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Additional power law nonlinear damping has shown advantages in seismic

isolation of buildings. The design of nonlinear damped building isolation

systems can be conducted in the frequency domain based on the output

frequency response function (OFRF) of the building’s frequency output

responses. But this often requires many runs of simulations of nonlinear

building systems, which will spend a long time when the finite element (FE)

model or differential equation model of the building system is complex. In this

study, the issuewill be resolved by an integratedmobility analysis and equivalent

linearization approach. In this approach, the complex linear building system

without additional nonlinear damping is represented by several data-driven

autoregressive with exogenous input (ARX) models. Mobilities of the building

system can be evaluated from these ARX models, so that a mobility-based

frequency domain representation of the linear building system can be achieved.

After that, an equivalent linearization approach is applied to simulate the

building system with additional nonlinear damping. Finally, the OFRF-based

design can be conducted based on the proposed mobility analysis and

equivalent linearization approach. A 4-degree of freedom (DoF) building

system is discussed to demonstrate the advantages of the proposed

method. The results indicate that the new approach can significantly

increase the efficiency of the design and be effectively applied to the design

of complex nonlinear building isolation systems.
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1 Introduction

Power law nonlinear damping has been proven to have many advantages in the

vibration control of building structures under earthquake groundmotions, that additional

power law nonlinear damping can reduce forces and displacements transmitted to

buildings over a wide-band frequency range (Lang et al., 2009; Peng et al., 2011). The

design of nonlinear damping has been comprehensively studied to achieve a desired

building vibration isolation performance (Lang et al., 2013; Menga et al., 2021). For

example, Lang et al. (2013) studied the optimal displacement and values of additional

nonlinear damping isolators in a multistorey building subject to both harmonic and
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earthquake loadings. In general, the design of a nonlinear

building isolation system finds optimal nonlinear damping

values based on many runs of simulations. The design

approach includes the trial-and-error approach and response

surface methods (RSMs) (Khuri and Mukhopadhyay, 2010). But

this is often ineffective and time-consuming when the finite

element (FE) model or differential equations of the building

system is complex (Fujita et al., 2014).

For linear systems, complex FE models or differential

equations of building systems can be simplified by using

mobility analysis (Mak and Jianxin, 2003). Mobility is defined

in the frequency domain as the spectrum ratio of velocity and

force (Gardonio and Brennan, 2002). Early in 1968, Soliman and

Hallam (1968) proposed the mobility power flow approach

enabling the analysis of vibration isolations between non-rigid

machines and non-rigid foundations. It has shown that, if the

mobilities of both non-rigid machines and non-rigid foundations

were achieved, the system responses can be calculated in the

frequency domain by using these mobilities. Since then, passive

solutions using spring and damper to complex linear vibration

isolation problems were developed based on the mobility power

flow approach for transportation, marine, manufacturing, and

construction applications (Koh, 1992; Mak and Su, 2002; Elliott

et al., 2004). For example, Mak and Su (2002) applied the

mobility analysis to address the occasional occurrence of

unsatisfactory performance of vibration isolators observed

in isolating vibratory machines placed on a concrete floor.

Elliott et al. (2004) discussed the mobility analysis of active

vibration isolation systems. Output responses of vibration

isolation systems were derived in terms of the mobilities of

the two structures connected by an active mount. Then

frequency control techniques can be applied to stabilize the

vibration isolation system. In practice, most systems are often

too complex to theoretically achieve mobilities. In these cases,

system mobilities can be directly evaluated from experiments

by using modal testing approaches (Cremer and Heckl, 2013).

However, this often requires many separate tests on the

components of the system (Koh, 1992) to evaluate the

mobilities of interest. In this study, system identification

is applied to enable the evaluation of building system

mobilities using a single experimental test or FE simulation.

Autoregressive with exogenous input (ARX) models (Billings,

2013) of the inspected output velocity with respect to the

related forces are identified under sufficiently random

excitations. Then, the mobilities can be directly evaluated

from these ARX models.

Althoughmobility analysis has been applied to the analysis of

many complex vibration isolation systems, it is difficult to extend

the idea to study nonlinear damped building isolation systems.

