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A set of approximate closed-form solutions of the maximum interstory drifts under

the critical pseudo-double impulse (PDI) is derived for non-proportionally damped

multi-story shear building models with bilinear hysteresis. The use of PDI and the

closed-form solutions efficiently and accurately enable the capture of the critical

responses of elastic-plastic multi-degree-of-freedom (MDOF) systems under the

one-cycle sine wave, which substitutes for the main part of near-fault fling-step

motions. The formulation of the closed-formmaximum interstory drifts is based on

the energy balance law. In the formulation, a quadratic function approximation of

the damping force-interstory drift relation is introduced together with an updated

mode-controlled energy-based approach (UMEA). While UMEA was proposed in

the previous paper to derive the approximate maximum interstory drifts of

undamped elastic-plastic MDOF systems under the critical PDI, it is extended so

that it can be applied to non-proportionally damped MDOF systems. It is

demonstrated that the proposed method can estimate the maximum interstory

drifts of elastic-plastic non-proportionally dampedMDOF systems under the critical

PDI and the corresponding one-cycle sinewavewith high accuracy. The estimation

by the proposed method can be conducted much more efficiently and stably than

the time-history response analysis (THRA). It is also shown that the hysteretic energy

dissipation is not large enough to reduce the maximum interstory drifts. Finally, it is

demonstrated that the proposed method can accurately estimate the maximum

interstory drifts of elastic-plastic moment-resisting frames with viscous dampers

under the resonant one-cycle sine wave.
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1 Introduction

Recently observed pulse-like near-fault ground motions

greatly exceed the level of code-specified ground motions.

Such ground motions may concentrate the plastic deformation

to specific stories and cause devastating damage to building

structures. However, earthquake events are uncertain and

difficult to be precisely predicted. Therefore, such kind of

uncertainty and the plastic deformation characteristics should

be fully considered in the structural design of buildings to

improve the buildings’ resilience. Many researches on the

elastic-plastic response characteristics of buildings and the

effectiveness of the structural control systems under near-fault

ground motions have been accumulated so far (Bertero et al.

(1978), Hall et al. (1995), Malhotra (1999), Jangid and Kelly

(2001), Mavroeidis and Papageorgiou (2003), Bray and

Rodriguez-Marek (2004), Mavroeidis et al. (2004), Akkar et al.

(2005), Baker (2007), He and Agrawal (2008), Yang et al. (2010),

Khaloo et al. (2015), Vafaei and Eskandari (2015), Fang et al.

(2018), Hamidi et al. (2020), Akehashi and Takewaki (2020),

(2022a)). However, few researchers focused on both the

uncertainty of the input ground motion and the plastic

deformation characteristics.

The critical excitation method is one of the most rational

approaches to certainly treat the uncertainty of the input ground

motion [Drenick (1970); Shinozuka (1970); Iyengar and

Manohar (1987); Abbas and Manohar (2002); Au (2006);

Takewaki (2013)]. The method is aimed at finding the

excitation which maximizes the structural response of models

under possible inputs. Generally, an iteration of numerical

analyses is required to find the critical excitation for elastic-

plastic models. For example, Caughey (1960a), Caughey (1960b)

used the equivalent linearization technique to approximately

derive the nonlinear stationary responses, and Iwan (1961),

(1965a, b) formulated transcendental equations for stationary

responses of elastic-plastic models under harmonic excitation.

These methods require iterative procedures to find the critical

(resonant) input frequency for a specified input level. Especially

in the case of elastic-plastic MDOF systems, such procedures

become more complicated. Moreover, these methods cannot

accurately estimate the maximum responses under near-fault

ground motions because the duration of such ground motions is

short and the responses are not stationary.

