In the current practice of cable tension estimation for

Nielsen–Lohse bridges, the vibration method (Shinke et al.,

1980; Zui et al., 1996) or higher-order vibration method

(Yamagiwa et al., 2000) is applied to every single cable after

removing the intersection clamps. Because intersection clamps

are typically installed high above the girders, their removal and

re-installation requires an aerial work platform, which in turn

requires traffic control. In summary, current inspection practice

is time-consuming and laborious because it requires the

operation of an aerial work platform and traffic control.

Few studies have attempted to estimate the cable tension of

Nielsen–Lohse bridges without removing the intersection

clamps. The authors are only aware of the study by Kuriyama

et al. (1994), who proposed that the cable between one end and

the intersection clamp can be considered as a single cable, and

FIGURE 1
Schematic diagram of Nielsen–Lohse bridge.
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applied the higher-order vibration method without removing the

intersection clamp. However, it is inappropriate to consider the

intersection clamp as a fixed end, because the intersection clamp

is not fixed and vibrates. Therefore, to the author’s knowledge, an

appropriate tension estimation method for Nielsen–Lohse

bridges is still lacking.

With this background, this study investigated tension

estimation methods suitable to Nielsen–Lohse bridges. The

authors have previously proposed two methods based on

the higher-order vibration method (Furukawa et al.,

2022c). The first one is the out-of-plane method, which

simultaneously estimates the tension and bending stiffness

of two cables from the natural frequencies in the out-of-

plane direction. The second one is the in-plane method,

which estimates the tension, bending stiffness, and axial

stiffness of two cables simultaneously from the natural

frequencies in the in-plane direction. Numerical and

experimental verifications have revealed that the out-of-

plane method has higher estimation accuracy compared

with the in-plane method. Further experimental

investigations have indicated that the accuracy of the in-

plane natural frequencies is lower than the accuracy of the

out-of-plane natural frequencies, which explains why the

out-of-plane method is more accurate, according to

experimental verifications (Furukawa et al., 2022d).

Based on these findings, the out-of-plane method was

selected as the most appropriate method.

The methods previously proposed by the authors have a

drawback in that both ends of the cables are modeled as simply

supported. However, as mentioned previously, the actual

boundaries have rotational stiffness, and the boundary

conditions change because the boundaries loosen. Some

Nielsen–Lohse bridges employ short cables, for which the

boundary conditions have a stronger effect on the natural

frequencies. Therefore, it is necessary to improve the

previous methods so as to appropriately handle the

boundary conditions.

This paper proposes a new tension estimation method for

Nielsen–Lohse bridges with unknown boundary conditions.

The proposed method assumes that the cables are supported

by rotational springs at the cable ends. The simple support

condition corresponds to a rotational spring constant equal to

zero, and the fixed support condition corresponds to a

rotational spring constant equal to infinity. The proposed

method estimates the tension, bending stiffness, and

rotational stiffness of two cables simultaneously using the

natural frequencies in the out-of-plane direction and does not

require the removal of intersection clamps. Because the

rotational spring constant becomes infinity in the case of

fixed support, normalization is introduced into the

proposed method to avoid the numerical difficulty of

handing infinity. The effect of the rotational stiffness on

the tension estimation accuracy of the previously proposed

method was numerically investigated, and the necessity of

rotational stiffness is discussed. The validity of the proposed

method was verified through the numerical simulation of

42 models and field experiments on an actual bridge.

2 Proposed method for estimating
cable tension

2.1 Definition of coordinate system and
cable parameters

This section presents the new tension estimation method for

two cables connected by an intersection clamp and supported by

rotational springs, as shown in Figure 2A. The proposed method

considers out-of-plane vibration perpendicular to the plane

formed by the two cables.

Figure 2B shows the element coordinate system of cable

k, where the cable number k (k � 1, 2) is given to each of the

two cables. The subscript k indicates the value for cable k.

Let Lk1 and Lk2 be the cable length of the left and right sides

of the intersection clamp; the total cable length Lk is

Lk1 + Lk2. Next, let us introduce an index d (d � 1, 2)
representing the left and right sides (spans) of the

intersection clamp. Let the cable axis be xkd and the out-

of-plane deflection of position xkd at time t be wkd(xkd, t), as
shown in Figure 2B. Notably, axes xk1 and xk2 are taken in

the opposite direction.

FIGURE 2
Target model. (A) Model of two cables connected by
intersection clamp. (B)Direction of coordinate axes and deflection
in element coordinate system.
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The other cable parameters are defined as follows: Tk is

the tension, EkIk is the bending stiffness (Ek: Young’s

modulus, Ik: second moment of area), ρkAk is the mass

per unit length (ρk: density, Ak: area), and Kk is the

rotational spring constant of cable k; Tk, EkIk, ρk, and Ak

are uniform throughout the same cable. Each cable k has

rotational springs with the same spring constant Kk at both

ends. This study develops a tension estimation method using

natural frequencies. Considering that the effect of damping

on the natural frequencies is small, damping at the

boundaries is neglected.

2.2 Governing equation and general
solution of cable deflection

The out-of-plane deflection wkd(xkd, t) of the cable position
xkd at time t for cable k follows the following governing equation

when the cable is considered as a tensioned Euler–Bernoulli

beam:

ρkAk
z2wkd(xkd, t)

zt2
+ EkIk

z4wkd(xkd, t)
zx4

kd

− Tk
z2wkd(xkd, t)

zx2
kd

� 0,

(1)
The deflection is transformed by variable separation, as

follows:

wkd(xkd, t) � Wkd(xkd) exp(jωt) (2)

where Wkd(xkd) is the modal function for position xkd, j is an

imaginary unit, and ω is the angular frequency. By substituting

Eq. 2 into Eq. 1, the general solution ofWkd(xkd) can be obtained
as follows:

Wkd(xkd) � Ckd1 cos αkxkd + Ckd2 sin αkxkd + Ckd3 cosh βkxkd

+ Ckd4 sinh βkxkd,

(3)
where Ckd1, Ckd2, Ckd3, and Ckd4 are the integration constants,

and αk and βk are expressed as follows:

αk �

������������������������������������������( Tk

2EkIk
)2

+ ρkAkω2

EkIk

√√
− Tk

2EkIk

√√√
, (4)

βk �

������������������������������������������( Tk

2EkIk
)2

+ ρkAkω2

EkIk

√√
+ Tk

2EkIk

√√√
. (5)

Because there are 16 integration constants (Ckd1, Ckd2, Ckd3,

and Ckd4 for k � 1, 2 and d � 1, 2), 16 boundary conditions are

required.

