
Evaluation of crack propagation
in concrete bridges from
vehicle-mounted camera images
using deep learning and image
processing

Yasutoshi Nomura1*, Masaya Inoue1 and Hitoshi Furuta2

1Department of Civil and Environmental Engineering, Ritsumeikan University, Kusatsu, Japan,
2Department of Civil Engineering, Osaka Metropolitan University, Osaka, Japan

In Japan, all bridges should be inspected every 5 years. Usually, the inspection

has been performed through the visual evaluation of experienced engineers.

However, it requires a lot of load and expense. In order to reduce the inspection

work, an attempt is made in this paper to develop a new inspection method

using deep learning and image processing technologies. While using the photos

obtained by vehicle-mounted camera, the damage states of bridges can be

evaluated manually, it still requires a lot of time and load. To save the time and

load, deep learning, which is amethod of artificial intelligence is introduced. For

image processing, it is necessary to utilize such pre-processing techniques as

binarization of pictures andmorphology treatment. To illustrate the applicability

of the method developed here, some experiments are conducted by using the

photos of running surface of concrete bridges of a monorail took by vehicle-

mounted camera.

KEYWORDS

crack detection, deep learning, crack propagation, concrete bridge, image processing

1 Introduction

In recent years, the structural integrity of social infrastructures, which have become

unsafe due to aging, has become a great concern, and how to efficiently and accurately

assess their structural integrity is important in developing maintenance plans. In 2015, the

Road Act of Japan was revised to require close visual inspections once every 5 years for

bridges with spans of 2 m or more. Currently, these bridges are visually inspected by

professional engineers. However, in preparation for the shortage of engineers in the future

due to the declining population, it is important to develop labor saving system for

inspections while ensuring the inspection accuracy of skilled engineers.

In the past few decades, many traditional computer vision technologies, for example,

threshold segmentation Cheng et al. (2003); Fujita et al. (2006), Otsu, 1979 (Otsu, 1979), edge

detection (Behara et al. (2012); Martin et al. (2004), and seed region growth Huang and Xu,

(2006); Li et al. (2011) have been explored in vison-based crack detection. However, the

OPEN ACCESS

EDITED BY

Joan Ramon Casas,
Universitat Politecnica de Catalunya,
Spain

REVIEWED BY

Pavlo Maruschak,
Ternopil Ivan Pului National Technical
University, Ukraine
Zhoujing Ye,
University of Science and Technology
Beijing, China

*CORRESPONDENCE

Yasutoshi Nomura,
y-nomura@fc.ritsumei.ac.jp

SPECIALTY SECTION

This article was submitted to Bridge
Engineering,
a section of the journal
Frontiers in Built Environment

RECEIVED 19 June 2022
ACCEPTED 12 September 2022
PUBLISHED 29 September 2022

CITATION

Nomura Y, Inoue M and Furuta H (2022),
Evaluation of crack propagation in
concrete bridges from vehicle-
mounted camera images using deep
learning and image processing.
Front. Built Environ. 8:972796.
doi: 10.3389/fbuil.2022.972796

COPYRIGHT

© 2022 Nomura, Inoue and Furuta. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 29 September 2022
DOI 10.3389/fbuil.2022.972796

https://www.frontiersin.org/articles/10.3389/fbuil.2022.972796/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.972796/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.972796/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.972796/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.972796/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.972796&domain=pdf&date_stamp=2022-09-29
mailto:y-nomura@fc.ritsumei.ac.jp
https://doi.org/10.3389/fbuil.2022.972796
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.972796

detection accuracy of these methods does not meet the engineering

requirements for real applications. Also, as a representative study

aiming at labor-saving visual inspection work, a method to create

damage maps by detecting and quantifying cracks from images

acquired by Unmanned Aerial Vehicles (UAVs) equipped with

cameras has been proposed. Nishimura et al. (2012). Have

developed a technique for quantifying crack opening width etc.

From 3D models constructed by Structure from Motion (SfM)

and from a large number of orthoimages through image

processing (Nishimura et al., 2012a; Nishimura et al., 2012b).

However, since SfM constructs a 3D model using the correlation

of luminance distribution among images taken, it is difficult to

evaluate the damage including cracks depending on the state of

the object surface, such as a structure with uniform luminance

distribution due to painting. On the other hand, the recent

dramatic improvement in image/pattern recognition accuracy

through artificial intelligence and deep learning has led to the

development of inspection of social infrastructures. Numerous

studies have been conducted on the detection of cracks in

concrete for a variety of subjects. Chun and Igo et al. (2015)

proposed a method for detecting cracks on concrete surfaces

using Random Forest (Chun and Igo, 2015). Random Forest is an

algorithm that performs classification according the results of

multiple decision trees constructed from randomly selected

training data and explanatory variables. Yoshida et al. (2020)

proposed a method to detect crack initiation points using a deep

learning model from panoramic images of riverbank revetments and

to evaluate the actual size of crack detection from orthoimages

(Yoshida et al., 2020). However, this method has been applied to

only one type of design, and it has been shown that the accuracy of

crack detection is greatly reduced for different structures. The

uniformity of the structural part of the riverbank revetment also

makes it easier for the learning model to recognize the feature

patterns in the crack region. Cha et al. (2017) constructed a

convolutional neural network that performs two-class

classification: “cracked” and “intact” (Cha et al., 2017). The results

show that cracks are detected with higher accuracy than the

traditional Canny and Sobel edge detection methods Canny,

(1986), Kanopoulos et al. (1988). Dung and Anh (2108) proposed

an encoder-decoder FCN for segmenting an image of concrete crack

into “crack” and “non-crack” pixels (Dung and Anh, 2018). Their

proposed architecture was trained end-to-end on a subset of crack

images of the same dataset and reached approximately 90% for both

the max F1 and AP scores on training, validation, and test sets.