To overcome these difficulties, Akehashi and Takewaki (2021)

introduced a pseudo-double impulse (PDI) to capture the critical

responses of elastic-plastic MDOF systems under fling-step ground

motions. PDI is a set of impulsive lateral forces, and it substitutes for

the main part of fling-step ground motions. An ordinary double

impulse (DI), which was proposed by Kojima and Takewaki (2015),

cannot accurately simulate the maximum responses of MDOF

systems because DI is treated as a ground acceleration and largely

excites the higher-mode responses. On the other hand, PDI hardly

excites the higher-mode responses because the undamped

fundamental participation vector is adopted as the influence

coefficient vector. This reflects the critical response characteristics

under the actual fling-step groundmotions. It has been demonstrated

that the maximum interstory drifts and the maximum floor

accelerations under the critical PDI correspond well to those

under the critical one-cycle sine wave, which is another substitute

for the fling-step groundmotions [Sasani and Bertero (2000); Makris

and Black (2004); Kalkan andKunnath (2006); Hayden et al. (2014)].

Moreover, Akehashi and Takewaki (2022b) developed an innovative

displacement control analysis called an ‘updated mode-controlled

energy-based approach (UMEA)’ to derive approximate closed-form

critical maximum interstory drifts of elastic-plastic undamped

MDOF systems. UMEA effectively captures the transitional

phases of the interstory drift responses and the plastic

deformation concentration under the critical PDI. However, the

method by Akehashi and Takewaki (2022b) cannot treat damped

elastic-plastic MDOF systems. The closed-formmaximum interstory

drifts of damped elastic-plasticMDOF systems under the critical PDI

should be derived because the simple response evaluation will be

helpful for the preliminary seismic design of structural members and

passive viscous dampers.

In this paper, a set of approximate closed-form solutions of

the maximum interstory drifts under the critical PDI is derived

for non-proportionally damped multi-story shear building

models with bilinear hysteresis. In Section 2, the relation

among a one-cycle sine wave, DI and PDI is explained. In

Section 3, the displacement responses of elastic MDOF

systems under a single impulse are investigated when the

undamped fundamental participation vector is applied to the

influence coefficient vector. In Section 4, a set of approximate

closed-form solutions of the maximum interstory drifts under

the critical PDI is derived for a non-proportionally damped

MDOF system with bilinear hysteresis. This formulation is

based on an extended UMEA, a quadratic function

approximation of the damping force-interstory drift relation

and the energy balance law. In Section 5, the time-history

response analysis (THRA) is conducted to check the accuracy

of the proposed approximate closed-form expression of the

maximum interstory drifts for elastic-plastic non-

proportionally damped MDOF systems under the critical PDI

and the corresponding one-cycle sine wave. The damping force-

interstory drift relations, the hysteretic energy and the dissipated

energy by viscous damping are also investigated. Finally, the

applicability of the proposed approximate closed-form

expression to elastic-plastic moment-resisting frames with

viscous damper is investigated.

2 Pseudo-double impulse

In this section, the relation among a one-cycle sine wave, a

double impulse (DI) and a pseudo-double impulse (PDI) is

explained briefly.
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The main part of the near-fault fling-step ground motion is

often expressed by the one-cycle sine wave [Sasani and Bertero

(2000); Makris and Black (2004); Kalkan and Kunnath (2006);

Hayden et al. (2014)]. On the other hand, Kojima and Takewaki

(2015) introduced DI to more simply model the main part of the

near-fault fling-step ground motion. As shown in Figure 1, the

Fourier amplitude of DI and that of the one-cycle sine wave

correspond well in the range of 0≤ω≤ 2π/t0, where t0 is the time

interval between two impulses. This leads to the good

correspondence of the maximum responses of the elastic-

plastic SDOF systems under the critical DI and the critical

one-cycle sine wave (Kojima and Takewaki 2015; Akehashi

and Takewaki 2018).

The most important aspect of DI is that the critical

maximum deformation and the critical time interval of an

elastic-plastic SDOF system can be easily obtained without

any repetition. This is because only the free vibration occurs

after each impulse input and the energy-based approach is

easily applied. Moreover, PDI has been introduced by

Akehashi and Takewaki (2021), (2022b) so that this aspect

can be applied to elastic-plastic MDOF systems. PDI is

treated as a set of impulsive lateral forces, and the

undamped fundamental participation vector is adopted as

the influence coefficient vector (see Figure 2).

