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Municipal solid waste management systems use several techniques for

municipal solid waste at the end-of-life stage. However, to take the major

differences to identify good waste management practices and the optimal

actions, more complex comparisons need to be discussed. This perspective

article discusses the advances and future directions of the given specific

research area from the viewpoint of the author with complex review of

professional literature and presentation of other authors’ work. This research

work assesses and compares the environmental impacts of two end-of-life

scenarios (landfilling and conventional incineration) in the European Union

including the practical life cycle assessment. To find the research answers,

eight main environmental impact categories, emissions, and primary energies

were analyzed using the GaBi 8.0 software. Based on the results, it can be

concluded that in the case of incineration, the emissions and the electricity

power credit are higher. These research results can be used to compare waste

treatment processes with lower environmental impacts, and to perform further

research on these processes.
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Introduction

The current situation of waste management worldwide is

characterized by a sustainability transformation influenced by

the circular economy (CE). Sustainable waste management has

come to represent a main topical issue to be addressed to achieve

the environmentally friendly implementation of different waste

management techniques. One of the significant challenges to

waste management (WM) is the municipal solid waste (MSW),

whose volume has been increasing due to rapid development and

industrialization. The global annual production of MSW is

expected to grow to 3.4 billion tons by 2050 (Kaza et al., 2018;

Xu et al., 2022). In accordance with integrated waste

management, the principle of reduction aims to minimize

waste production, however, the principle of waste prevention

has not become an organic attitude among economic operators

(Ghisellini et al., 2016; Geueke et al., 2018). Many research

studies (Stahel, 2016; Grosso et al., 2017; Andersen et al.,

2022; Avató and Mannheim, 2022) suppose that the CE

supports the reduction of the production of various wastes by

taking advantage of the opportunities provided by the Life Cycle

Assessment (LCA). The concept of LCA was born in the 1960s,

when environmental degradation and narrow access to resources

began to cause concern (Bjørn et al., 2018). LCA tools should

point to technical feasibility that produces economic and

energetic benefits with lower environmental burdens. The

whole life cycle of a product can be divided into three

lifecycle phases (production, use/consumption, and end-of-

life) and many environmental indicators must be recognized.

The idea of applying a complex life cycle model for solid

municipal waste fractions was already posited by Civancik-

Uslu et al. (2018) and Civancik-Uslu et al. (2019). The results

of Taşkın and Demir. (2020) provide low emission/low energy

models for WM systems. The European Green Deal (EGD) and

the Sustainable Development Goals (SDGs) require a more

holistic approach to production processes (Guerrero et al.,

2013; Hoang and Fogarassy, 2020). Consequently, sustainable

decision-making models should combine LCA results with the

technological, energetic, and economic data (Giannetti et al.,

2013; Brancoli and Bolton, 2019).

Instead of waste reduction, the proper selection of WM

procedures at the end of waste’s life cycle was emphasized.

More and more research works are available (Finnveden et al.,

2009; Evangelisti et al., 2015; Baldowska-Witos et al., 2019;

Demetrious and Crossin, 2019; Mannheim, 2021; Ouedraogo

et al., 2021; Avató andMannheim, 2022; Lara-Topete et al., 2022)

for the evaluation of EoL scenarios based on the LCA between the

possible waste treatments contrasting the impacts of different

methods. Landfilling and incineration are the most common

treatment methods for MSW (Voběrková et al., 2017; Koda et al.,

2017; Asase et al., 2019; Mehr et al., 2021). However, landfilling is

the third largest source of human methane emissions. According

to Genovesi at al. (2022), the overall impact of fossil-based

systems is closely related to landfill in the categories of water

with human toxicity and water with chronic ecotoxicity.

Incineration has the advantage of being located close to MSW

generation sources reducing transportation costs. The

improvements can be achieved in thermic treatment processes

if we consider other scenarios of the investigated system, such as

energy recovery. Waste-to-Energy (WtE) technologies may

facilitate the use of new waste flows (Lausselet et al., 2016;

Okati et al., 2022) for energy purposes. Several research

studies (Panepinto et al., 2015; Indrawan et al., 2018; Oliveira

et al., 2022) suggest alternative thermic treatment techniques,

such as gasification or plasma-based technology. Voss et al.

(2021) and Keller et al. (2022) introduce an integrated life

cycle model that compares pyrolysis and gasification for

MSW, finding that gasification shows greater emission

reductions than pyrolysis. My previous LCA results

(Mannheim and Siménfalvi, 2012; Mannheim, 2014) showed

that gasification and plasma-based technology have a better

environmental performance in terms of all examined impact

categories compared to incineration. Compared to traditional

thermal technologies, electricity can be produced more efficiently

by plasma gasification where no dioxins and furans are produced

(Mohai and Szépvölgyi, 2005; Oliveira et al., 2022). In recent

times, also anaerobic digestion became the center of attention. In

Canada, Norouzi and Dutta. (2022) analyzed several anaerobic

digestion apparatuses. Several studies (Li and Feng, 2022;

Morsink-Georgali et al., 2022) investigated the impact of

sludge through LCA and highlighted the environmentally

friendly nature of the anaerobic digestion process.