The reason behind these difficulties is that the traditional

mobility analysis and design is basically a linear approach,

which cannot be directly applied to the nonlinear case. The

current issue in the design of the building isolation system is the

lack of the efficient approach that can be used to simulate

nonlinear damped building isolation systems. Recently, Elloit

et al. (2015) proved that the output responses of a nonlinear

system can be calculated by using an equivalent linear system. In

order to resolve the existing issue mentioned earlier, an

integrated mobility analysis and equivalent linearization

approach will be developed to simulate the building isolation

system with additional nonlinear damping.

In practice, the output frequency response functions (OFRFs)

have been successfully applied to the frequency design of

engineering nonlinear materials and structures (Lang et al.,

2007; Zhu and Lang, 2017). The OFRF indicates that

nonlinear output spectra subject to demanding loads can be

represented by polynomial functions of system design

parameters, so that convex optimization and design of system

nonlinear dynamics can be conducted (Xiao and Jing, 2015; Zhu

and Lang, 2017). In this study, the OFRF representation of the

nonlinear damped building isolation system is evaluated based

on the numbers of simulations conducted by using the integrated

mobility analysis and equivalent linearization approach. After

that, an optimization problem is formulated according to the

design requirements, and the OFRF representations are

implemented to solve the optimal design problem.

The design of a 4- degree of freedom (DoF) nonlinear

damped building isolation system will be discussed to

demonstrate the application of the proposed analysis and

design approach. The results indicate that the design

efficiency increases over 50% compared to the traditional

design based on solving nonlinear differential equations. The

research outcomes are expected to be applied to address seismic

isolation problems in various complex building systems.

2 The nonlinear damped building
isolation systems

2.1 The model of the building isolation
system

Consider a building that can be simplified into a 4-DoF

system as illustrated in Figure 1a, where €z(t) is the acceleration of
the ground motion, the system parameters are defined as

m1 � 8.95 × 105 kg, m2 � 8.98 × 105 kg, m3 � 8.70 × 105 kg,
m4 � 5.76 × 105 kg,
k1 � 3.92 × 107 N/m, k2 � 3.09 × 107 N/m,
k3 � 2.67 × 107 N/m, k4 � 1.94 × 107 N/m,
c1 � 6.86 × 105 Ns/m, c2 � 5.41 × 105 Ns/m,
c3 � 4.67 × 105 Ns/m, c4 � 3.4 × 105 Ns/m.

The linear 4-DoF building system in Figure 1a can be

expressed as

Mx
·· + Cx

· + Kx � −Mz
··(t), (1)
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where M, C, and K represent mass, damping, and stiffness

matrices, respectively.

M � diag[m1, m2, m3, m4], (2)

C �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c1 + c2 −c2 0 0
−c2 c2 + c3 −c3 0
0 −c3 c3 + c4 −c4
0 0 −c4 c4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)

K �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k1 + k2 −k2 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4 −k4
0 0 −k4 k4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

The output vector:

x � [x1, x2, x3, x4]T. (5)
With xi for i � 1, 2, 3, 4 are the i th floor horizontal displacement

relative to the ground, and the absolute horizontal displacement

of each floor is given by

yi(t) � xi(t) + z(t). (6)

2.2 The design of nonlinear damped
building isolation systems

The aim of the design was to apply an additional nonlinear

damping cnon to the building system between floors 2 and 3 as

shown in Figure 1b, so as to reduce the story drifts between floors

1 and 2, floors 2 and 3, and floors 3 and 4.

In general, the frequency output responses of the nonlinear

damped building isolation system can be represented by the OFRF

as polynomial functions of the additional nonlinear damping for the

system design (Lang et al., 2007). In traditional nonlinear damping

design, many runs of simulations of the nonlinear damped building

isolation system under different nonlinear damping values are

needed to evaluate the OFRF representation. Then the OFRF

representation can be applied to implement the system design

(Fujita et al., 2014). The design process is illustrated in Figure 2.

However, simulations based on solving nonlinear differential

equations or applying FE simulations will become inefficient and

time-consuming when the building structure is complex.

In order to address this problem, a novel integrated mobility

analysis and equivalent linearization of nonlinear damped

building isolation system will be developed next. In this

approach, only one linear simulation is required to identify a

frequency domain representation of building dynamics, known

as the linear mobility model, based on which the simulations of

the nonlinear damped building isolation system can be

conducted much faster than solving the differential equations

or applying FE simulations. The new design approach is

illustrated in Figure 3 below.