2.3 Boundary conditions

The following equations hold for each cable at each end,

when the cable is supported by a rotational spring:

Wkd(0) � 0, (6)
d2Wkd(0)

dx2
kd

� Pk
dWkd(0)
dxkd

, (7)

where Pk is expressed as follows:

Pk � Kk

EkIk
. (8)

For each cable, the continuity conditions of the deflection,

deflection angle, and curvature on both sides of the intersection

clamp are expressed as follows:

Wk1(Lk1) � Wk2(Lk2), (9)
dWk1(Lk)

dxk1
+ dWk2(Lk2)

dxk2
� 0, (10)

d2Wk1(Lk1)
dx2

k1

� d2Wk2(Lk2)
dx2

k2

. (11)

Because the out-of-plane deflections of the two cables are

equal at the intersection clamp, the following equation holds:

W12(L12) � W22(L22). (12)

The two cables interact with the force of each other. Because

the forces on each cable are equal in magnitude and opposite in

direction at the intersection clamp, the following boundary

condition can be established:

E1I1{d3W11(L11)
dx3

11

+ d3W12(L12)
dx3

12

} + T1{dW11(L11)
dx11

+ dW12(L12)
dx12

}
+E2I2{d3W21(L21)

dx3
21

+ d3W22(L22)
dx3

22

} + T2{dW21(L21)
dx21

+ dW22(L22)
dx22

} � 0.

(13)

Thus far, 16 boundary conditions have been developed, that

is, Eqs 6, 7 for each cable at each end (eight boundary conditions),

Eqs 9–11 for each cable (six boundary conditions), and Eqs 12, 13

(two boundary conditions).

2.4 Substituting general solution of cable
deflection into boundary conditions

Next, the general solution in Eq. 3 is substituted into the

boundary conditions.

First, by substituting Eq. 3 into Eqs 6, 7 and writing the

resulting equation in matrix format, the following equation is

obtained:

[ 1 1
−α2k β2k

]{Ckd1

Ckd3
} � Pk[ 0 0

αk βk
]{Ckd2

Ckd4
}. (14)
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Hence, {Ckd1Ckd3}T can be expressed by {Ckd2Ckd4}T, as follows:

{Ckd1

Ckd3
} � Pk

α2k + β2k
[−αk −βk

αk βk
]{Ckd2

Ckd4
}. (15)

Then, by substituting Eq. 15 into Eq. 3 and substituting Lkd
into xkd, {Wkd(Lkd) d2Wkd(Lkd)/dx2kd}T can be expressed using

the 2 × 2 matrix Qkd and {Ckd2Ckd4}T as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Wkd(Lkd)

d2Wkd(Lkd)
dx2

kd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ � ⎡⎢⎢⎢⎣ sin αkLkd sinh βkLkd

−α2
k sin αkLkd β2k sinh βkLkd

⎤⎥⎥⎥⎦⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭
+ ⎡⎢⎢⎢⎣ cos αkLkd cosh βkLkd

−α2k cos αkLkd β2k cosh βkLkd

⎤⎥⎥⎥⎦⎧⎪⎨⎪⎩ Ckd1

Ckd3

⎫⎪⎬⎪⎭ �
⎧⎪⎨⎪⎩⎡⎢⎢⎢⎣ sin αkLkd sinh βkLkd

−α2k sin αkxkd β2k sinh βkLkd

⎤⎥⎥⎥⎦
+ Pk

α2k + β2k

⎡⎢⎢⎢⎣ cos αkLkd cosh βkLkd

−α2k cos αkLkd β2k cosh βkLkd

⎤⎥⎥⎥⎦⎡⎢⎢⎢⎣−αk −βk
αk βk

⎤⎥⎥⎥⎦⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭ � Qkd

⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭,

(16a)

where

Qkd � [ sin αkLkd sinh βkLkd

−α2k sin αkxkd β2k sinh βkLkd
]

+ Pk

α2k + β2k
[ cos αkLkd cosh βkLkd

−α2k cos αkLkd β2k cosh βkLkd
][−αk −βk

αk βk
].

(16b)
By substituting Eq.16a into Eqs 9, 11, the following

expression is obtained:

Qk1{Ck12

Ck14
} � Qk2{Ck22

Ck24
}. (17)

From the above analysis, {Ck12 Ck14}T can be expressed by

the 2 × 2 matrix Qk and {Ck22 Ck24}T as follows:

{Ck12

Ck14
} � Q−1

k1Qk2{Ck22

Ck24
} � Qk{Ck22

Ck24
}, (18a)

where

Qk � Q−1
k1Qk2 (18b)

Next, by substituting Eq. 15 into Eq. 3 and substituting Lkd
into xkd, dWkd(Lkd)/dxkd can be expressed using the 1 ×

2 matrix Rkd and {Ckd2Ckd4}T, as follows:

dWkd(Lkd)
dxkd

� [ αk cos αkLkd βk cosh βkLkd ]⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭
+ [ − αk sin αkLkd βk sinh βkLkd ]⎧⎪⎨⎪⎩ Ckd1

Ckd3

⎫⎪⎬⎪⎭
�
⎧⎪⎨⎪⎩[ αk cos αkLkd βk cosh βkLkd ] + Pk

α2k + β2k

[ − αk sin αkLkd βk sinh βkLkd ]⎡⎢⎢⎢⎣−αk −βk
αk βk

⎤⎥⎥⎥⎦⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭ � Rkd

⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭,

(19a)

where

Rkd � [ αk cos αkLkd βk cosh βkLkd ] + Pk

α2k + β2k
[

− αk sin αkLkd βk sinh βkLkd ][−αk −βk
αk βk

] (19b)

By substituting Eq. 19a into Eq. 10 and using Eq 18a, 18 the

following equation is obtained:

Rk1{Ck12

Ck14
} + Rk2{Ck22

Ck24
} � [Rk1Qk + Rk2]{Ck22

Ck24
} � Sk{Ck22

Ck24
}

� 0,

(20a)
where Sk is a 1 × 2 matrix expressed as follows:

Sk � Rk1Qk + Rk2 (20b)

Then, Eq. 20a can be transformed as follows:

Ck24 � −Sk(1, 1)
Sk(1, 2)Ck22 (21)

where Sk(1, 1) and Sk(1, 2) are the (1,1)-th and (1,2)-th entries of
matrix Sk(k � 1, 2).

Next, by substituting Eq. 16a into Eq. 12, the following

equation is obtained:

Q12(1, 1)C122 + Q12(1, 2)C124 � Q22(1, 1)C222 + Q22(1, 2)C224

(22)
whereQk2(1, 1) andQk2(1, 2) are the (1,1)-th and (1,2)-th entries
of matrix Qk2 (k � 1, 2).