Consider a N-story shear mass system. Let mi, ci, ki denote

the mass, the damping coefficient and the story stiffness in the ith

story, and M,C,K, u, ι,φn � (φn,1, ...,φn,N)T, βnφn �
{(φT

nM1)/(φT
nMφn)}φn denote the mass matrix, the damping

matrix, the stiffness matrix, the displacement vector, the

influence coefficient vector, the nth undamped eigenmode

vector and the nth participation vector, respectively. The

equations of motion under DI (ι � 1: one at every

component) are expressed by

Mu
·· + Cu

· + Ku � −M1(Vδ(t) − Vδ(t − t0)), (1)
where δ(t), V denote the Dirac delta function and the velocity

amplitude of DI. On the other hand, the equations of motion

under PDI (ι � β1φ1) are expressed as follows.

Mu
·· + Cu

· + Ku � −M(β1φ1)(Vδ(t) − Vδ(t − t0)). (2)

PDI excites only the fundamental-mode responses of

elastic proportionally-damped MDOF systems because ι �
β1φ1 is adopted. The critical maximum responses under the

critical PDI correspond well to those under the critical one-

cycle sine wave. In addition, the critical condition of the

impulse timing, which maximizes the total input energy, has

also been derived (Akehashi and Takewaki (2021)).

3 Displacement response of elastic
non-proportionally damped MDOF
system under single impulse
with ι � β1φ1

In this section, the displacement responses of elastic MDOF

systems under a single impulse (SI) with ι � β1φ1 are investigated.

Consider an elastic proportionally damped MDOF system.

The displacement response u(t) of the system under SI with ι �
β1φ1 (PSI) can be expressed by

FIGURE 1
Input and response of double impulse (DI) and one-cycle sine
wave.

FIGURE 2
Double impulse (DI) and pseudo-double impulse (PDI).
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u(t) � u1(t) � −Ve−h1ω1t

ωD1
(β1φ1) sin(ωD1t), (3)

where hn,ωn denote the nth damping ratio and the nth natural

circular frequency, and ωDn � ωn

�����
1 − h2n

√
. The time ~t when the

interstory drift responses become the maximum can be expressed as
~t � (π/2 − ϕ1)/ωD1, (4a)

ϕ1 � arctan{h1/ �����
1 − h21

√ }. (4b)

Consider next an elastic non-proportionally damped MDOF

system. The displacement response u(t) of the system under PSI can

be expressed by

u(t) � ∑N

i�1ui(t) � ∑N

i�1Ve
−hpi ωp

i t{βi cos(ωp
Dit) − γi sin(ωp

Dit)},
(5)

where ψn, λn � −hpnωp
n + iωp

Dn � −hpnωp
n + iωp

n

��������
1 − (hpn)2

√
,ωp

n, h
p
n

denote the nth complex eigenvector, the nth eigenvalue, the

nth pseudo-undamped natural circular frequency, the nth

damping ratio, respectively, and

βn + iγn �
−2ψT

nM(β1φ1)
2λnψT

nMψn + ψT
nCψn

ψn. (6)

It is noted that, depending on the non-proportionality of the

damping distribution, the higher-mode responses are slightly excited

under PSI. When the damping distribution has weak non-

proportionality, the component −Ve−hp1ωp
1t(γ1)sin(ωp

D1t) is

dominant in u(t). Then, the maximum interstory drifts dPSImax

under PSI can be approximated by

dPSI
max � T{∑N

i�1ui(~tp)}, (7a)
~t
p � (π/2 − ϕp

1)/ωp
D1, (7b)

ϕp
1 � arctan{hp1/ ��������

1 − (hp1)2√ }, (7c)

where T is the transformation matrix, and T is expressed as

T � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0
−1 1

1 1
0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (8)

It is also noted that Equation 7 gives the exact value in the

cases of elastic proportionally damped MDOF systems since

u2(t) � ... � uN(t) � 0 and β1 � 0.