However, the system is shown to be susceptible to ambient noise. Ju

et al. (2019) developed a crack deep network based on the Faster

RegionConvolutionalNeural Network (Fast-RCNN) (Ju et al., 2019).

Results indicated that the developed system achieves the detection

mean average precision of higher than 0.90, which outperforms both

the original Faster-RCNN and SSD300, but requires intense

computational resources. Liu et al. (2019) used U-Net network

structure to build a deep learning model for crack detection (Liu

et al., 2019). The proposed system was found to be accurate

detections, but only accepts 3 × 512 × 512 image input. There is

still a long way to go for engineering applications. Also, in recent

years, pixel-level crack detection systems have been proposed. Bang

et al. (2019) proposed a pixel-level crack detection system based on a

deep convolutional encoder-detector network (Bang et al., 2019). Liu

et al. (2020) proposed a two-step pavement crack detection and

segmentation method based on CNN where the modified YOLOv3

(Redmon and Farhadi, 2018) and U-Net (Ronneberger et al., 2015)

were, respectively, used for these two tasks. The results indicated that

the precision, recall, and F1 score of proposed pavement crack

detection and segmentation system are higher than other state-of

the-art methods. Yamane et al. (2019) proposed a pixel-level crack

detection method using Convolutional Neural Networks (CNN) and

Mask R-CNN (He et al., 2018) which is one of semantic

segmentation techniques. Meanwhile, numerous studies have been

also conducted on damage detection in steel structures. Konovalenko

et al. (2021) developed a classification systembased on residual neural

network for damage of metal surfaces such as scratches, scrapes and

abrasions (Konovalenko et al., 2021). The results shows that the best

model classifier is based on ResNet152 deep convolutional neural

network. As for pixel-level defect detection for metal surfaces,

Konovalenko et al. (2022) developed and researched 14 neural

network models (Konovalenko et al., 2022). U-Net-like

architectures with encoders such as ResNet (He et al., 2015),

DenseNet (Huang et al., 2018) and so on were investigated as

part of the problem, which consisted in detecting defects such as

“scratch abrasion”. Results show that the highest recognition

accuracy was attained using the U-Net model with a

ResNet152 backbone. Most of the above-mentioned studies have

been successful in detecting cracks or some kind of defects with high

accuracy; however, they do not describe the aging or propagation of

damage. In addition, Deep learning and Machine Learning based

image classification systems, which have been applied in the above

studies, require more time to detect damage in a single image than

detection system because it is necessary to determine whether a crack

is present or not. These are time-consuming processes when

inspecting large structures, so there is room for improvement in

terms of time efficiency. Moreover, deep learning methods require

the generation of a large amount of data because accuracy is affected

by the training data, which is a challenge in terms of labor-saving

training data generation.

In this study, we attempt to develop a system that can detect

damage on structural surfaces with high accuracy and high speed,

and also a system that automatically outputs not only the damage

initiation area but also progression area, by utilizing the visual

inspection results accumulated by engineers. We also attempt to

semi-automatically convert the accumulated visual inspection results

into YOLO training data in order to save labor in the creation of

training data. The proposed system is a multi-stage system that

applies object recognition technology using convolutional neural

networks (CNN) and a morphology algorithm that detects

damage in pixel units based on the characteristics of image

brightness values, in addition to detection technology using

Frontiers in Built Environment frontiersin.org02

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

YOLO, which can detect objects in moving images. To illustrate the

applicability of the method developed here, some experiments are

conducted by using the photos of running surface of concrete bridges

of a monorail took by vehicle-mounted camera.

2 System flowchart

This study uses images taken from an on-board camera to

inspect the concrete surface of a 40-km monorail bridge, the

running surface. The main types of damage are cracks and free

lime. The training data is created based on the images of

inspection results that have been accumulated by the

administrator. The system proposed in this study can be

divided into five stages of processing. The first stage of

processing uses YOLOv2 (Redmon and Farhadi, 2016), a

common object detection algorithm, to detect damaged areas.

The data applied in this study deals with a large set of images,

which is about 100,000 images. Therefore, it is appropriate to use

YOLOv2 for damage detection because of its high detection

speed. The images handled in the second and subsequent

stages are more limited than those detected in the first stage,

and this data limitation can significantly reduce processing time.

FIGURE 1
Object detection by YOLO (Redmon et al., 2016).

FIGURE 2
Bounding box and Confidence. FIGURE 3

Ground_truth and bounding box in IOU.