By substituting Eq. 21 into Eq. 22, the following equation is

obtained:

(Q12(1, 1) − Q12(1, 2) S1(1, 1)
S1(1, 2))C122

� (Q22(1, 1) − Q22(1, 2) S2(1, 1)
S2(1, 2))C222 (23)

Next, by substituting Eq. 15 into Eq. 3 and substituting Lkd
into xkd, d3Wkd(Lkd)/dx3kd can be expressed using the 1 ×

2 matrix Tkd and {Ckd2 Ckd4}T, as follows:

d3Wkd(Lkd)
dx3

kd

� [−α3
k cos αkLkd β3k cosh βkLkd ]⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭
+ [ α3k sin αkLkd β3k sinh βkLkd ]⎧⎪⎨⎪⎩ Ckd1

Ckd3

⎫⎪⎬⎪⎭
�
⎧⎪⎨⎪⎩[−α3

k cos αkLkd β3k cosh βkLkd ] + Pk

α2
k + β2k

[ α3
k sin αkLkd β3k sinh βkLkd ]⎡⎢⎢⎢⎣−αk −βk

αk βk

⎤⎥⎥⎥⎦⎫⎪⎬⎪⎭⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭ � Tkd

⎧⎪⎨⎪⎩ Ckd2

Ckd4

⎫⎪⎬⎪⎭,

(24a)

where
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Tkd � [−α3k cos αkLkd β3k cosh βkLkd ]
+ Pk

α3k + β3k
[ α3k sin αkLkd β3k sinh βkLkd ][−αk −βk

αk βk
]
(24b)

Hence, the following equation is obtained:

d3Wk1(Lk1)
dx3

k1

+ d3Wk2(Lk2)
dx3

k2

� Tk1{Ck12

Ck14
} + Tk2{Ck22

Ck24
}

� [Tk1Qk + Tk2]{Ck22

Ck24
}

� Uk{Ck22

Ck24
}, (25a)

where Uk is a 1 × 2 matrix expressed as follows:

Uk � Tk1Qk + Tk2 (25b)

By substituting Eqs 10, 25a into Eq. 13, the following

equation is obtained:

E1I1U1{C122

C124
} + E2I2U2{C222

C224
} � 0. (26)

By substituting Eq. 21 into Eq. 26 and dividing by E2I2, the

following equation is obtained:

E1I1
E2I2
(U1(1, 1) − U1(1, 2) S1(1, 1)S1(1, 2))C122 + (U2(1, 1)

− U2(1, 2) S2(1, 1)
S2(1, 2))C222

� 0 (27)

where Uk(1, 1) and Uk(1, 2) are the (1,1)-th and (1,2)-th entries

of matrix Uk (k � 1, 2).

By combining Eq. 23 and 27, the following equation is obtained:

[ a1 −a2
E1I1b1 E2I2b2

]{C122

C222
} � { 0

0
} (28)

where ak and bk are expressed as follows:

ak � Qk2(1, 1) − Qk2(1, 2) Sk(1, 1)
Sk(1, 2) (29)

bk � Uk(1, 1) − Uk(1, 2) Sk(1, 1)
Sk(1, 2) (30)

Notably, ak and bk comprise only functions related to cable k

and do not include functions related to the other cable.

If C122 and C222 are both equal to zero, all integral constants

become zero, as expressed by Eqs 15, 18a, 21. Therefore, for the

mode function Wkd(xkd) to have a nontrivial solution, the

determinant of the matrix in Eq. 28 must be zero. Finally, the

following constraint equation is derived:

E1I1
E2I2

b1a2 + b2a1 � 0. (31)

2.5 Constraint equation for natural
frequencies

There are infinitely many natural frequencies that satisfy Eq.

31. Let i be a positive integer and fi be the corresponding natural

frequency. Then, Eq. 31 can be rewritten as follows:

E1I1
E2I2

bi1a
i
2 + bi2a

i
1 � 0. (32)

The superscript i indicates the value for the ith mode; aik and

bik are functions related to Tk, EkIk, ρkAk, Lk, Lkd, and rk of cable

k, and the ith natural frequencyfi. The natural frequencyfi is not

explicitly included in functions aik and bik, but is included in αik
and βik, as follows:

αik �

��������������������������������������������������( Tk

2EkIk
)2

+ ρkAk(2πfi)2
EkIk

√√
− Tk

2EkIk

√√√
(33)

βik �

��������������������������������������������������( Tk

2EkIk
)2

+ ρkAk(2πfi)2
EkIk

√√
+ Tk

2EkIk

√√√
(34)

Thus far, it is clear from the expression expansion that aik and

bik are functions depending on Pk. In the case of fixed support, aik
and bik become infinity becausePk becomes infinity. Therefore, it is

difficult to precisely calculate Eq. 32 in the case of fixed support.

To solve this problem, Eq. 32 is normalized with regard to Pk,

as follows:

Gi ≡ (E1I1
E2I2

bi1
ai1

+ bi2
ai2
) · ai1

max(∣∣∣∣a11∣∣∣∣, ∣∣∣∣ai1∣∣∣∣) · ai2
max(∣∣∣∣a12∣∣∣∣, ∣∣∣∣ai2∣∣∣∣) � 0;

(35)
where bik is normalized by division with aik, and aik is normalized

by division with max(|a1k|, |aik|).
By organizing the formulas, it can be found that bik /a

i
k and

aik/max(|a1k|, |a1k|) can be expressed as the ratio of two cubic

functions of Pk. Therefore, bik /a
i
k and aik/max(|a1k|, |aik|) can be

calculated using the different formulas expressed by Eqs 36, 37

depending on the rotational stiffness rk (0≤ rk ≤ 1) defined in

Eq. 38.

bik
aik

�

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∑3

m�0b
i
km · Pm

k∑3

m�0a
i
km · Pm

k

(rk < 1)

bik3
aik3

(rk � 1)
(36)

aik
max(∣∣∣∣a1k∣∣∣∣, ∣∣∣∣aik∣∣∣∣) �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
∑3

m�0a
i
km · Pm

k

max(∣∣∣∣∑3

m�0a
1
km · Pm

k

∣∣∣∣∣, ∣∣∣∣∣∑3

m�0a
i
km · Pm

k

∣∣∣∣∣) (rk < 1)
aik3

max(∣∣∣∣a1k3∣∣∣∣, ∣∣∣∣aik3∣∣∣∣) (rk � 1)
(37)
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rk � KkLk

π4EkIk + KkLk
� PkLk/π4

1 + PkLk/π4
. (38)

where aikm and bikm (m � 0, 1, 2, 3) are coefficients of Pm
k and are

related to cable k and mode i; rk � 0 represents simple support

(Kk � Pk � 0) and rk � 1 represents fixed support

(Kk � Pk �∞). Thus, the computation of infinite values when Pk

becomes infinity is avoided. This study assumes that the bending

stiffness and the rotational springs are in series, but the bending and

rotational stiffness can be estimated independently because they are

independent in Eqs 35–37. The rotational stiffness is only included in

Pk, and the bending stiffness is included in aikm, b
i
km, and Pk in Eqs

36, 37.