FIGURE 1
4-DoF building system. (A) The linear 4-DoF building, (B) The 4-DoF building with nonlinear damping isolator.

FIGURE 2
Traditional design of nonlinear damped building isolation
system. FIGURE 3

New mobility based design of nonlinear damped building
isolation system.
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In the following studies, the approach will be developed and

demonstrated by using the 4-DoF building isolation system

illustrated in Figure 1.

3 The mobility analysis of linear
building isolation systems

3.1 The mobility analysis method

The 4-DoF linear building system in Figure 1a can be

represented as a 3-layer multiple-input multiple-output

(MIMO) vibration isolation system shown in Figure 4a, where

mA,1 � m4, mA,2 � m3, mC,1 � m1, mC,2 � m2;
kA,1 � k4, kB � k3, kC,1 � k1, kC,2 � k2;
cA,1 � c4, cB � c3, cC,1 � c1, cC,2 � c2;

fA,1(t) � −mA,1€z(t); fA,2(t) � −mA,2€z(t); fC,1(t)
� −mC,1€z(t); fC,2(t) � −mC,2€z(t);

are input forces induced by the ground motion;

γA,1(t), γA,2(t), γC,1(t) and γC,2(t) are input velocities; qC,1(t)
and vC,1(t) are the output force and velocity to be evaluated,

respectively.

According to the mobility analysis approach (Soliman and

Hallam, 1968), the velocity-force relationship of layer A can be

represented as

UA � APA, (7)
where A is the mobility matrix.

UA � ⎡⎢⎢⎢⎢⎢⎣A,1(jω)
A,2(jω)
UA,1(jω)

⎤⎥⎥⎥⎥⎥⎦; A � ⎡⎢⎢⎢⎢⎢⎣A1,1(jω) A1,2(jω) A1,3(jω)
A2,1(jω) A2,2(jω) A2,3(jω)
A3,1(jω) A3,2(jω) A3,3(jω)

⎤⎥⎥⎥⎥⎥⎦; PA

� ⎡⎢⎢⎢⎢⎢⎣FA,1(jω)
FA,2(jω)
PA,1(jω)

⎤⎥⎥⎥⎥⎥⎦;

where ω is the frequency, A,1(jω) and A,2(jω) are the spectra
of the input velocities γA,1(t) and γA,2(t), respectively; FA,1(jω)
and FA,2(jω) are the spectra of the input forces fA,1(t) and

fA,2(t), respectively; UA,1(jω) is the spectrum of the output

velocity uA,1(t); and PA,1(jω) is the spectrum of output force

pA,1(t).
The four pole relationship of layer B (Molloy, 1957) can be

written as

{PB,1(jω) � B1,1(jω)QB,1(jω) + B1,2(jω)VB,1(jω),
UB,1(jω) � B2,1(jω)QB,1(jω) + B2,2(jω)VB,1(jω), (8)

where PB,1(jω) and QB,1(jω) are the spectra of the forces pB,1(t)
and qB,1(t), respectively; UB,1(jω) and VB,1(jω) are the spectra of
the forces uB,1(t) and vB,1(t), respectively; and Bi,j(jω), i, j � 1, 2

are complex numbers defined as (Appendix A).

B1,1(jω) � 1; B1,2(jω) � 0;

B2,1(jω) � jω
kB + cBjω

; B2,2(jω) � 1.
(9)

For layer C, there is

VC � CQC, (10)

where C is the mobility matrix.

VC � ⎡⎢⎢⎢⎢⎢⎣C,1(jω)
C,2(jω)
VC,1(jω)

⎤⎥⎥⎥⎥⎥⎦; C � ⎡⎢⎢⎢⎢⎢⎣C1,1(jω) C1,2(jω) C1,3(jω)
C2,1(jω) C2,2(jω) C2,3(jω)
C3,1(jω) C3,2(jω) C3,3(jω)

⎤⎥⎥⎥⎥⎥⎦; QC

� ⎡⎢⎢⎢⎢⎢⎣ FC,1(jω)
FC,2(jω)
QC,1(jω)