Frontiers in Built Environment frontiersin.org03

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

In the second stage of processing, the area where damage was

detected by YOLOv2 is first trimmed. Next, images of the

damaged area are collected, and the damaged area is carefully

inspected using the network model VGG16 (Simonyan and

Zisserman, 2015), because damage detection by

YOLOv2 alone may result in over-detection. The third stage

of processing uses a morphological algorithm to extract pixel-by-

pixel cracks from the damage area examined in the second stage

of processing. Pixel-by-pixel damage detection allows for more

accurate application to the fifth step, progression evaluation

processing. Morphological image processing includes color

correction, median filtering, line enhancement, and

binarization. After morphological processing, the areas of

damage are colored with a specified color. In the fourth stage

of processing, the binarized damage areas are attached to the

original image. This makes it possible for the inspection engineer

to identify the location of damage in the original image. In the

final stage of processing, the difference in the damaged area is

extracted as an evaluation of the progress of damage. Here, the

evaluation of the progress is carried out through the comparison

with images evaluated in the above processing at the time of the

previous inspection is used.

3 Damage detection based on deep
learning

3.1 You only look once

The screening technique for structural surface damage in this

study is based on general object detection using deep learning,

and YOLO (Redmon et al., 2016) is used as a detection technique.

The main feature of YOLO for object detection is that it

simultaneously extracts a candidate region of a target object

and calculates the class probability of that candidate region in a

single guess. This makes it possible to perform object detection at

very high speed and in real time, even for moving images. YOLO

is one of the fastest general object detection systems proposed so

far, but the same authors have also proposed YOLOv2 and

YOLOv3, which enable object detection with higher accuracy.

They, like YOLO, are provided as part of Darknet. In this study,

we use YOLOv2, which is the fastest detection method. The

inference flow of the YOLO system is shown below.

3.2 Inference procedure

Figure 1 shows the inference procedure for YOLO. The first

step is to divide the input image into S × S grid cells. Each grid cell

has several bounding boxes, as shown in Figure 2, and the

confidence for each box is calculated. Confidence is calculated

as follows.

Conf idence � Pr(Object) · IOUtruth
pred

IOUtruth
pred �

∣∣∣∣∣∣∣∣Bi ∩ ground truth
Bi ∪ ground truth

∣∣∣∣∣∣∣∣
where Pr(Object) is the probability that the bounding box

contains some object, and IOUtruth
pred (Intersection Over Union)

is the proportion of overlap between the bounding box (Bi)

predicted from the grid cells and the object (ground_truth) in the

image actually given as training data, which is shown in Figure 3.

The confidence level is composed of the product of the

probability Pr(Object) that a bounding box contains an object

and the overlap ratio IOU between the bounding box and the

ground truth. If there is no object to be detected in the grid cell of

interest, then each bounding box has a confidence level of 0, since

FIGURE 4
An example of annotation data.

FIGURE 5
An example of detection results.

Frontiers in Built Environment frontiersin.org04

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

there is no object in that box. In addition to the confidence level,

each bounding box keeps its own center coordinates (x, y) and

size (height, width) as predicted in YOLO.

On the other hand, a grid cell has a conditional class

probability Pr(Classi | Object) whether the object to be

detected is contained within its own grid cell or not. For

example, the grid cell of interest in Figure 1 has Pr(Class =

Dog | Object) = 0.05, Pr(Class = Car | Object) = 0.92, Pr(Class =
Bicycle | Object) = 0.03, etc. Then, each grid cell outputs two

bounding boxes with high confidence, which are expressed in

terms of thickness as the bounding box + confidence in Figure 1,

depending on the magnitude of the confidence. Finally, only the

bounding boxes with confidence exceeding the threshold are

adopted, and the class of the bounding box is determined by

combining the adopted bounding box and the class with the

highest probability in the corresponding grid cell (final

detection in Figure 1). As described above, YOLO’s general

object detection is structured in such a way that class

classification is performed for each grid cell region and the

bounding box is used to detect candidate object regions. YOLO

randomly generates three bounding boxes with a certain aspect

ratio in each grid cell.

3.3 How to learn you only look once

YOLO is trained with a convolutional neural network

consisting of convolutional layers (conv. layers) and all

connected layers (conn. layers), although the number of layers

varies with each version. YOLO outputs the location information

(x, y, height, width) and confidence level of the two bounding

boxes and the category to be detected for each grid cell in the

input image. Therefore, the number of units in the output layer is

the sum of the number of classes to be detected, the location

information of the two bounding boxes, and the confidence level

[(x, y, height, width, confidence level) × 2], multiplied by the

number of grids S × S. The loss functions for optimizing the filters

and biases in the network are shown below.

Loss function � λcood∑S2

i�0∑B

j�0I
obj
ij [(xi − x̂i)2

+ (yi − ŷi)2]+λcood∑S2

i�0∑B

j�0I
obj
ij [(

wi
√ −

̂

wi

√)2
+ (

hi
√ −

̂
hi

√)2] +∑S2

i�0∑B

j�0I
obj
ij (Ci − ĉi)2

+ λnoobj∑S2

i�0∑B

j�0I
noobj
ij (Ci − ĉi)2

+∑S2

i�0I
obj
i ∑

c∈classes
(pi(c) − p̂i(c))2

whereIobjij is a function that returns 1 if the center coordinate of

the j-th bounding box is in the i-th grid cell and 0 otherwise,

andIobji returns 1 if the object is in grid cell i and 0 otherwise.