2.6 Procedure of cable tension estimation

The proposed method estimates the tension Tk, bending

stiffness EkIk, and rotational stiffness rk of two cables

simultaneously by solving the following optimization problem:

minimize G(T1, T2, E1I1, E2I2, r1, r2) �∑n
i�1
(Gi)2, (39)

whereG is the objective function to beminimized,Gi is the function

defined in Eq. 35, and n is the total number of natural frequencies

used in the estimation. The mass per unit length ρkAk, cable length

Lk, position of intersection clamp Lkd, and measured natural

frequencies fi must be input into Eq. 39. Because there are six

unknowns, namely, the tension Tk, bending stiffness EkIk, and

rotational stiffness rk of the two cables, more than six natural

frequencies are needed. The proposed method also estimates the

bending and rotational stiffness, but the estimation accuracy is not

satisfactory owing to these properties’ low sensitivity, as will be

explained later.

Because Eq. 39 is a nonlinear least-squares problem, the

MultiStart method was adopted (MathWorks, 2020) to avoid a

local minima solution. In the MultiStart method, the solution

(combination of T1, T2, E1I1, E2I2, r1, and r2) that minimizes the

objective function G is estimated from various initial values of

T1, T2, E1I1, E2I2, r1, and r2. Among the various solutions based

on various initial values, the solution with the minimum

objective function is determined as the globally optimal solution.

Gi is normalized with regard to Pk as shown in Eqs 35–37. Gi

is not perfectly normalized for all functions, but is found to be of

approximately similar magnitude for different i.

2.7 Previously proposedmethod assuming
simple support

The previously proposed out-of-plane method

(Furukawa et al., 2022c) assumes that both ends of the

two cables have simple support, and estimates the tension

Tk and bending stiffness EkIk of the two cables from the

natural frequencies in the out-of-plane direction. The

optimization problem of the previously proposed method

is expressed as follows:

minimize Gpre(T1, T2, E1I1, E2I2) �∑n
i�1
(Gi

pre)2, (40)

where Gpre is the objective function to be minimized, Gi
pre is the

function defined in Eq. 41, and n is the total number of natural

frequencies used in the estimation.

Gi
pre � sin αi1L1g

i
2 +

E2I2
E1I1

(αi2)3 + αi2(βi2)2(αi1)3 + αi1(βi1)2 sin αi2L2g
i
1 (41)

where

gi
k � sin αi

kLk1 sin α
i
kLk2

− αik
βik

sin αikLk
1 + e−2β

i
kLk − e−2β

i
kLk1 − e−2β

i
kLk2

2(1 − e−2β
i
kLk) . (42)

Notably, Eq. 41 does not exactly match Eq. 35, even if Pk is

substitutedwith zero, because the formulae are organized differently.

3 Numerical verification

3.1 Overview

This section discusses the numerical validation of the

proposed method. The tension, bending stiffness, and

rotational stiffness of the two cables were estimated using the

natural frequencies in the out-of-plane direction, which were

obtained by the eigenvalue analysis of the finite element method.

The estimation accuracy was investigated by comparing the

estimated value to the assumed (true) value.

3.2 Modeling of two cables with
intersection clamp

The material properties, length, and intersection clamp

locations of actual Nielsen–Lohse bridge cables vary.

Therefore, to cover a wide range of cable parameters, this

study considered the various cases listed in Table 1. In Case 1,

the length and material properties of the two cables are

identical. In Case 2, the two cables have equal length, but

their material properties are different. In Case 3, the length

and material properties of the two cables are identical, but the

intersection clamp location differs from model to model. In

Case 4, the material properties of the two cables are equal, but

the cables have different length. There are four types of cables,

that is, A, B, C, and D, with different tension, bending

stiffness, and mass per unit length, as presented in Table 2.
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A total of 42 models are listed in Table 3. Model Nos. 1–6,

7–12, 13–24, and 25–42 belong to cases 1, 2, 3, and 4,

respectively.

3.3 Calculation of natural frequencies
using finite element method

The natural frequencies of the two-cable models were

obtained by the eigenvalue analysis of the finite element

method. The two-dimensional analysis models for the out-of-

plane deflection were established. The element size was set to

0.1 m to achieve sufficient accuracy in the calculation of the

natural frequencies. Rotational springs were set at both ends of

the two cables, and the deflections were fixed at both ends of the

two cables.

The natural frequencies calculated by eigenvalue analysis

were input into the optimization problem expressed by Eq. 39.

Because there are six unknowns (the tension, bending

stiffness, and rotational stiffness of the cables), the natural

frequencies up to the ninth mode were used for estimation.

Yamagiwa et al. (Yamagiwa et al., 2000) proposed using the

lowest five modes for accurate tension estimation by the

higher-order vibration method with two unknowns, because

tension is sensitive to the lower natural frequencies. Because

there were six unknowns in this study, nine natural

frequencies were used.

3.4 Analysis conditions in solution of
optimization problem

To solve the optimization problem of Eq. 39 using the

MultiStart method, 1,000 sets of initial values were generated.

Generally, more sets of initial values result in higher

estimation accuracy but also increase the computation time.

It has been confirmed that the estimation accuracy does not

improve substantially even if the number of initial value sets

exceeds 1,000.

The search range of the solution must be defined when

solving the optimization problem. The search range of

tension was set to 0.5–2 times the true value. As described

in the previous study (Furukawa et al., 2022c), the objective

function has local minima solutions in the range where the

tension is smaller than 0.25 times the true value because the

objective function does not depend on the mode order of the

natural frequencies. While this has the advantage that it is

not necessary to specify the mode order of the natural

TABLE 1 Four numerical verification cases.

Case1: Same length/Same
material properties

Case2: Same length/Different
material properties

Case3: Changing clamp
location

Case4: Different length/Same
material properties

No.1-6 No.7-12 No.13-24 No.25-42

TABLE 2 Cable specifications in numerical verifications.

Cable name Tension Bending stiffness Mass per unit length

T [kN] EI [kN·m2] ρA [ton/m]

A 280.5 12.56 0.0102

B 661.5 68.99 0.0242

C 336.0 17.62 0.0122

D 771.0 92.51 0.0281
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TABLE 3 Models of two cables with intersection clamp considered in numerical verifications.

Case 1

Model no. Cable name Length of cable 1 L1 [m] Location of the
intersection clamp L11/L1

Cable length
ratio L2/L1

Cable 1 Cable 2

1 A A 10 0.6 1

2 A A 20 0.6 1

3 A A 40 0.6 1

4 B B 10 0.6 1

5 B B 20 0.6 1

6 B B 40 0.6 1

Case 2

Model no. Cable name Length of cable 1 L1 [m] Location of the
intersection clamp L11/L1

Cable length
ratio L2/L1

Cable 1 Cable 2

7 A C 10 0.6 1

8 A C 20 0.6 1

9 A C 40 0.6 1

10 B D 10 0.6 1

11 B D 20 0.6 1

12 B D 40 0.6 1

Case 3

Model no. Cable name Length of cable 1 L1 [m] Location of the
intersection clamp L11/L1

Cable length
ratio L2/L1

Cable 1 Cable 2

13 A A 10 0.3 1

14 A A 10 0.9 1

15 A A 20 0.3 1

16 A A 20 0.9 1

17 A A 40 0.3 1

18 A A 40 0.9 1

19 B B 10 0.3 1

20 B B 10 0.9 1

21 B B 20 0.3 1

22 B B 20 0.9 1

23 B B 40 0.3 1

24 B B 40 0.9 1

Case 4

Model no. Cable name Length of cable 1 L1 [m] Location of the
intersection clamp L11/L1

Cable length
ratio L2/L1

Cable 1 Cable 2

25 A A 10 0.6 0.75

26 A A 10 0.6 0.85

(Continued on following page)
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frequencies to be input to the objective function, the problem

of local minimum solution exists. However, previous studies

(Furukawa et al., 2022c) have shown that local minimum

solutions can be avoided by setting the search range of

tension to be greater than 0.25 times the true value.