⎤⎥⎥⎥⎥⎥⎦;
where C,1(jω) and C,2(jω) are the spectra of the input

velocities γC,1(t) and γC,2(t), respectively; FC,1(jω) and

FC,2(jω) are the spectra of the input forces fC,1(t) and

fC,2(t), respectively; VC,1(jω) is the spectrum of the output

velocity vC,1(t); and QC,1(jω) is the spectrum of output force

qC,1(t).
According to Eqs 7, 10, there are

FIGURE 4
Three layer MIMOmodel of the 4-DoF building isolation system. (A) The three layer MIMOmodel, (B) The forces and velocities of thee isolator in
layer B.
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UA,1(jω) � A3,1(jω)FA,1(jω) + A3,2(jω)FA,2(jω)
+ A3,3(jω)PA,1(jω), (11)

and

VC,1(jω) � C3,1(jω)FC,1(jω) + C3,2(jω)FC,2(jω)
+ C3,3(jω)QC,1(jω). (12)

It is noticed that PA,1(jω) � PB,1(jω) and UB,1(jω) �
−UA,1(jω), Eq. 11 can be rewritten as

−UB,1(jω) � A3,1(jω)FA,1(jω) + A3,2(jω)FA,2(jω)
+ A3,3(jω)[B1,1(jω)QB,1(jω) + B1,2(jω)VB,1(jω)].

(13)
Substituting QB,1(jω) � QC,1(jω) and VB,1(jω) � VC,1(jω)

into Eqs 8, 13, yields

UB,1(jω) � B2,1(jω)QC,1(jω) + B2,2(jω)VC,1(jω)
� B2,2(jω)[C3,1(jω)FC,1(jω) + C3,2(jω)FC,2(jω)]

+ B2,1(jω)QC,1(jω) + B2,2(jω)C3,3(jω)QC,1(jω),
(14)

and

−UB,1(jω) � A3,1(jω)FA,1(jω) + A3,2(jω)FA,2(jω)
+ A3,3(jω)[B1,1(jω)QC,1(jω) + B1,2(jω)VC,1(jω)]

� A3,1(jω)FA,1(jω) + A3,2(jω)FA,2(jω)
+ A3,3(jω)B1,1(jω)QC,1(jω)
+ A3,3(jω)B1,2(jω)[C3,1(jω)FC,1(jω) + C3,2(jω)FC,2(jω)]
+ A3,3(jω)B1,2(jω)C3,3(jω)QC,1(jω),

(15)

respectively.

By adding (14) and (15), the output force QC,1(jω) can be

solved as

QC,1(jω)�− 1
M(jω){S(jω)[C3,1(jω)FC,1(jω)+C3,2(jω)FC,2(jω)]

+A3,1(jω)FA,1(jω)+A3,2(jω)FA,2(jω) },
(16)

where

M(jω) � B2,1(jω) + B2,2(jω)C3,3(jω) + A3,3(jω)B1,1(jω)
+A3,3(jω)B1,2(jω)C3,3(jω),
S(jω) � B2,2(jω) + A3,3(jω)B1,2(jω).

When QC,1(jω) is achieved, the output forces and velocities

of each mass can be achieved. For example, VC,1(jω) can be

calculated from Eq. 10, UB,1(jω) � −UA,1(jω) can be calculated

from Eq. 7.

Therefore, the linear 4-DoF system can be simulated in the

frequency domain when the mobilities A1,j(jω), j � 1, 2, 3,

C1,j(jω), j � 1, 2, 3 are available. Next, the mobility matrices

A and C will be evaluated from several ARX models iden-

tified from a single simulation of the linear 4-DoF building

system.

3.2 The data-driven–based evaluation of
system mobility matrices

Since VC,1(jω) � C,2(jω) and UA,1(jω) � −A,2(jω), the

mobility relationships (7) and (10) of layers A and C show that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

A,1(jω) � A1,1(jω)FA,1(jω) + A1,2(jω)FA,2(jω)
+A1,3(jω)PA,1(jω),

A,2(jω) � A2,1(jω)FA,1(jω) + A2,2(jω)FA,2(jω)
+A2,3(jω)PA,1(jω),

A3,1(jω) � −A2,1(jω); A3,2(jω) � −A2,2(jω); A3,3(jω)
� −A2,3(jω),

(17)

and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C,1(jω) � C1,1(jω)FC,1(jω) + C1,2(jω)FC,2(jω)
+C1,3(jω)QC,1(jω),

C,2(jω) � C2,1(jω)FC,1(jω) + C2,2(jω)FC,2(jω)
+C2,3(jω)QC,1(jω),

C3,1(jω) � C2,1(jω); C3,2(jω) � C2,2(jω); C3,3(jω) � C2,3(jω).
(18)

Eqs 17, 18 indicate that the velocities γA,1(t), γA,2(t), γC,1(t),
and γC,2(t) can be represented by linear systems with three inputs.