To realize waste handling process optimization, LCA can be

used effectively to investigate the environmental loads of end-of-life

stages (Guerrero et al., 2013; Di Maria et al., 2018). If system

boundaries are well-defined, we can apply Life Cycle Inventory

(LCI) and life cycle impact assessment (LCIA) for EoL stage with a

suitable LCA software. The variety of developed software programs

keeps the chance to devise environmental load decrease solutions at

the end-of-life cycle stage (Alwaeli, 2016). Many research studies

(Guinée et al., 2002; Steve, 2015; Lettner et al., 2018) have defined

sustainable decision-making models, focusing on end-of-life waste

management technologies. Themost important viewpoint is that the

applied tools provide environmental, economic, and energetic

indicators for decision-makers at the same time. That is, the

applied aspect for optimal decision-making is a holistic approach,

which includes the product and technological procedure lifecycles

and removes the possibility of changing practices that have a direct

effect on the environment between different phases of the WMS. In

recent years, the integration of different accountingmethods has also

come to the fore (Arbault et al., 2014; Kharrazi et al., 2014). Kharazi

et al. (2014) integrated emergy, exergy, and ecological footprint. The

integration between LCA and different information-based

approaches, such as exergy analysis (ExA), emergy accounting

(EmA), and BIM-based environmental and economic LCA tools

has also come to the fore (Santos et al., 2019, 2020).
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This work compared two treatment processes (landfilling and

incineration) and examined environmental loads of the MSW

product in the EU. Life cycle models are completed with

leachate, sludge treatments, and landfill gas utilization. The

functional unit was defined as the distribution of 1 kg of

municipal solid waste. In addition to the analyses and

evaluations of the results, this study presents a review of the

application of life cycle assessment in waste management with

the help of the reviewed professional literature.

Methodology

Life cycle assessment and life cycle
inventory methodology

Life cycle assessment method evaluates the environmental loads

associatedwith thewaste product. It is standardized by ISO14040 and

ISO 14044 (International Organisation for Standardization, 2006). In

recent years, the growing importance of environmental and waste

management has enlarged interest in the LCA. Researchers worldwide

have been expanding this methodology because of rising demand for

more environmental information (Borodin et al., 2015; Curran, 2016).

The applied methodology includes life cycle inventory, life cycle

impact assessment (LCIA) by applying GaBi 8.0 software with the

database of 2020, and interpretation of the results. The consistent LCI

includes and quantifies input-output material flows and energy

supplies for all examined processes. In the modelling of waste

treatment systems, we used product-specific input information.

The input wastes are disposed of as municipal solid waste and the

output energy is recovered. The LCI method allocates energy

requirements and environmental emissions to treated waste

products with the allocation of mass. In addition to the main

waste product, the landfilling process produces recycled sludge and

wastewater. Sewage sludge is treated, and the wastewater is managed

in wastewater treatment plant.

TABLE 1 Resources and emissions for treatment scenarios in kilograms (FU: 1 kg of MSW).

Name of flows Scenario 1 Landfilling Scenario 2 Incineration

Primary energy from non-renewable resources 0.807 0.514

Primary energy from renewable resources 0.059 0.088

Material resources 26.50 49.40

Deposited goods 0.862 0.154

Emissions to air 1.17 10.30

Emissions to freshwater 26.00 41.10

Emissions to soil 0.003 Almost zero

FIGURE 1
Normalized and weighted values of the environmental impact categories for landfill in nanograms. Functional unit: 1 kg of municipal solid
waste, EU-28. Normalization method: CML 2016, EU 25 + 3, year 2000, excl. biogenic carbon. Weighting method: thinkstep LCIA Survey 2012,
Europe, CML 2016, excl. biogenic carbon. (Source: own analyzes with GaBi 8.0 software).
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FIGURE 2
Percentage distribution of impact categories for incineration in percent (functional unit: MSW of 1 kg). Normalisation reference: CML 2016, EU
25 + 3, year 2000, excl. biogenic carbon. Weighting method: thinkstep LCIA Survey 2012, Europe, CML 2016, excl. biogenic carbon). In Scenario 1,
0.476 MJ of waste heat, 0.016 MJ of unused primary energy, 0.081 kg of used air, 0.248 kg of processed water to groundwater, 0.005 kg of cooling
water to a river, 0.728 kg of collected rainwater, 0.011 kg of turbid water to a river, 0.216 kg of carbon dioxide to the air, and 0.297 MJ of electric
power (electricity from landfill gas utilization) were generated from 1 kg of MSW. In Scenario 2, 1.23 MJ of electric power was generated, and energy
feedback can be reused in a specifically designed plant. (Source: own analyzes with GaBi 8.0 software).