Therefore, in this study, the lower bound of the search

range for tension was set to 0.5 times the true value.

Harada et al. (2002) reported that the ratio of the actual

tension to the design value of a Nielsen–Lohse bridge after

30 years of service is 0.76–1.4. Therefore, it is reasonable to set

the search range of the tension to 0.5–2 times the true value. In

this section, the search range of the bending stiffness is

considered to be 0.26–2 times the true value. The search

range of the rotational stiffness was set from 0 (simple

support) to 1 (fixed support).

3.5 Comparison between tension
estimation results obtained by newly
proposed method and previously
proposed method under variable
rotational stiffness

Before presenting the estimation results obtained by the

proposed method for 42 models, the tension estimation

accuracy of the newly proposed method is compared to that

of the previously proposed method.

The dimensions of the two cables are as follows:T1 = 1,650 kN,

T2 = 3,300 kN, E1I1 � E2I2 = 106 kN/m2, ρ1A1 � ρ2A2 =

0.03 ton/m. Five cable lengths were considered: L1 � L2 = 10,

20, 30, 40, 50 m. The intersection clamp position was set to

L11/L1 � L21/L2 = 0.6. Seven rotational stiffness cases were

considered: r1 � r2 = 0.0 (simple support), and 0.05, 0.1, 0.2,

TABLE 3 (Continued) Models of two cables with intersection clamp considered in numerical verifications.

Case 4

Model no. Cable name Length of cable 1 L1 [m] Location of the
intersection clamp L11/L1

Cable length
ratio L2/L1

Cable 1 Cable 2

27 A A 10 0.6 0.95

28 A A 20 0.6 0.75

29 A A 20 0.6 0.85

30 A A 20 0.6 0.95

31 A A 40 0.6 0.75

32 A A 40 0.6 0.85

33 A A 40 0.6 0.95

34 B B 10 0.6 0.75

35 B B 10 0.6 0.85

36 B B 10 0.6 0.95

37 B B 20 0.6 0.75

38 B B 20 0.6 0.85

39 B B 20 0.6 0.95

40 B B 40 0.6 0.75

41 B B 40 0.6 0.85

42 B B 40 0.6 0.95

FIGURE 3
Comparison between tension estimation results of proposed
method (rotational stiffness) and previously proposed method
(simple support).
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0.5, 0.8, 1.0 (fixed support). The natural frequencies of the first nine

modes without measurement error were input to both the newly

proposed method and previously proposed method.

The tension estimation results are shown in Figure 3. The

horizontal axis indicates the rotational stiffness for each cable

length, and the vertical axis indicates the ratio of the estimated

tension to the true value. When the rotational stiffness was zero,

both methods estimated the tension with high accuracy.

However, as the rotational stiffness increased, the estimation

accuracy of the previously proposed method decreased,

particularly for short cables, because the previous method

assumes that both ends are simply supported, and the

rotational stiffness has stronger influence on the natural

frequencies of short cables. Considering a cable with a length

of 10 m and fixed support, the tension estimation error is

approximately 10% when the previously proposed method is

used. In contrast, the newly proposed method estimates the

tension with high accuracy regardless of the rotational

stiffness and cable length.

Based on the above comparison, it was thought necessary to

consider the rotational stiffness, particularly for short cables. The

proposed method considering the rotational stiffness is very

useful, because there are many Nielsen–Lohse bridges with

short cables (length of approximately 10–20 m).

3.6 Estimation results for tension, bending
stiffness, and rotational stiffness when
measurement error is ignored

First, the estimation for 42 models without measurement

error was investigated. The results obtained for the case wherein

the rotational stiffness of the two cables was 1 (r1 � r2 � 1) are

shown as an example.

Figure 4 shows the estimation results for the tension, bending

stiffness, and rotational stiffness. The horizontal axis is the model

number, and the vertical axis is the ratio of the estimated value to

the true value.

Figure 5 shows the sensitivity analysis results for models No.

1 and 9. As can be seen, the value of the objective function G in

Eq. 39 changes only when one parameter out of the six

parameters (tension, bending stiffness, and rotational stiffness

of the two cables) is varied. The horizontal axis gives the ratio of

the value of the parameter input to the objective function to the

true value, and the vertical axis gives the objective function value.

The tension and bending stiffness varied from 0 to 2 times the

true value. The rotational stiffness varied from 0 to 1.

First, the tension estimation accuracy was investigated. As

shown in Figure 4A, the proposed method estimated the tension

with sufficient accuracy and the error was within 5% for all

models. By carefully examining the results, it can be found that the

accuracy differs depending on the model. For example, cases 1 and

4 have higher tension estimation accuracy comparedwith cases 2 and

3. Figure 5A shows the sensitivity analysis results for model No. 1

(case 1) andmodel No. 9 (case 2). The vertical axis is minimumwhen

the horizontal axis value is 1, and rapidly increases as the horizontal

axis value moves away from 1. This indicates that tension is highly

sensitive to the objective function, which explains why the tension

estimation accuracy is high. The vertical axis value of model

No.1 exhibits greater increase compared with model No. 9. This

means that the tension of model No. 1 is more sensitive to the

FIGURE 4
Estimation results without measurement error. (A) Tension.
(B) Bending stiffness. (C) Rotational stiffness.
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objective function comparedwith that ofmodelNo. 9, which explains

why the tension estimation accuracy of model No.1 is higher than

that ofmodelNo. 9. The reasonwhy localminima are observed in the

range of the horizontal axis value smaller than 0.25 has already been

explained in 3.4, and they can be avoided by setting the search range

of the tension appropriately. Although there are differences in the

estimation accuracy of each model, it can be seen that the tension

estimation accuracy is generally high.

Second, the bending stiffness estimation accuracy was

investigated. Based on the comparison between Figures 4A,B,

the bending stiffness estimation accuracy is generally inferior to

the tension estimation accuracy. In particular, the bending

stiffness estimation accuracy of models No. 9 and 32 is very

low, with an estimation error as high as 60%. The reason for this

is that the bending stiffness has lower sensitivity against the

objective function compared with tension, as determined by

comparing Figures 5A,B. Particularly, the objective function of

model No. 9 hardly changes even if the bending stiffness changes,

as shown on the right side of Figure 5B.