Note thatλcood andλnoobj are the program’s default settings of

5 and 0.5, respectively, but these values can be set arbitrarily. In

this study, the default settings are used. The first term of the

loss function is the sum of the predicted center coordinates of

the bounding box (x̂i, ŷi) and the center coordinates of the

object’s cutout region (ground_truth) given as the training

data (xi, yi) of the object’s cutout region (ground_truth)

given as the training data. The second term represents the

error between the predicted size of the bounding box (height,

weight) = (ĥi, ŵi) and the size of the object’s cutout area

FIGURE 6
Structure of vgg16.

TABLE 1 Classified targets and Number of images.

Class label Training Validation Test

No.1 Crack 3062 171 171

No.2 Free lime 4517 251 251

No.3 Undamaged 3780 210 210

No.4 Joint 1784 100 100

No.5 Concrete formwork line 1083 61 61

No.6 Other 3062 171 171

Frontiers in Built Environment frontiersin.org05

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

(ground_truth) given in the training data (height, weight) =

(hi, wi) of the object given in the training data. The third

term corresponds to the confidence level of the bounding

boxĉi and the confidence level of the training dataCi (=1),

which is calculated only for the grid cell with the center

coordinates of the bounding box. The fourth term computes

the prediction error of the unreliability of the bounding box,

and is computed only for grid cells that do not have the

center coordinates of the bounding box. The fifth term

computes the error in the conditional class

probabilityp̂i(c) for the classification of a grid cell. The

filters and biases inside the deep convolutional neural

network are optimized so that each of the above five terms

converges to zero.

3.4 Learning of supervisory data from
crack images

When performing general object detection, training data

requires a region cut out from the image data of the object to

be detected, the location information such as the center

FIGURE 7
An example of Classified targets. (A) Crack. (B) Free lime. (C) Undamaged. (D) Joint. (E) Concrete formwork line. (F) Others.

FIGURE 8
Time history of Loss values between training data and
validation data.

TABLE 2 Classification results for each class.

Class label Recall Precision F1score

Crack 0.98 0.94 0.96

Free lime 0.96 0.99 0.97

Undamaged 0.92 0.94 0.93

Joint 0.97 0.99 0.98

Concrete formwork line 0.98 0.98 0.96

Others 0.93 1.00 0.96

Frontiers in Built Environment frontiersin.org06

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

coordinates and size of the region, and a labeled class. YOLO

reads the location information of the object to be detected and

automatically generates training data. The network weight

coefficients are learned using the image of the object and the

object’s location. Image processing software is used to extract the

image data and positional information from the image data, but

LabelImg is used in this study. This method prepares an image

showing cracks, specifies the cracked area from the image, and

creates location information for YOLOv2 objects. Figure 4 shows

an example of cutting out an object from an image. In this study,

25,000 images of cracks were prepared, from which the objects to

be detected were extracted in detail and reserved as training data

(ground_truth). The rectangular region in each image serves as

the ground_truth during training. However, YOLOv2 performs

random resizing, mirror image flipping, rotation, and HSV color

space transformation on the teacher images during training to

increase the number of apparently different image types (data

augmentation). The convolutional neural network in this study

uses the weights of a trained network for general object detection

provided by the YOLOv2 developers as initial values. In one

epoch, 64 images and their associated ground_truth were

randomly selected for training, and training was completed in

100,000 epochs. The average IOU at the end of training was about

0.8. Considering our previous experience and the reliability of the

objects, we judged that the given training data were adequately

trained.

3.5 Detection result

Figure 5 shows an example of detection results. In Figure 5,

the crack tracing results, which were visually confirmed by the

engineer, are overlaid to make the detection results easier to

understand. As shown in Figure 5, although some over-detection

was observed, the recall of 50 images with cracks was about

88.9%. The recall in this study was calculated as the ratio of the

total number of pixels of cracks traced by the engineer to the

number of traced pixels in the predicted rectangular area.

4 Post-detection scrutiny by
convolutional neural networks-based
image recognition

In object detection using YOLOv2, increasing the

confidence threshold for crack and other class classification

results enables detection of only highly accurate areas, but it is

likely to increase the lack of detection of small cracks. On the

other hand, lowering the threshold reduces the number of the

lack of detection of small cracks, but at the same time, dirt on

the concrete surface may also be detected as cracks, resulting

in more false detections. Therefore, we attempt to improve

accuracy by incorporating image recognition technology

using CNN after detection, and by conducting a close

inspection after crack detection. Specifically, the threshold

for the confidence value, which is output from YOLO, is set

low, and all the rectangle determined to be a crack in YOLO is

cropped as an image. All of the images are then input to the

CNN and examined to determine if they are indeed cracks.

The images that are not cracks are rejected, and only the

images that are cracks are reflected. As described above, the

system is designed to reduce both detection omissions and

false positives by performing a close inspection using image

recognition after detection at a low threshold value. In this

study, the CNN used for the scrutiny was a fine-tuned version

of VGG16 as a general-purpose model.