FIGURE 3
Main environmental impact category values for the two examined end-of-life scenarios in nanograms. (Source: own analyzes with GaBi 8.0
software).
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System boundaries, functional unit, and
allocation

The system boundaries are developed gate-to-grave and

included a dataset of unit single operation processes. The

examined life cycle stage starts after the use stage of the

product, depending on the choice of the product’s end-of-

life scenario. The elementary and system flows to the

treatment sites are allocated to the elementary content in

the waste input. Included within the system environment,

energy supply, and waste treatment are depending on

system boundaries. Auxiliary systems such as produced

electric power, the landfill gas utilization, the leachate

treatment, and the sewage sludge treatment processes

were calculated. The equipment, machines, and trucks

have gone beyond the boundaries of the system. The

energy amount for heating, cooling, and lighting was not

included in the system boundaries. The dataset did not

include incoming transports. The functional unit (FU) was

described as the distribution of 1 kg of municipal solid

waste (average composition from EU in 2020). For the

power production, allocation by energetic content was

applied.

Life cycle impact assessment method

With the help of applied CML 2016 (Centrum voor

Milieukunde Leiden) method, resources, emissions, and

impact categories for EoL processes in terms of the

functional unit were estimated (Kupfer et al., 2021). Eight

main environmental impact potentials—photochemical ozone

creation (POCP), marine and terrestrial ecotoxicity (MAETP,

TETP), human toxicity (HTP), global warming (GWP),

eutrophication (EP), acidification (AP), and abiotic

depletion for fossils (ADPF)—were calculated. The

normalization and weighting methods were the same for

both end-of-life models.

Results

This work enables primary energy, resources, and

environmental impacts associated with the EoL scenarios

of MSW. Table 1 summarizes the calculated values for the

treatment scenarios in the EU and presents that the

emissions to air and freshwater, and the material

resources are much higher for incineration. Figure 1

describes the examined impacts in nanograms for Scenario

1. Figure 2 shows the environmental categories in percent for

Scenario 2. Figure 3 presents the main calculated impact

categories in nanograms for the two examined end-of-life

scenarios.

Discussion

Europe is trying to achieve climate neutrality by 2050 in the

context of the EGD, SDGs and Circular Economy Strategy

(Kaczmarczyk and Urych, 2022). For this purpose, avoiding

municipal solid waste is an important factor, and for

sustainability, it is essential to evaluate the EoL stage. Regarding

this, values of environmental impacts and primary energy were

examined to identify which EoL scenario is more optimal.

According to my results, the values of emissions to air and

freshwater are higher in the case of incineration. Values of POCP,

ADPF, EP, GWP, and TETP are higher for the landfilling,

however, the total load of incineration is twice that of

landfilling. Marine ecotoxicity of incineration (82,9%) is

remarkably high compared to landfilling. LCA studies

mentioned in the introduction similarly concluded that

landfilling had a lower impact on the environment than

incineration. However, in the case of incineration, the value of

the electricity power credit is five times higher, which means that

we can now talk about a treatment method, that is, associated

with energy recovery and energetic utilization.

This developed LCA model can be integrated with additional

environmental factors. The integrated studies for MSW

management with LCA (Lara-Topete et al., 2022), and the

integration of Life Cycle Sustainability Assessment (LCSA)

with environmental risk assessment are increasingly used

(Walker et al., 2021; De Luca Peña et al., 2021; Hackenhaar

et al., 2022) for decision-making related to the efficient use of

natural resources. The combination of LCA and CE can be

combined with economic indicators. Loizia et al. (2021)

established factors to evaluate the environmental performance,

which cover the waste compositional, SWOT and PESTEL

analysis. Rimano et al. (2021) illustrated methodological

choices commonly encountered in an Organizational Life

Cycle Consumption Assessment. The increasing energy costs

require more detailed and systematic life cycle decision-making

(Sanyé-Mengual and Sala, 2022).

Conclusion

This perspective presents and compares the environmental

impacts of two EoL scenarios by gate-to-grave LCA in the EU.

The functional unit was defined as the distribution of 1 kg of

MSW. In addition to the analyses and evaluations of the results,

this study presents a review of the application of life cycle

assessment in waste management with the help of the

reviewed professional literature.

To improve the results of conclusions supporting decision-

making, uncertainty analysis of technological characteristics and

measuring of long-term effects can serve as an advantage. To assess

the uncertainty two approaches can be taken with the help of LCA:

sensitivity analysis on hotspots or Monte Carlo simulation. By
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measuring long-term effects, the resources and emissions can show

us what are the weak points and possibilities in waste management.

These results consequence from LCA can be used to compare

the environmental impacts of different waste treatment

technologies and help to focus efforts on making

environmental improvements to the treatment enterprises.
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