This study used the natural frequencies of the first ninemodes to

accurately estimate the tension, because tension is sensitive to the

natural frequencies of the lower modes (Yamagiwa et al., 2000). In

contrast, the bending stiffness has lower sensitivity against the natural

frequencies of the lower modes (Yamagiwa et al., 2000). Therefore, it

is difficult to estimate the bending stiffness as accurately as tension if

lower-mode natural frequencies are used.

FIGURE 5
Sensitivity of tension, bending stiffness, and rotational stiffness to objective function for model No.1 (left) and model No. 9 (right). (A) Tension is
varied. (B) Bending stiffness is varied. (C) Rotational spring stiffness is varied.
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Finally, the rotational stiffness estimation accuracy was

investigated. As shown in Figure 4C, the rotational stiffness

estimation accuracy is inferior to the tension estimation accuracy,

because the rotational stiffness has lower sensitivity to the objective

function, as can be found by comparing Figures 5A–C. The lower

estimation accuracy of model No. 9, compared with model No.1, is

also caused by the lower sensitivity of model No. 9, as can be found by

comparing the two graphs in Figure 5C. The cable length of models

No. 1 and 9 is 10 and 40m, respectively. As shown in Figure 3, the

effect of the rotational stiffness becomes smaller as the cable length

increases. Because the cable is longer, the influence of the boundary

conditions is smaller, and the rotational stiffness accuracy of model

No. 9 is lower.

The same tendencywas observed in other caseswherein a different

rotational stiffness was assumed. The tension of the two cables was

estimatedwith high accuracy and the errorwas less than 5%, regardless

of the rotational stiffness. In contrast, the bending stiffness and

rotational stiffness estimations had considerably larger errors.

3.7 Effect of measurement error on
tension estimation accuracy

3.7.1 Modeling of measurement error
This section discusses the effect of measurement errors in the

natural frequencies on the tension estimation accuracy.

Numerical errors are added to the ith mode natural frequency

fFEM
i calculated by the finite element method, as follows:

fnoise
i � fFEM

i (1 + ϵ rand), (43)

where fnoise
i is the natural frequency of the ith mode with

numerical error, and rand is a uniform random number

between -1 and 1; ϵ is the error rate set to 0.0, 0.01, 0.02,

0.03, 0.04, 0.06, 0.08, and 0.1. Different random numbers are

generated for each natural frequency up to the ninth mode.

3.7.2 Estimation error index
The two estimation error indices, namely, the mean

absolute error ratio (MAER) and the root-mean-square

error ratio (RMSER), which obtained the average degree of

estimation error for all 42 models, are expressed as follows:

MAER � 1
2N
∑N
I�1
∑2
k�1

∣∣∣∣∣∣∣∣Tnoise
k (I)

Ttrue
k (I) − 1

∣∣∣∣∣∣∣∣, (44)

RMSER �

���������������������
1
2N
∑N
I�1
∑2
k�1
(Tnoise

k (I)
Ttrue
k (I) − 1)2

√√
(45)

whereN is the total number of models (N � 42), Ttrue
k (I) is the true

value of tension, and Tnoise
k (I) is the tension estimated from the

natural frequencies with numerical errors for cable k andmodel No. I.

The tension estimation error of the higher-order vibration

method has been reported to be within 5% (Shinko Wire

Company, 2017). In this study, the tension estimation error

target was set to be within 10%, because the proposed method

deals with two connected cables, which is a considerably more

difficult problem compared with dealing with a single cable.

Therefore, the error rates at which the MAER and RMSER values

exceed 0.1 (10%) was investigated.

3.7.3 Results
In this section, the results for the case wherein the rotational

stiffness of both cables is 1 (r1 � r2 � 1) are discussed as an example.

First, the tension of all 42modelswas estimated using nine natural

frequencies withmeasurement errors for each error rate ϵ from0.01 to

1.0. The tension estimation results for the error rate ϵ =0.01, 0.02, 0.03,
and 0.05 are shown in Figure 6A as an example. As can be seen, the

estimation error increases with the error rate. The estimation error

indices for each error rate are shown in Figure 7A. The RMSER and

MAER exceed 0.1 when the error rates exceed 0.024 and 0.02,

respectively.

Next, the average of 10 sets of nine natural frequencies was used

in the estimation to reduce the effect of measurement noise. The ten

sets of nine natural frequencies and the measurement error for each

error rate were calculated by repeating the calculation of Eq. 43 ten

times. The tension estimation results for the error rate ϵ = 0.01, 0.02,

0.03, and 0.05 are shown in Figure 6B as an example. The comparison

between Figures 6A,B shows that the tension estimation accuracy

improved by using the average of 10 sets of nine natural frequencies.

The estimation error indices for each error rate are shown in

Figure 7B. The RMSER and MAER stay below 0.1 when the error

rates are below 0.092 and 0.056, respectively. Therefore, using the

average value of the natural frequencies obtained from multiple

measurements is an effective approach for reducing the effect of

measurement error on the accuracy of tension estimation.

4 Verification by field experiment on
actual bridge

4.1 Outline of actual bridge experiments

A field experiment on an actual bridge was conducted to

verify the validity of the proposed method. The schematic

diagram of the considered Nielsen–Lohse bridge is shown in

Figure 8A. Permission to use a photograph and the name of the

bridge has not been obtained from the bridge administrator. In

this bridge, each cable is a bundle of 19 strand steel wires covered

with polyethylene coating.

The vibration experiment was conducted for the four sets

of two cables shown in Figure 8A, that is, cases 1, 2, 3, and

4 from the left. The cable name and length are defined in

Figure 8B.
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FIGURE 6
Estimation results with measurement error. (A) One set of nine natural frequencies is used. (B) Average of 10 sets of nine natural frequencies is
used.
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In each case, the natural frequencies were measured by four

piezoelectric accelerometers. The sampling time interval is

0.00078125 s, the sampling rate is 1,280 Hz, the measurement

time is 25.6 s, and the frequency resolution is 0.0390625 Hz. The

accelerometers’ location and the location where the cable was hit by

a hammer are shown in Figure 8C. In case 1, two accelerometers

were placed on each cable near the intersection clamp. The position

near the intersection clamp of cable 1 was hit with a hammer to

excite vibration. In cases 2, 3, and 4, four accelerometers were placed

on cable 1, and no accelerometers were placed on cable 2. The

position near the bottom end of cable 1 was hit with a hammer to

excite vibration. In cases 1 and 4, four accelerometers were placed

high above the girder. In cases 2 and 3, four accelerometers were

placed near the girder at a height reachable by ladder.

4.2 Structural specifications of each cable

The structural specifications of each cable are shown in

Table 4. Case 1 has the shortest cable length, and case 4 has the

longest cable length. The values in the “Design document”

column were obtained from the design document.