The accuracy of Equation 7 is investigated through numerical

examples. Consider two 24-story shear building models with different

damping distributions. Both models have a trapezoidal distribution of

story stiffnesses (k1/k24 � 2.5), and all the floormasses have the same

value, i.e. m1 � ... � m24 � 400 × 103 kg. The undamped

fundamental natural period is 2.4 s, and the common story height

is 4 m. The twomodels have non-proportional damping. The damping

distribution of Model 1 is c1 � ... � c24 � (60/24) × 107 Ns/m,

and that of Model 2 is c1 � ... � c12 � (120/24) × 107 Ns/m,

c13 � ... � c24 � 0. The damping distribution of Model 2 is

designed so that it has stronger non-proportionality than

Model 1. In other words, the higher-mode responses of

Model 2 under PSI are excited more than those of Model

1. The 1-4th damping ratios of Model 1 are 0.0511, 0.169,

0.281, 0.390, and those of Model 2 are 0.0667, 0.0773,

0.111, 0.371.

Figure 3 illustrates themaximum interstory drifts under PSI with

V � 0.5m/s evaluated by the time-history response analysis (THRA)

and those evaluated by Equation 7. It is noted that only the 1-4th

modes are considered in the evaluation by Equation 7. Figure 4,

Figure 5 show the interstory drift response time-history in the 8th,

16th and 24th stories under PSI. The fundamental mode responses

are also shown in Figure 4, Figure 5. In Model 1, the maximum

interstory drifts evaluated by THRA and those evaluated by Equation

7 correspond well. As shown in Figure 4, the higher-mode responses

are hardly excited. On the other hand, in Model 2, Equation 7

underestimates the maximum interstory drifts in the upper stories.

This is because the higher-mode responses contribute to the

maximum interstory drifts, as shown in Figure 5. However,

Equation 7 estimates the maximum interstory drifts in the middle

and lower stories with high accuracy. Moreover, Equation 7

effectively expresses the deformation concentration in the 13th

story, where the value of the damping coefficient drastically switches.

4 Derivation of approximate closed-
formmaximum interstory drifts under
critical PDI

In this section, a set of approximate closed-form solutions of the

maximum interstory drifts under the critical PDI is derived for non-

proportionally damped MDOF systems with bilinear hysteresis. In

Section 4.1, the updated mode-controlled energy-based approach

(UMEA), which was introduced by Akehashi and Takewaki

(2022b), is extended based on the formulation in Section 3 so that

it can be applied to non-proportionally damped MDOF systems. In

Section 4.2, a quadratic function approximation of the damping force-

interstory drift relation is proposed. This leads to a closed-form

expression of the dissipated energy by the viscous damping. In

Section 4.3, the approximate closed-form solutions of the

maximum interstory drifts are derived based on the extended

UMEA, the quadratic function approximation and the energy

balance law.

4.1 UMEA for damped elastic-plastic
MDOF system

UMEA, which is a kind of displacement-controlled analyses, has

been developed by Akehashi and Takewaki (2022b). UMEA leads to

a set of approximate closed-form solutions of the maximum

interstory drifts of elastic-plastic undamped MDOF systems under

the critical PDI. UMEA provides the maximum displacement
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responses of the MDOF systems by considering the interstory drift

increment, which is proportional to the undamped fundamental

mode evaluated by the tangent story stiffnesses. It is noted that

UMEA reflects the modal coupling effect due to the elastic-plastic

responses under the critical PDI and the validity of UMEA was

demonstrated in the previous paper [Akehashi and Takewaki

(2022b)].

Although UMEA can be applied to undamped systems, it

cannot be applied to damped systems. It is pointed out that

viscous damping with strong non-proportionality excites the

FIGURE 3
Maximum interstory drifts under PSI with V � 0.5m/s by time-history response analysis and proposed method, (A) Model 1, (B) Model 2.

FIGURE 4
Interstory drift response time-history under PSI (Model 1), (A) 8-th story, (B) 16-th story, (C) 24-th story.