FIGURE 9
Images before color tone correction. (A) Crack. (B) Free lime.

Frontiers in Built Environment frontiersin.org07

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

VGG16 is a CNN model consisting of 16 layers trained on a

large image dataset called ImageNet, and was developed by a

research group called VGG at the University of Oxford in 2014.

Because of its simple architecture, it is one of the learned models

used in various studies. VGG16 consists of 13 convolutional

layers and 3 all-connected layers, for a total of 16 layers, and its

output layer is a neural network with 1,000 units and

1,000 classes to classify. The structure of the VGG16 model is

shown in Figure 6. One of the features of this neural network is

that it uses a 3 × 3 convolutional filter, which suppresses the

increase in the number of parameters in the deeper layers and

improves accuracy. The convolutional stride is fixed at 1 pixel,

and there are 5 Maxpooling layers, where the size is halved. The

stack of convolutional layers is followed by three all-combining

layers. The last layer is the softmax layer, which uses ReLU as the

activation function. When utilizing a trained network, feature

extraction is processed in the convolutional layer within the

network. When new data is applied to the network, a unique

classifier is used in the network after the convolutional layer. The

convolutional layers can be reused because their feature maps are

generic and are likely to be useful in any computer vision

application. Based on the results of the aforementioned

damage detection, we further classified the data into six

different classes.

FIGURE 10
Images after color tone correction. (A) Crack. (B) Free lime.

FIGURE 11
Results of binarization. (A) Crack. (B) Free lime.

Frontiers in Built Environment frontiersin.org08

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

The six classes and the number of images for each class

are listed in Table 1. The examples of images in the above six

classes are shown in Figure 7. The most important classes are

“crack” and “free lime”. Therefore, images identified as

“crack” or “free lime” are binarized through

morphological processing. In this study, we set a function

to terminate learning, which is called as early stopping, to

avoid an overlearning. In addition, we employ the Cost-

sensitive Learning approach, which defines a loss function

that imposes a heavier penalty for misclassification of data

with fewer labels due to the unbalanced amount of

training data.

The time history of errors in the training and validation data

is shown in Figure 8. As shown in Table 1, approximately 5% of

the data in each class was allocated to the test data. The Precision,

Recall, and F1Score for each class is shown in Table 2. It is found

from the figure that the F1score is higher than 0.95 for the six

classes.

FIGURE 12
An example of the results for concrete girder of monorail bridge (surface A). (A) Damage detection results of manual tracing by engineers. (B)
Damage detection results by the proposed system.

FIGURE 13
An example of the results for concrete girder of monorail bridge (surface B). (A) Damage detection results of manual tracing by engineers. (B)
Damage detection results by the proposed system.

Frontiers in Built Environment frontiersin.org09

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

5 Morphological processing for pixel-
by-pixel damage detection

5.1 Color tone correction

In this study, morphological processing is used to enhance

linear features from the image luminance value and to binarize

cracks and free lime areas. In order to perform damage detection

on a pixel-by-pixel basis, a color tone correction process is

required as a preprocessing step. The color correction process

in this study includes histogram flattening, gamma correction,

and contrast correction.

First, histogram flattening reduces variations in the

brightness and darkness of the image caused by factors

such as illumination placement, shadows, and

characteristics of the visible-light camera. Since the

histogram flattening process corrects luminance values, it is

necessary to correct the exposure level. In this study, gamma

correction is used to correct the exposure. Gamma correction

results in a luminance value close to black (0) for “cracks” and

close to white (255) for “free lime”. Contrast correction is then

used to correct for differences in brightness and darkness in

the image. In this study, the “cracks” are corrected to be darker

than the background, and the “free lime” is corrected to be

whiter than the background to emphasize the distinction

between the target area and the background area. Figures 9,

10 show examples of images before and after color correction,

respectively.

5.2Median filtering, line enhancement and
binarization processing

Contamination is apparent on concrete surfaces. In this

study, a median filter is applied to remove elements other

than “cracks” and “free lime. The median filter removes spike

noise and produces a smoothed image that preserves smooth

edges by giving the median value in the local area set by the

filter size. Scale line enhancement is then applied to

emphasize areas of “cracks” and “free lime”. In this study,

the Hesse matrix is applied to the line enhancement process.

However, the output value of the line enhancement process

has a brightness value of 0 ≤ x ≤ 255 at each pixel. In order to

evaluate the progress of damage, it is easier to evaluate the

damage concisely if the luminance value at each pixel is 0 or 1.

Therefore, in this study, the Canny edge detection algorithm

of OpenCV is used to perform binarization detection on the

output of the line enhancement process. Figure 11shows

examples of the results by binarization for crack and

free lime.

6 Experiment of damage detection
for monorail bridge

In the proposed system, the engineer simply inputs an

image and the system performs damage detection using

YOLO, damage scrutiny using VGG16 for the detection

results by YOLO, and pixel-by-pixel damage detection

using binarization based on morphology processing. In

other words, the engineer simply inputs an image to the

proposed system, and the system outputs the image with

the damaged areas colored.