In practice, a linear system can be represented in the discrete time

domain as an ARXmodel. For example, γC,2(t) can be represented
by the input forces fC,1(t) and fC,2(t), as well as the output force
qC,1(t), in discrete time as

γC,2(k) � θγ,1γC,2(k − 1) +/ + θγ,nγγC,2(k − nγ)
+θf1 ,0fC,1(k) +/ + θf 1 ,nf1fC,1(k − nf1)
+ θf2 ,0fC,2(k) +/ + θf 2 ,nf2fC,2(k − nf2) + θq,0qC,1(k)
+/ + θq,nqqC,1(k − nq),

(19)
where k is the discrete time; nγ, nf 1, nf 2, and nq are integers

representing the maximum time lags; and θγ,i, i � 1, . . . , nγ;

θf 1 ,i, i � 1, . . . , nf 1; θf 2 ,i, i � 1, . . . , nf 2; and θq,i, i � 1, . . . , nq
are model coefficients.

The mobilities of layers A and C can be directly achieved

from the ARX model, such as

C3,1(jω) �
θf 1 ,0 +∑nf1

k�1
θf 1 ,k exp(−jkωΔt)

1 − ∑nγ
k�1 θγ,k exp(−jkωΔt) ,

C3,2(jω) �
θf 2 ,0 +∑nf2

k�1
θf 2 ,k exp(−jkωΔt)

1 − ∑nγ
k�1 θγ,k exp(−jkωΔt) ,

C3,3(jω) �
θq,0 +∑nq

k�1
θq,k exp(−jkωΔt)

1 − ∑nγ
k�1 θγ,k exp(−jkωΔt),

(20)

where Δt is the sampling time applied to the identification of the

ARX model.

In order to identify the ARX models, random excitations

fA,1(t), fA,2(t), fC,1(t), and fC,2(t) are applied to each floor of
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FIGURE 5
Mobilities of the 4-DoF building system. (A-C): The mobilities of layer A, (D-F): The mobilities of layer B.

FIGURE 6
Input ground motion.

FIGURE 7
Output force of the 4-DoF system.
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the linear building system. Velocities γA,1(t), γA,2(t), γC,1(t),
and γC,2(t), as well as output forces pA,1(t) and qC,1(t) of each
floor are collected.

For example, letting nγ � nq � nf1 � nf2 � 70, the ARX

model (19) can be identified. The mobilities C3,1(jω), C3,2(jω),
and C3,3(jω) are evaluated by using (20) with Δt � 0.02 s. The

results are shown in Figure 5f, compared with the analytical

solutions obtained from the 4-DoF mass-spring-damping

system. Other evaluated mobilities are shown in Figures 5a–e.

Subject to a Kokuji wave ground motion shown in Figure 6,

the output force spectra QC,1(jω) can be evaluated by using the

mobility analysis from (16). The output force qC,1(t) can be

achieved as the inverse Fourier transform of QC,1(jω),
ω ∈ [0, π/Δt] rad/s as shown in Figure 7. The results were

verified by solving the differential Eq. 1 of the linear 4-DoF

building system.

4 The analysis and design of nonlinear
damped building isolation systems

4.1 The equivalent linearization of
nonlinear damped building isolation
systems

Consider the 4-DoF building systemwith additional nonlinear

damping in Figure 1b. Denote w(t) � uB(t) − vB(t), the

additional cubic nonlinear damping force can be represented as

fnon(t) � cnonw(t)3. (21)

The 3-layer representation of the nonlinearly damped 4-DoF

system is illustrated in Figure 8.

The nonlinear damped system in Figure 8 can be calculated

by the linear mobility approach using equivalent linearization. By

finding a linear damping ceq producing equivalent damping force

to the nonlinear damping cnon, the nonlinear damped system can

be simulated using the mobility analysis method proposed in

Section 3, where the coefficients of the four pole relationship of

layer B can be represented as

B1,1(jω) � 1; B1,2(jω) � 0;

B2,1(jω) � jω
kB + (cB + ceq)jω; B2,2(jω) � 1.