FIGURE 5
Interstory drift response time-history under PSI (Model 2), (A) 8-th story, (B) 16-th story, (C) 24-th story.
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higher-mode responses, and it may influence the distribution of

the maximum interstory drifts. To overcome this difficulty,

UMEA is extended so that it can be applied to non-

proportionally damped systems based on the formulation in

Section 3. In UMEA for non-proportionally damped systems,

the interstory drift increment Δ1 � (Δ1,1, ...,Δ1,N)T, which is

proportional to dPSImax in Equation 7, is given. When one of the

stories yields, the corresponding story stiffness is replaced by the

post-yield stiffness. Then dPSImax and the interstory drift increment

are updated. The updated interstory drift increment is denoted

by Δn
1 � (Δn

1,1, ...,Δn
1,N)T in the case of yielding of the nth story.

Consider the case where UMEA is applied to a 3DOF shear

mass system with bilinear hysteresis (see Figure 6). dy,i, αi, di in

Figure 6 denote the yield deformation, the post-yield stiffness

ratio and the interstory drift in the ith story, and d(1),ji is the

interstory drift in the ith story at the moment when the story j

attains dy,j. In the beginning of UMEA, the interstory drift

increment Δ1 is given. Then the first story yields first (point

1 in Figure 6). The interstory drift increment is updated from Δ1

to Δ1
1, which is evaluated by α1k1, k2, k3. Next, the second story

yields (point 2), and the interstory drift increment is updated

from Δ1
1 to Δ

1,2
1 , which is evaluated by α1k1, α2k2, k3. The analysis

is continued until the total hysteretic energy attains the target

value (initial kinetic energy).

It is noted that, in the case of an undamped system, dPSImax

corresponds to the undamped fundamental mode evaluated

by the tangent story stiffnesses. Therefore, in the case of

C � 0, the above-stated procedure corresponds to UMEA for

undamped systems presented by Akehashi and Takewaki

(2022b).

4.2 Approximation of damping force-
interstory drift relation

Akehashi and Takewaki (2018) introduced a quadratic

function approximation of the damping force-deformation

relation to derive an approximate closed-form maximum

deformation of an elastic-plastic SDOF system under the

critical DI. This approach is extended to the damping force-

interstory drift relation in each story of an elastic-plastic MDOF

system.

Let fD,i, d
(1)
max ,i denote the damping force and the

maximum interstory drift in the ith story after the first

impulse input. The interstory velocity just after the first

impulse input is −Δud
i V, where (Δud

1 , ...,Δud
N )T � T(β1φ1).

The damping force-interstory drift relation in the ith story

is approximated by a quadratic function, which passes

the points (di, fD,i) � (0,−ciΔud
i V), (d(1)max ,i, 0) (see

Figure 7). The point (d(1)max ,i, 0) is the vertex. fD,i can be

expressed by

fD,i � −ciΔud
i V

������������
1 − (di/d(1)

max ,i)√
. (9)

By integrating Equation 9 from di � 0 to di � d(1)max ,i, the

dissipated energy by fD,i can be obtained as

FIGURE 6
Overview of UMEA.
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∫d(1)max ,i

0
fD,iddi � (2/3)ci(Δud

i V)d(1)
max ,i. (10)

This formulation helps to derive d(1)max � (d(1)max ,1, ..., d
(1)
max ,N)T

in a closed form, and it can be easily extended to the case for

deriving the maximum interstory drifts d(2)max �
(d(2)max ,1, ..., d

(2)
max ,N)T after the second impulse.

4.3 Approximate closed-form maximum
interstory drifts

A set of approximate closed-form solutions of the

maximum interstory drifts d(1)max, d
(2)
max is derived. By using

the extended UMEA, a quadratic function approximation and

the energy balance law, the problems of deriving d(1)max, d
(2)
max

are expressed as simple problems of solving quadratic

equations.

4.3.1 Derivation of d(1)
max

UMEA is conducted in the negative direction for deriving

d(1)max. Let us define s
(1)
1 as the story number which yields first,

and s(1)i denotes the story number which yields after the story

s(1)i−1 (i � 2, ..., N). For example, Figure 8 illustrates an example

of the restoring force-interstory drift relations and the

damping force-interstory drift relations of a 3DOF system

for the derivation of d(1)max. Assume s(1)1 � 1, s(1)2 � 2, s(1)3 � 3

here. In other words, the first story yields first (point 1 in

Figure 8), then the second story yields (point 2). Before the

third story yields, the sum of the total hysteretic energy

and the total dissipated energy by the viscous

damping attains the target value (initial kinetic energy) at

point 3.