Figures 12, 13 shows an example of the detection results by

the proposed system to an image of a concrete girder of a

monorail bridge. Green-colored areas indicate free lime, and

red-colored areas indicate cracks. Figure 12 shows the detection

results for the concrete surface where cracks are dominant as

damage (surface A), and Figure 13 shows the detection results for

the concrete surface where free lime is dominant as damage

(surface B).

Figures 12, 13A are the damage detection results of manual

tracing by engineers. Figures 12, 13B are the damage detection

results by the proposed system. To quantify the detection

accuracy, we evaluated the accuracy of the trace image and the

detection result image in pixel units. The evaluation indices of

detection accuracy applied in this study were Recall and

Precision. Recall was defined as the probability of correctly

predicting the correct pixel, and Precision as the probability of

being the correct pixel among the predicted pixels. Table 3

shows the performance of damage detection for the surface A

and surface B.

TABLE 3 The performance of damage detection.

Image no. Precision Recall

Surface A 1 0.441 0.766

Surface A 2 0.279 0.717

Surface A 3 0.285 0.721

Surface B 1 0.283 0.980

Surface B 2 0.285 0.971

Surface B 3 0.355 0.984

TABLE 4 The range of α and coloring.

Gap (pixel) Coloring

0px White

0px A α ≤ 3px Blue

3px A α ≤ 5px Cyan

5px A α ≤ 10px Green

10px A α ≤ 20px Yellow

20px A α Red

Frontiers in Built Environment frontiersin.org10

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

As for the surface A, it is shown that Recall obtained a value

exceeding 0.7. Meanwhile, as for the surface B, it is found that

Recall obtained a value exceeding 0.9. These indicate that

although there are some missing detections, the performance

of the proposed system is adequate.

In particular, the reason for the high accuracy of the

detection of free lime may be that “free lime” has thick line

features due to the overflow of white substances such as

efflorescence, and the brightness values were easy to

distinguish from the those of background of the concrete

surface.

On the other hand, Precision is lower than Recall, which

indicates that there are many false positives. Thus, further

improvement of the system is needed in the future. In

addition, it is necessary for engineers to examine the tracing

results more closely.

7 Damage progression assessment

In this study, the evaluation of the damage progression is limited

to cases where the pixel gap between the two images is within

approximately 20px, and is not applicable to cases where the

difference between the two images is larger than 20px. In order to

evaluate the progress of damage, it is essential to have yearly images

taken at the same location. These images are obtained by applying a

vehicle-mounted surveying system that continuously acquires three-

dimensional coordinate data and visible light images of the road

FIGURE 14
An example of Damage progression results. (A) Damage progression in running surface from 2014 to 2015. (B) Damage progression in running
surface from 2015 to 2016.

FIGURE 15
The detail of crack progression results. (A) Surface in 2015. (B) Surface in 2016. (C) Progression results of cracks.

Frontiers in Built Environment frontiersin.org11

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

surface. We propose a method to evaluate the progress of the system

by allowing for the occurrence of such misalignments.

Specifically, the latest inspection result (Image A) and the

inspection result from one period ago (Image B) are prepared, and

the damage result is examined pixel by pixel between the two images.

The coordinate information (x, y) of damage X in image A is

extracted, and the existence of damage X′ corresponding to the

coordinate information (x, y) in image B is confirmed; if there is

no discrepancy of 1px and the damage occurrence area X and X′ are
identical, it is judged that there is no progress and colored white.

However, since the two images usually have a discrepancy in

the angle of view, we attempt to check whether the damage exists

within the coordinate information (x±α, y±α) in image B. Table 4

shows the range of α and the coloring. If X′ is found in the range

of 0Aα ≤ 3, it is colored blue, if X′ is found in the range of 3Aα ≤
5, it is colored cyan, if X′ is found in the range of 5Aα ≤ 10, it is

colored green, if X′ is found in the range of 10 If X′ is found in the
range of 5Aα ≤ 5, it is colored green, and if X′ is found in the

range of 10Aα ≤ 20, it is colored yellow. If no damage X′ is found
in image B after 20px of circumference, it is

considered highly likely to be a new damage and is colored red.

Figure 14 shows an example of the evolution of damages such

as cracks and free limes in comparison with previous years. In

particular, as progress from 2014 to 2015 shown in Figure 14A,

while there is overlapping damages between previous years that is

visualized in white, there are many areas colored in red. Although

this might be due to a discrepancy in the angle of view, it is highly

likely that minor cracks and free lime that existed in previous

years have developed. On the other hand, as progress from

2015 to 2016 shown in Figure 14B, although red-colored areas

are observed, they are fewer than those in Figure 14A. Although

this is a qualitative assessment, it suggests that there was not

much progression of cracks and free limes between

2015 and 2016.

Finally, examples of the details of crack and free-lime

progression results are shown in Figures 15, 16, respectively.

The left and center figures in Figures 15, 16 show the concrete

surface of an area in 2015 and 2016, respectively, while the

right figure shows the progression results using the proposed

method. As shown in these figures, although it might be not

always possible to detect only the areas of progression of

damages due to the slip of the both images, the red-

colored areas can be identified as newly formed cracks or

free limes.