(22)

Assuming the equivalent damping force is

feq(t) � ceqw(t). (23)

The equivalence of the damping force is achieved by the error

minimization approach (Elliott et al., 2015). The mean square

error (MSE) between the nonlinear damping force and the

equivalent linear damping force is

MSE � E{[fnon(t) − feq(t)]2}, (24)

where E{.} represents the mean value.

To minimize the MSE (24), letting zMSE/zceq � 0, yields

E{2[fnon(t) − ceqw(t)]w(t)} � 0, (25)

so that

FIGURE 8
Three layer MIMO model of the 4-DoF nonlinear damped building isolation system.

FIGURE 9
Output force of the nonlinearly damped 4-DoF system.
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ceq � E{fnon(t)w(t)}
E{w(t)2} � E{cnonw(t)4}

E{w(t)2} . (26)

It should be noted that the relative velocity w(t)
calculated from the equivalent linear 4-DoF system is also

dependent on the equivalent linear damping ceq, the

equivalent linear damping ceq can be determined by

solving the equation

J(ceq) � ceq − E{cnonw(t)4}
E{w(t)2} � 0, (27)

which can be iteratively solved using a bisection searching

algorithm introduced in Appendix B.

Consider the additional nonlinear damping is

cnon � 1 × 109 Ns3/m3, the output forces qC,1(t) subject to the

ground motion €z(t) are shown in Figure 9.

By solving nonlinear differential equations, it took 2.65 s to

achieve the output forces, while 1.62 s were needed using the

mobility model. The efficiency increases (2.65 − 1.62)/2.65 �
38.86% in this case. When conducting the design of building

isolation systems, many runs of simulations are needed and the

new approach will save a lot of time. The efficiency will be further

increased as the building system gets complex. For example,

when cnon � 1 × 1010 Ns3/m3, the computing efficiency will

increase by 58.44%. This will be discussed in future studies.

4.2 The frequency design of building
isolation systems under seismic loadings

The design requirement is to reduce the story drifts

d1,2(t), d2,3(t), and d3,4(t) between floors 1 and 2, floors

2 and 3, and floors 3 and 4, respectively. The energy of the

story drifts di,j(t), (i, j) � (1, 2), (2, 3), (3, 4) are defined as

Ei,j � ∫∞

t�0
di,j(t)2dt, (i, j) � (1, 2), (2, 3), (3, 4). (28)

Two optimization problems are discussed as follows.

1) Case study 1

Consider the optimization problem.

Find cnon to solve

min
cnon

(E1,2 + E3,4).
Subject to the constraint

cnon ∈ [1, 100] × 107. (29)

The output spectrum of the story drifts Di,j(jω), (i, j) �
(1, 2), (3, 4) can be represented by the OFRF as polynomial

functions of nonlinear damping.

Di,j(jω) � λ(i,j)0 (jω) + λ(i,j)1 (jω)cnon +/ + λ(i,j)�N (jω)cnon�N , (30)

where λ(i,j)0 (jω), λ(i,j)1 (jω),/, λ(i,j)n (jω) are the coefficients, and
�N is the maximum order of the OFRF representation.

Therefore, the energies Ei,j, (i, j) � (1, 2), (3, 4) can also be

represented by the OFRF representation as polynomial functions

of the nonlinear damping as

Ei,j � φ(i,j)0 + φ(i,j)1 cnon +/ + φ(i,j)�N cnon�N , (31)

where φ(i,j)
0 ,φ(i,j)

1 ,/,φ(i,j)
�N are the coefficients.

In order to evaluate the OFRF representations of the energies,

the story drift energies are simulated by using the mobility

analysis and the equivalent linearization approach under

N≥ �N different values of nonlinear damping. Let �N � 10, N �
20 different energy values can be calculated, so that the OFRF

representation of energies (31) can be written into matrix

forms as

Ei,j � CnonΦi,j, (32)

where (i, j) � (1, 2), (3, 4).

Ei,j �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E(1)
i,j

..

.

E(20)
i,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; Cnon �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 / c10non,(1)
..
.

1 ..
.

1 / c10non,(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; Φi,j �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ(i,j)0

..

.

φ(i,j)10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The coefficients Φi,j can then be evaluated using the least

squares (LS) method as

Cnon � (ΦT
i,jΦi,j)−1ΦT

i,jEi,j. (33)

As a result, the OFRF representations of E1,2 + E3,4 was

evaluated as

E1,2 + E3,4 � 116.12 − 17.14 × 10−7cnon +/ + 3.98 × 10−85c10non,
(34)

and shown in Figure 10.