The input energy E(1)
I by the first impulse is expressed by

E(1)
I � 1

2
(β1φ1)TM(β1φ1)V2 (11)

The energy balance law between the timing just after the first

impulse acts and the timing when the system attains d(1)max leads to

E(1)
I � E(1)

h + E(1)
D (12)

where E(1)
h , E(1)

D denote the total hysteretic energy and the total

dissipated energy by the damping. The detailed formulation of

E(1)
h , E(1)

D is shown in Supplementary Appendix S1.

FIGURE 7
Quadratic function approximation of damping force-
interstory drift relation.

FIGURE 8
Evaluation of maximum interstory drifts d(1)

max after the first impulse.
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4.3.2 Derivation of d(2)
max

Next, the distribution d(2)max of the maximum interstory drifts

after the second impulse is derived. In other words, the energy

balance law between the timing just after the second impulse acts

and the timing when the system attains d(2)max is formulated.

UMEA in the positive direction is conducted just after the second

impulse input. Let us define s(2)1 as the story number which goes into

the reloading process first, and s(2)i denotes the story number which

goes into the reloading process after the story s(2)i−1 (i � 2, ...,N). For
example, Figure 9 illustrates an example of the restoring force-

interstory drift relations and the damping force-interstory drift

relations of the 3DOF system for the derivation of d(2)max, and s(2)1 �
1, s(2)2 � 2, s(2)3 � 3 here. In other words, the first story yields first

(point 4 in Figure 9). Then the second story yields (point 5). Before

the third story yields, the sum of the total hysteretic energy and the

total dissipated energy by the viscous damping attains the target value

at point 6.

Let E(I)
K , E(I)

S denote the total strain energy and the total

kinetic energy just after the second impulse input, and E(2)
h , E(2)

D

denote the total hysteretic energy and the total dissipated energy

by the damping. Based on the energy balance law between the

timing just after the second impulse acts and the timing when the

system attains d(2)max, the following equation is formulated

E(I)
K + E(I)

S � E(2)
h + E(2)

D (13)

The detailed formulation of E(I)
K , E(I)

S , E(2)
h , E(2)

D is shown in

Supplementary Appendix S2.

5 Numerical examples

In Section 5.1, the time-history response analysis (THRA)

is conducted to check the accuracy of the proposed

approximate closed-form expression for elastic-plastic

non-proportionally damped MDOF systems under the

critical PDI. The damping force-interstory drift relations,

the hysteretic energy and the dissipated energy by viscous

damping are also investigated. In Section 5.2, the maximum

interstory drifts under the corresponding one-cycle sine wave

are compared with the proposed approximate closed-form

expression. In Section 5.1, Section 5.2, Model

1 (c1 � ... � c24 � (60/24) × 107 Ns/m) and Model

2 (c1 � ... � c12 � (120/24) × 107 Ns/m, c13 � ... � c24 � 0)
are used again. The yield interstory drifts are dy,1 � ... �
dy,24 � 4/150m and the bilinear hysteresis (kinematic

hardening) in the story shear-interstory drift relation is

assumed (α1 � ... � α24 � 0.2). In Section 5.3, the

applicability of the proposed approximate closed-form

expression to elastic-plastic moment-resisting frames with

viscous damper is investigated.

FIGURE 9
Evaluation of maximum interstory drifts d(2)

max after the second impulse.
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5.1 Maximum interstory drifts under
critical PDI

Figure 10 shows the distributions of the maximum interstory

drifts by THRA under the critical PDI with V �
0.3, 0.6, 0.9, 1.2, 1.5m/s and those evaluated by the proposed

method. Figure 11, Figure 12 present the damping force-interstory

drift relations in the 1st, 6th and 12th stories ofModels 1, 2 under the

critical PDI with V � 1.2m/s. The approximate quadratic functions

designated as ‘proposed method’ are also plotted.