The tension, bending stiffness, and rotational stiffness of

an individual cable were estimated by considering the first to

seventh natural frequencies of the individual cable using the

formula proposed by Utsuno et al. (1998). The natural

frequencies of the individual cable were measured after

removing the intersection clamp. The estimated values

are listed in the three right columns of Table 4. The

tension estimation error of the method proposed by

Utsuno et al. (1998) has been reported to be within 5%.

Owing to time constraints, the vibration experiment of cable

2 in case 4 was not carried out, and the tension, bending

stiffness, and rotational stiffness of this cable were not

estimated.

Regarding the bending stiffness, the estimated value is

approximately three times the value in the design document.

The bending stiffness in the design document was calculated

by the empirical design formula EkIk � 1
3Ek

πD4
k

64 , where Dk is

the cable diameter. Because the cable is a bundle of 19 strand

steel wires, the second moment of area of the circle with the

same diameter is divided by three in the design document.

The estimation result indicates that the estimated bending

stiffness is closer to that obtained by EkIk � Ek
πD4

k
64 for a

uniform circular cross-section. However, because the

bending stiffness has low sensitivity to lower-mode natural

frequencies (Yamagiwa et al., 2000), the bending stiffness

estimation accuracy is not as high as the tension estimation

accuracy.

Regarding the rotational stiffness, the estimated value was

1.0. Therefore, the support condition seems to be closer to fixed

support rather than simple support.

4.3 Measured natural frequencies of two
cables connected by intersection clamp

In the vibration experiment considering two cables connected by

an intersection clamp, cable 1 was hit with a hammer in the out-of-

plane direction. The free vibration in the out-of-plane direction was

measured by four accelerometers. Then, the measured acceleration

histories were transformed into acceleration Fourier spectra, and the

dominant frequencies were read as the natural frequencies. The

vibration experiment was conducted three times for cases 1 and 4,

and twice for cases 2 and 3. In each experiment, the accelerations were

measured by four sensors. Therefore, cases 1 and 4 have

12 acceleration data, and cases 2 and 3 have 8 acceleration data.

The natural frequencies of the 12 or 8 acceleration data were averaged

and used in the estimation.

The acceleration Fourier spectra of one experiment for

each case are shown in Figure 9. The average natural

frequencies are listed in Table 5. The natural frequencies

are round off to three decimal places after taking the average.

The first to ninth natural frequencies were used in the

estimation.

FIGURE 7
Effect of measurement errors on tension estimation error
index. (A) One set of nine natural frequencies is used. (B) Average
of 10 sets of nine natural frequencies is used.
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4.4 Analysis conditions in solution of
optimization problem

In the solution of the optimization problem expressed by Eq. 39,

the number of sets of initial values in theMultiStartmethodwas 200.

It was confirmed that the estimation result was approximately the

same even when the number of sets of initial values exceeded 200.

The search range for tension was set to 0.5–2 times the value

estimated from the natural frequencies of a single cable. The search

range for the bending stiffnesswas set to 0.26–5 times the design value.

FIGURE 8
Outline of field experiment. (A) Schematic diagram of considered Nielsen–Lohse bridge. (B) Cable number and length. (C) Accelerometer
installation positions and hammer strike position (unit: mm).

TABLE 4 Specifications of cables considered in field experiment.

Case
no.

Cable
no.
k

Design document Estimated from natural frequencies of
individual cables

Mass per
unit length
ρkAk
[ton/m]

Length
Lk
[m]

Location of
intersection
clamp
Lk1/Lk

Bending
stiffness
EkIk [kN·m2]

Tension
Tk
[kN]

Bending
stiffness
EkIk [kN·m2]

Rotational
stiffness
rk

1 1 0.0176 14.6 0.77 26 448.7 82.47 1.0

2 0.0176 13.6 0.82 26 489.7 85.56 1.0

2 1 0.0176 18.3 0.61 26 378.0 83.42 1.0

2 0.0176 16.8 0.67 26 383.7 82.31 1.0

3 1 0.0176 21.1 0.53 26 398.3 83.30 1.0

2 0.0176 20.7 0.54 26 391.5 80.84 1.0

4 1 0.0176 20.7 0.54 26 421.0 80.59 1.0

2 0.0176 21.1 0.53 26 − − −
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The upper bound of the search range for the bending stiffness was set

to five times the design value, because the value estimated from the

natural frequencies of the individual cable is approximately three times

the design value. The search range for the rotational stiffness was 0–1.

4.5 Estimation results

4.5.1 Tension estimation results
The tension estimation results obtained by the proposed

method are presented in Table 6. The estimation accuracy is

discussed under the assumption that the tension estimated from

the natural frequencies of the individual cable (reference value) is

true. The reference value of cable 2 (T2) in case 4 was not

estimated and the value of cable 1 (T1) was used instead,

assuming that the tension of the two cables in case 4 is the

same because the tension of the two cables is similar in cases

2 and 3. The estimation errors of all cables are within 10%, which

was the target of this study.

For comparison, the estimation results obtained by the previously

proposed method (Furukawa et al., 2022c) are presented in Table 6.

Because the previous method assumes that both ends are simply

supported, it tends to overestimate the tension. The tension estimated

by the previously proposedmethod is larger than that estimated by the

newly proposedmethod, except cable 2 in case 1. The estimation error

of cable 1 in case 1 is the largest, and its tension is overestimated by

20%. This indicates the necessity of properly treating the rotational

stiffness. For cable 2 in case 3 and cable 1 in case 4, the tension

estimated by the previousmethod is closer to the reference (true) value

comparedwith that estimated by the proposedmethod.However, this

does not mean that the previous method is superior. The proposed

method underestimated the tension of cable 2 in case 3 and cable 1 in

case 4, owing to measurement error, while the previous method

tended to overestimate. Therefore, the tension estimated by the

previous method is closer to the true value.

In conclusion, the tension of all cables was accurately

estimated, and the estimation error is less than 10%.

Therefore, the validity of the proposed method is confirmed.

FIGURE 9
Acceleration Fourier spectra measured in field experiment. (A) Case 1. (B) Case 2. (C) Case 3. (D) Case 4.

TABLE 5Measured natural frequencies of two cables with intersection
clamp in field experiment.

Case
no.

Natural frequencies (ascending order) [Hz]

1 2 3 4 5 6 7 8 9

1 6.17 7.54 12.30 15.35 18.63 23.55 25.86 31.66 33.24

2 4.30 6.91 8.67 12.23 14.45 14.88 18.59 21.84 22.38

3 3.63 7.11 7.23 7.54 11.21 14.53 14.84 15.47 17.11

4 3.83 7.42 7.54 7.89 11.68 15.12 15.43 16.09 20.23
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Interestingly, the tension estimation error of cable 2 is less than

10% in cases 2, 3, and 4, wherein accelerometers were only placed

onto cable 1 and vibration was excited by hitting cable 1 with a

hammer. Accelerometers were not placed onto cable 2. When two

cables are connected and vibrate in unison, the required natural

frequencies can be recorded by installing accelerometers onto one

TABLE 6 Estimation results obtained by field experiment.