The optimized nonlinear damping can then be achieved by

solving the optimization problems Eqs 28, 29 as

cnon � 1.1 × 108 Ns3/m3. The result was validated by solving

nonlinear differential equations, showing that by using the

new approach, the design efficiency increases by 53.32%.

FIGURE 10
Output energy of the nonlinearly damped 4-DoF system. (A)
The linear 4-DoF building, (B) The 4-DoF building with nonlinear
damping isolator.
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2) Case study 2

Denote the power loss as

PL,(i,j) � 1 − Ei,j

Elin
, (i, j) � (1, 2), (2, 3), (3, 4), (35)

where Ei,j are the output energy/power with additional cubic

damping, and Elin is the output energy/power of the original

linear system.

Consider the optimization problem.

Find

min(cnon). (36)

Subject to the constraint

⎧⎪⎨⎪⎩
cnon ∈ [1, 100] × 107,
PL,(2,3) ≥ 80%,
PL,(1,2) + PL,(3,4) ≥ 60%.

(37)

According to the discussion in case study 1, the power loss of

the nonlinear damped building isolation system can be

represented by OFRFs, which were evaluated as

{PL,(2,3) � 0.43 + 1.09 × 10−8cnon +/ − 1.48 × 10−87c10non,
PL,(1,2) + PL,(3,4) � 0.42 + 8.4 × 10−9cnon +/ − 1.31 × 10−87c10non,

(38)
and shown in Figure 11.

The optimized nonlinear damping can then be achieved as

cnon � 0.9 × 108 Ns3/m3. The result was validated by solving

nonlinear differential equations, showing that by using the

new approach, the design efficiency increases by 50.51%.

5 Conclusion

The design of a nonlinear damped building isolation

system based on many runs of FE simulations or

differential equations is often inefficient and time-

consuming. For linear vibration isolation systems, mobility

analysis can produce more efficient simulation processes than

FE or differential equation methods. However, traditional

mobility analysis requires separate tests or simulations on

system components, and can only be applied to study linear

systems. In order to solve these issues in the design of nonlinear

damped building isolation systems, a novel data-driven–based

evaluation of mobilities and equivalent linearization of

nonlinear damping were developed in this study. For a linear

building system, several ARX models can be identified from a

single test of the building system to evaluate system mobilities.

After that, the building system with additional nonlinear damping

was simulated by using the equivalent linearization approach,

based on which the OFRF-based design of nonlinear damping

was conducted. Two case studies on the design of a 4-DoF

nonlinear damped building isolation system were discussed. The

results indicate the design efficiency increases by over 50%

compared to traditional design methods.

In summary, the new approach is more efficient than

traditional methods because the mobility model of a

complex building isolation system is much simpler than a

differential equation or FE model. Such a model can be

achieved through a single test on the differential equation

or FE model. After that, all the designs can be conducted based

on the mobility model. The proposed approach can be

extended to more complex building systems to further

increase the design efficiency. Moreover, the results can

also be applied to nonlinear vibration isolation design in

manufacturing and vehicle engineering.
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FIGURE 11
Power loss of the nonlinearly damped 4-DoF system.
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Appendix A

In layer B, the forces and velocities on the linear isolator are

shown in Figure A1.

In Figure A1, there are

pB,1(t) � qB,1(t)
� kB[∫ uB,1(t)dt − ∫ vB,1(t)dt] + cB[uB,1(t) − vB,1(t)].

(A1)
In the frequency domain, (A1) can be rewritten as

⎧⎪⎪⎨⎪⎪⎩
PB,1(jω) � kB

jω
[UB,1(jω) − VB,1(jω)] + cB[UB,1(jω) − VB,1(jω)],

PB,1(jω) � QB,1(jω).
(A2)

It is noticed that

{PB,1(jω) � B1,1(jω)QB,1(jω) + B1,2(jω)VB,1(jω),
UB,1(jω) � B2,1(jω)QB,1(jω) + B2,2(jω)VB,1(jω). (A3)

Bi,j(jω), i, j � 1, 2 can be evaluated as (9).

Appendix B

Algorithm 1. The bisection searching algorithm

FIGURE A1
Forces and velocities of the isolator.
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