In the case of Model 1, the proposed method estimates the

maximum interstory drifts with high accuracy for all the input

FIGURE 10
Maximum interstory drifts under critical PDI and those evaluated by proposed method,(A) Model 1 (c1 � ... � c24 � (60/24) × 107 Ns/m), (B)
Model 2 (c1 � ... � c12 � (120/24) × 107 Ns/m, c13 � ... � c24 � 0).

FIGURE 11
Damping force-interstory drift relation under PDI with V � 1.2m/s (Model 1) by time-history response analysis and proposed method, (A) 1st
story, (B) 6th story, (C) 12th story, (D) maximum interstory drifts.
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levels. In addition, the approximate quadratic functions

correspond well to the damping force-interstory drift relations

by THRA, although the higher-mode responses slightly

contribute.

In the case of Model 2, the proposed method tends to slightly

overestimate the maximum interstory drifts in the 13th story.

However, the proposed method estimates those in the remaining

stories with high accuracy. It can be pointed out that the damping

force-interstory drift relation in the 12th story by THRA does not

correspond well to the corresponding quadratic function. This is

because the value of the damping coefficient drastically switches at

the 12, 13th stories, and the contribution of the higher-mode

responses is relatively large. However, the correspondence between

the estimated value of the dissipated energy (area formed by

quadratic function) and the dissipated energy byTHRA is fairly good.

It should be noted that the proposed method estimates the

maximum interstory drifts efficiently and stably. The total

computational time by the proposed method is about 1/170 of

that by THRA (time step increment: 0.001s, 0≤ t≤ 6s). In

addition, the repetition of the matrix multiplication and the

convergence calculation due to the elastic-plastic responses are

not required for the proposed method different from THRA.

Figure 13 shows E(1)
h /E(1)

I , E(1)
D /E(1)

I , E(2)
h /E(1)

I , E(2)
D /E(1)

I and

the maximum interstory drifts for various input levels. As explained

in Section 4.3, E(1)
h , E(1)

D are the total hysteretic energy and the total

dissipated energy by viscous damping corresponding to d(1)max, and

E(2)
h , E(2)

D are the total hysteretic energy and the total dissipated

energy by viscous damping corresponding to d(2)max. Note that the

input energyE(1)
I by the first impulse is proportional toV2. It can be

observed from Figure 13 that E(1)
h /E(1)

I , E(1)
D /E(1)

I , E(2)
D /E(1)

I are

almost constant regardless of V. On the other hand, due to the

hysteretic energy dissipation after the first impulse, E(2)
h /E(1)

I

decreases within the range of V≥ 1.1m/s for both models.

However, this hysteretic energy dissipation is not large enough to

reduce the maximum interstory drifts. Considering the plastic

deformation concentration in specific stories, the interstory drifts

may rather increase by yielding.

5.2 Maximum interstory drifts under
corresponding one-cycle sine wave

Figure 14 shows the distributions of the maximum interstory

drifts by THRA under the corresponding one-cycle sine wave

with V � 0.3, 0.6, 0.9, 1.2, 1.5m/s and those evaluated by the

proposed method.

In the case of Model 1, the maximum interstory drifts

evaluated by the proposed method corresponds well to those

evaluated by THRA for all the input levels. In the case of Model 2,

the proposed method tends to overestimate the maximum

FIGURE 12
Damping force-interstory drift relation under PDI with V � 1.2m/s (Model 2) by time-history response analysis and proposed method, (A) 1st
story, (B) 6th story, (C) 12th story, (D) maximum interstory drifts.

Frontiers in Built Environment frontiersin.org10

Akehashi and Takewaki 10.3389/fbuil.2022.964867

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.964867


interstory drifts in the 13–18th stories for larger input levels. This

is because the non-proportionality of the damping distribution is

strong and the correspondence between the critical PDI and the

one-cycle sine wave gets worse. However, within the range where

the plastic deformation ductility is less than 2, the maximum

interstory drifts evaluated by the proposed method corresponds

well to those evaluated by THRA.