8 Conclusion

The objective of this study was to develop a system that

can detect damage on structural surfaces with high accuracy

and speed using the results of visual damage inspections, as

well as a system that automatically outputs an evaluation of

the progress of damage. In addition to the detection

technology using YOLO, which is capable of high-speed

processing of a large area and a large number of images,

we aimed to improve the accuracy of damage detection by

using image recognition technology based on CNN and the

network model VGG16 to classify the detected rectangular

images and introduce scrutiny to the object detection

technology. In order to perform the evaluation of

progression at the fine pixel level, morphology processing

was applied, which is less dependent on the reliability of the

trace image as a teacher image compared to deep learning

methods. The morphology processing included color

correction, median filtering, line enhancement, and

binarization, and the final image was output as a pixel-by-

pixel damage detection result attached to the original image.

By automating these processes, we were able to realize a

function in which an engineer inputs the original image

and automatically outputs an image in which the damage

occurrence areas and the damage development result are

drawn on the original image. The findings obtained

FIGURE 16
The detail of free lime progression results. (A) Surface in 2015. (B) Surface in 2016. (C) Progression results of free limes.

Frontiers in Built Environment frontiersin.org12

Nomura et al. 10.3389/fbuil.2022.972796

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

through this research and future works are summarized as

follows.

YOLO was found to be able to detect difficult-to-see damage

in images. The results also show that introducing image

recognition processing learned by CNN after YOLO detection

can improve the accuracy of YOLO. This shows the usefulness of

CNNs in terms of performing a close inspection after general

object detection.

Through morphological processing, it was found that the

recall of damage detection at the pixel level was found to be

0.7 to 0.9.

In the evaluation of progression, a few pixel discrepancies

were allowed in stages, and it was possible to identify the areas

where progression was likely to be high for minor cracks and free

lime that had existed in previous years by coloring the areas in

stages.

In the future, the results of inspections by managers,

which have been accumulated as training data for object

detection and image classification, will be carefully

examined, and the latest algorithms, including YOLOv5,

which is fast and accurate, will be applied for practical use.

In addition, we will attempt to detect cracks and free lime at

the pixel level by using deep learning segmentation techniques

for binarization of damage. Finally, the proposed method still

has many cases of over-detection, so we need to examine the

training data again to improve not only the recall but also the

precision and so on. We also need to consider image

registration techniques for evaluating progress of the crack,

since large image shifts can cause problems.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it for

publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bang, S., Park, S., Kim, H. H., and Kim, H. (2019). Encoder-decoder network for
pixel-level road crack detection in black-box images. Computer-Aided Civ.
Infrastructure Eng. 34 (8), 713–727. doi:10.1111/mice.12440

Behara, S., Mohanty, M. N., and Patnaik, S. (2012). “A comparative analysis on
edge detection of colloid cyst: A medical imaging approach,” in Soft computing
techniques in vision science. Editors P. Srikanta and Y.-M. Yang (Berlin, Heidelberg:
Springer), 63–85.

Canny, J. (1986). A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-8, 679–698. doi:10.1109/tpami.1986.4767851

Cha, Y.-J., Chai, W., and Büyüköztürk, W. O. (2017). Deep learning-based crack
damage detection using convolutional neural networks. Computer-Aided Civ.
Infrastructure Eng. 32 (5), 361–378. doi:10.1111/mice.12263

Cheng, H. D., Glazier, X. J. C., and Glazier, C. (2003). Real-time image
thresholding based on sample space reduction and interpolation approach.
J. Comput. Civ. Eng. 17 (4), 264–272. doi:10.1061/(asce)0887-3801(2003)17:4(264)

Chun, P., and Igo, A. (2015). Crack detection from image using random forest.
J. JSCE 71 (2), I_1–I_8. doi:10.2208/jscejcei.71.i_1

Dung, C. V., and Anh, L. D. (2018). Autonomous concrete crack detection using
deep fully convolutional neural network. Automation Constr. 99, 52–58.

Fujita, Y., Mitani, Y., and Hashimoto, Y. (2006). “Amethod for crack detection on
a concrete structure,” in 18th International conference on pattern recognition
(ICPR’06) (IEEE), 3, 901–904. doi:10.1109/icpr.2006.98

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2018). Mask R-CNN. arXiv:
1703.06870v3.

He, K., Zhang, X., Ren, S., and Sun, J.Deep residual learning for image recognition,
arXiv:1512.03385v1, (2015).

Huang, G., Liu, Z., Maaten, L., and Weinberger, K. Q. (2018). Densely counnected
convolutional networks. arXiv:1608.06993v5.

Huang, Y., and Xu, B. (2006). Automatic inspection of pavement cracking
distress. J. Electron. Imaging 15 (1), 013017. doi:10.1117/1.2177650

Ju, H., Li, W., Tighe, S., Zhai, J., and Chen, Y. (2019). Detection of scaled and
unsealed cracks with complex backgrounds using deep convolutional neural
network. Automation Constr. 107, 102946.