Tension

Case no. Cable no. k Proposed method Previously proposed method

Estimated
tension Tk [kN]

Ratio of the
estimated value to
the true value
(estimation error)

Estimated
tension Tk [kN]

Ratio of the
estimated value to
the true value
(estimation error)

1 1 439.2 0.98 (2%) 534.7 1.19 (19%)

2 469.4 0.96 (4%) 455.7 0.93 (7%)

2 1 375.7 0.99 (1%) 408.4 1.08 (8%)

2 386.1 1.01 (1%) 395.5 1.03 (3%)

3 1 402.5 1.01 (1%) 413.1 1.04 (4%)

2 363.9 0.93 (7%) 392.1 1.00 (0%)

4 1 391.7 0.93 (7%) 427.4 1.02 (2%)

2 426.4 1.01 (1%) 465.6 1.11 (11%)

Bending stiffness

Case no. Cable no. k Proposed method Previously proposed method

Estimated bending stiffness
EkIk [kN·m2]

Estimated bending stiffness
EkIk [kN·m2]

1 1 97.17 122.5

2 129.9 53.07

2 1 114.6 70.87

2 129.9 129.9

3 1 122.5 129.9

2 126.2 127.5

4 1 47.99 119.6

2 129.9 76.24

Rotational stiffness

Case no. Cable no. k Proposed method

rotational stiffness rk

1 1 0.546

2 0.0947

2 1 0.311

2 0.0

3 1 0.768

2 0.0

4 1 0.997

2 0.987
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cable. Moreover, in cases 2 and 3, four accelerometers were placed

near the girder at a certain height reachable by ladder. This indicates

that it is sufficient for accelerometers to be installed on only one

cable at a certain height reachable from the girder by ladder, which

greatly improves the inspection efficiency.

4.5.2 Bending stiffness estimation results
The bending stiffness estimation results obtained by the

newly proposed and previously proposed methods are

presented in Table 6. The values estimated by the two

methods are different. Moreover, the estimated values in

Table 6 are also different to the design values and values

estimated from the natural frequencies of single cables, as

presented in Table 4. The reason for this is that the bending

stiffness is not sensitive to lower-mode natural frequencies,

and the lowest nine modes are considered in the estimation.

This tendency of low estimation accuracy for the bending

stiffness is similar to the numerical verification results.

4.5.3 Rotational stiffness estimation results
The rotational stiffness estimation results obtained by the

proposed method are presented in Table 6. Only the result of

the rotational stiffness in case 4 was 1, which is in good

agreement with the estimation result obtained for a single

cable. The rotational stiffness of cable 2 in cases 1, 2, and 3 is

substantially underestimated. The estimation accuracy is low,

and this tendency is similar to the numerical verification

results.

5 Conclusion

This paper proposes a new method for estimating the

tension of two cables connected by an intersection clamp

without requiring the removal of the intersection clamp. The

proposed method can estimate the tension of two cables in a

Nielsen–Lohse bridge from the natural frequencies of the

cables. There are many Nielsen–Lohse bridges with short

cables, and for short cables, the boundary conditions at

both ends of the cable greatly affect the natural frequencies.

Therefore, it is necessary to properly model the boundary

conditions at both ends of the cable. With this background,

the proposed method considers the cable as a tensioned

Euler–Bernoulli beam supported by rotational springs at

both ends. This study derived a formula for estimating the

tension, bending stiffness, and rotational stiffness of two

cables simultaneously from the natural frequencies in the

out-of-plane direction. In the case of fixed support, the

rotational spring constant becomes infinity. It was found

that the infinite rotational spring constant in the proposed

estimation formula deteriorates the estimation accuracy. To

overcome this difficulty, normalization was introduced into

the proposed method to avoid infinity in the calculation.

The validity of the proposed method was verified through

numerical simulations and field experiments on an actual

Nielsen–Lohse bridge. The following conclusions were drawn

from this study.

In the numerical verifications, the natural frequencies of the first

to ninth mode were used in the estimation, because it is known that

tension is sensitive to lower-mode natural frequencies.

First, the effect of the boundary conditions on the tension

estimation accuracy was investigated for models with different

rotational stiffness and cable length.

The method ignoring the rotational stiffness overestimated the

cable tension, particularly for short cables whose cable ends have

rotational stiffness. In the case of a 10-m cablewithfixed support, the

tension was overestimated by approximately 10%. In contrast, the

proposed method accurately estimated the tension regardless of the

rotational stiffness and cable length.

Next, the validity of the proposed method was verified for

42 models. The proposed method accurately estimated the tension

with an estimation error of less than 5% for all 42 models. In

contrast, the bending stiffness and rotational stiffness estimation

accuracy is low owing to these properties’ low sensitivity against the

objective function of the lower modes.

The effect of the natural frequencies’ measurement error on the

tension estimation accuracy was also investigated. The tension

estimation error was evaluated using two indices, namely, RMSER

and MAER. It was found that the RMSER and MAER remained

within 0.1 (10%) when the error rate was less than 0.024 and 0.02.

When the average of 10 sets of nine natural frequencies was used for

estimation, RMSER andMAER were below 0.1 (10%) when the error

rate was below 0.092 and 0.056. Taking the average of the natural

frequencies obtained from multiple measurements is an effective way

for reducing the effect of measurement error.

Finally, the proposedmethodwas verified by afield experiment on

an actual Nielsen–Lohse bridge. Four sets of two cables, that is, cases

1–4, were tested. The lowest nine measured natural frequencies were

used in the estimation. The tension of eight cables (two cableswith four

cases each) was accurately estimated, and the estimation error was less

than 10%, which confirms the validity of the proposed method.

In cases 2, 3, and 4, accelerometers were only installed onto cable

1, and the vibration was excited by hitting cable 1 with a hammer.

Accelerometers were not installed onto cable 2. However, the tension

of cable 2 was estimated with good accuracy. In cases 2 and 3, four

accelerometers were placed near the girder. This indicates that it

suffices for accelerometers to be installed on only one cable near the

girder, which greatly improves the inspection efficiency.

As previously mentioned, the current practice of estimating the

tension of Nielsen–Lohse bridges requires the removal of intersection

clamps. The natural frequencies of each cable are separately

measured, the single-cable tension estimation method is applied

to each cable, and the intersection clamps are finally reinstalled.

The intersection clamps are often installed high above the girders,

and their removal and re-installation are time-consuming and

laborious because they require an aerial work platform and traffic
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control. The proposed method simultaneously estimates the tension

of two cables without requiring the removal of intersection clamps.

Therefore, the proposed method is very useful and greatly improves

the efficiency of tension estimation work because it eliminates the

need for an aerial work platform and traffic control.

In future work, a statistical tension estimation method will be

developed to handle uncertainties and improve the estimation accuracy.
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