5.3 Practical application of proposed
method to elastic-plastic moment-
resisting frame with viscous damper

In this section, the applicability of the proposed method

to elastic-plastic moment resisting frames with viscous

dampers is investigated. The transformation of moment

FIGURE 13
Comparison of E(1)

h /E(1)
I , E(1)

D /E(1)
I , E(2)

h /E(1)
I ,E(2)

D /E(1)
I and maximum interstory drifts, (A) Model 1, (B) Model 2.

FIGURE 14
Maximum interstory drifts under corresponding one-cycle sine wave and those evaluated by proposed method, (A) Model 1, (B) Model 2.
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frames into equivalent shear mass systems enables the

application of the proposed method.

A 10-story 3-span planar moment-resisting frame is used.

The details of the moment frame and the equivalent shear mass

system with bilinear hysteresis are shown in the previous papers

[Akehashi and Takewaki (2022b), Akehashi and Takewaki

(2022c)]. The added damping coefficient ci of the equivalent

shear mass system by viscous dampers in the ith story can be

obtained by

ci � ∑NB

j�1ci,j cos
2θi,j, (14)

where ci,j, θi,j denote the damping coefficient of the viscous

dampers at the jth bay in the ith story and the angle of the

corresponding damper, andNB denotes the number of the bays.

Figure 15 shows the distribution of the added damping

coefficients by the viscous dampers and the maximum

interstory drifts of the moment frame and the equivalent

shear mass system under the one-cycle sine wave, which

corresponds to the critical PDI with V � 0.9 [m/s]. The

dampers are allocated at the center bay in the 1-7th stories,

and tan θ � 4/(7/2) � 4/3.5. It can be observed that the proposed

method estimates the maximum interstory drifts of the frame

with high accuracy.

6 Conclusion

A set of approximate closed-form solutions of the maximum

interstory drifts under the critical pseudo-double impulse (PDI)

was derived for non-proportionally damped multi-story shear

building models with bilinear hysteresis. The main conclusions

can be summarized as follows.

1) A set of approximate closed-form solutions of the maximum

interstory drifts under the critical PDI was derived based on

the energy balance law. While the damping was difficult to be

treated in the previous paper, it was made possible to consider

by extending an updated mode-controlled energy-based

approach (UMEA) and introducing a quadratic function

approximation of the damping force-interstory drift

relation. It was demonstrated through numerical examples

that the proposed method estimates the distributions of the

maximum interstory drifts evaluated by the time-history

response analysis (THRA) under the critical PDI. It was

also demonstrated that, within the range where the plastic

deformation ductility is less than 2, the maximum interstory

drifts evaluated by the proposed method correspond well to

those evaluated by THRA under the corresponding one-cycle

sine wave.

2) The proposed method can be conducted efficiently and

stably. The proposed method does not require the

repetition of the matrix multiplication and the

convergence calculation due to the elastic-plastic

responses which are required in THRA.

3) The hysteretic energy dissipation is not large enough to

reduce the maximum interstory drifts. Considering the

plastic deformation concentration in specific stories, the

interstory drifts may rather increase by yielding.

4) The proposed method developed for shear mass systems

can estimate the maximum interstory drifts of elastic-

plastic moment-resisting frames with viscous dampers

under the resonant one-cycle sine wave with high

accuracy.

The proposed method focuses on both the uncertainty of the

input ground motion and the plastic deformation characteristics

under the near-fault fling-step motions. Moreover, the proposed

method can efficiently and stably estimate the critical maximum

interstory drifts. Although the one-cycle sine wave substitutes

well for the main part of the near-fault fling-step motions, it

requires much computational load to find the critical resonant

FIGURE 15
Maximum interstory drifts of moment-resisting frame and equivalent shear mass system under one-cycle sine wave and distribution of added
damping coefficients.
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input period. By using the critical PDI, structural members and

passive viscous dampers can be efficiently designed, and such

design will be a resilient design because the uncertainty of the

input ground motion is considered.
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