Kanopoulos, N., Baker, N. R. L., and Baker, R. L. (1988). Design of an image edge
detection filter using the sobel operator. IEEE J. Solid-State Circuits 23 (2), 358–367.
doi:10.1109/4.996

Konovalenko, I., Maruschak, P., Brezinová, J., Brezina, O. J., and Brezina, J.
(2022). Research of U-Net-Based CNN architectures for metal surface defect
detection. Machines 10 (5), 327. doi:10.3390/machines10050327

Konovalenko, I., Maruschak, P., Prentkovskis, V. O., and Prentkovskis, O.
(2021). Recognition of scratches and abrasions on metal surfaces using a
classifier based on a convolutional neural network. Metals 11 (4), 549. doi:10.
3390/met11040549

Li, Q., Zou, Q., Mao, D. Q., and Mao, Q. (2011). Fosa: F* seed-growing approach
for crack-line detection from pavement images. Image Vis. Comput. 29 (12),
861–872. doi:10.1016/j.imavis.2011.10.003

Liu, J., Yang, X., Lau, S., Wang, X., Luo, S., Ding, V. C. L., et al. (2020). Automated
pavement crack detection and segmentation based on two-step convolutional
neural network. Computer-Aided Civ. Infrastructure Eng. 35, 1291–1305. doi:10.
1111/mice.12622

Liu, Z., Cao, Y., Wang, Y. W., and Wang, W. (2019). Computer vision-based
concrete crack detection using u-net fully convolutional networks. Automation
Constr. 104, 129–139. doi:10.1016/j.autcon.2019.04.005

Frontiers in Built Environment frontiersin.org13

Nomura et al. 10.3389/fbuil.2022.972796

https://doi.org/10.1111/mice.12440
https://doi.org/10.1109/tpami.1986.4767851
https://doi.org/10.1111/mice.12263
https://doi.org/10.1061/(asce)0887-3801(2003)17:4(264)
https://doi.org/10.2208/jscejcei.71.i_1
https://doi.org/10.1109/icpr.2006.98
https://doi.org/10.1117/1.2177650
https://doi.org/10.1109/4.996
https://doi.org/10.3390/machines10050327
https://doi.org/10.3390/met11040549
https://doi.org/10.3390/met11040549
https://doi.org/10.1016/j.imavis.2011.10.003
https://doi.org/10.1111/mice.12622
https://doi.org/10.1111/mice.12622
https://doi.org/10.1016/j.autcon.2019.04.005
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

Martin, D., Malik, C. J., and Malik, J. (2004). Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal.
Mach. Intell. 26 (5), 530–549. doi:10.1109/tpami.2004.1273918

Nishimura, S., Demizu, A., and Matsuda, H. (2012). The Proposal to the
infrastructure research of the future as seen from survey and verification on
gunkanjima-island -3D laser scanner photogrammetry UAV AR-. J. JJSEM 12
(3), 147–158.

Nishimura, S., Hara, K., Kimoto, K., and Matsuda, H. (2012). The measurement
and Draw damaged plans at Gunkan-Island by Using 3D laser scanner and Digital
Camera. J. JSPRS 51 (1), 46–53. doi:10.4287/jsprs.51.46

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man. Cybern. 9 (1), 62–66. doi:10.1109/tsmc.1979.4310076

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
Unified, real-time, object detection. arXiv preprint arXiv:1506.02640v5

Redmon, J., and Farhadi, A. (2016). YOLO9000: Better, faster, stronger”. arXiv
preprint arXiv:1612.08242v1.

Redmon, J., and Farhadi, A. (2018). YOLOv3: An incremental inprovement”.
arXiv:1804.02767v1.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “Unet: Convolutional networks for
biomedical image segmentation,” in International conference on medical image computing
and computer-assisted intervention (Springer), 234241. doi:10.1007/978-3-319-24574-4_28

Simonyan, K., and Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition”. arXiv: 1409.1556v6.

Yamane, T., Ueno, Y., Kanai, K., Izumi, S., and Chun, P. (2019). Reflection of crack
location to 3Dmodel of bridge using semantic segmentation. J. Struct. Eng. 65A, 130–138.

Yoshida, R., Fujii, J., Okubo, J., and Amakata, M. (2020). Creation of crack
detector on revetments and measuring crack using orthophoto. J. AI Data Sci. 1 (1),
508–513.

Frontiers in Built Environment frontiersin.org14

Nomura et al. 10.3389/fbuil.2022.972796

https://doi.org/10.1109/tpami.2004.1273918
https://doi.org/10.4287/jsprs.51.46
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1007/978-3-319-24574-4_28
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.972796

	Evaluation of crack propagation in concrete bridges from vehicle-mounted camera images using deep learning and image processing
	1 Introduction
	2 System flowchart
	3 Damage detection based on deep learning
	3.1 You only look once
	3.2 Inference procedure
	3.3 How to learn you only look once
	3.4 Learning of supervisory data from crack images
	3.5 Detection result

	4 Post-detection scrutiny by convolutional neural networks-based image recognition
	5 Morphological processing for pixel-by-pixel damage detection
	5.1 Color tone correction
	5.2 Median filtering, line enhancement and binarization processing

	6 Experiment of damage detection for monorail bridge
	7 Damage progression assessment
	8 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References

