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In this study, the Multivariate Adaptive Regression Splines (MARS) model is

employed to create a data-driven prediction for the bearing capacity of a strip

footing on rockmass subjected to an inclined and eccentric load. The strengths

of rock masses are based on the Hoek-Brown failure criterion. To develop the

set of training data in MARS, the lower and upper bound finite element limit

analysis (FELA) is carried out to obtain the numerical results of the bearing

capacity of a strip footing with the width of B. There are six considered

dimensionless variables, including the geological strength index (GSI), the

rock constant/yield parameter (mi), the dimensionless strength (γB/σci), the

adhesion factor (α), load inclined angle from the vertical axis (β), and the

eccentricity of load (e/B). A total of 5,120 FELA solutions of the bearing

capacity factor (P/σciB) are obtained and used as a training data set. The

influences of all dimensionless variables on the bearing capacity factors and

the failure mechanisms are investigated and discussed in detail. The sensitivity

analysis of these dimensionless variables is also examined.
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Introduction

The bearing capacity factors of vertically loaded foundations

on Mohr-Coulomb (MC) soil is determined using Terzaghi’s

bearing capacity equation (Terzaghi, 1943), which combines the

effects of soil cohesion and soil unit weight, and surcharge.

However, it is an idealistic example and a massive

simplification to imagine a foundation with simply a vertical

force acting on it at its center. Generally, in addition to the

vertical load from the self-weight of multistory buildings, the

horizontal load from wind or suspended slab floors can be

transmitted to foundations. In addition, the position of load

might not be precisely applied in themiddle of the foundation. As

a result, the considerations of both inclination and eccentricity of

applied load should be taken into account, especially for

uncommon structures that are commonly subjected to a

lateral force with an eccentric length such as the foundations

of offshore platforms, transmission towers, bridges, or wind

turbines.

The previous classic works considering the bearing capacity

of foundations subjected to eccentric and inclined loads were

introduced by Meyerhof (1953; 1963), Hansen (1970), and Vesic

(1975) by modifying the basic Terzaghi’s bearing capacity

equation. These previous studies analyzed the inclination and

eccentricity factors by employing the limit-equilibrium or slip-

line methods. With the development of computational

techniques, various numerical methods such as Finite Element

Analysis (FEA) were carried out by Taiebat and Carter (2002)

and Loukidis et al. (2008) to propose the solutions to the bearing

capacity factor for footings under eccentric loading on cohesive

and cohesionless soils, respectively. Zheng et al. (2019a)

employed the discontinuity layout optimization procedure to

solve the bearing capacity solutions for strip foundations on two-

layered soils subjected to inclined load. Another numerical

technique, Finite Element Limit Analysis (FELA), was also

used by Hjiaj et al. (2004) to investigate the bearing capacity

of foundations on cohesive-frictional soils by accounting for the

effects of both inclination and eccentricity factors. Krabbenhoft

et al. (2012; 2014) employed the same numerical technique to

evaluate the lower bound solutions of footings on cohesionless

soils under eccentrical loading.

It is well-known that the MC failure criterion was developed

by utilizing the linear function of the major and minor effective

principal stresses (σ1 and σ3). However, for various types of rock

masses, the linear equation of the MC model is quite not

applicable to capture the nonlinear relationship between σ1
and σ3. Even though fitting an average linear relationship of

the MC model to the nonlinear curve of tested intact rocks may

be capable of creating an approximation of straight lines with a

tension cut-off to capture the nonlinear curve of tested rock data,

a large discrepancy between the fitting linear MC plot and the

nonlinear curve of tested intact rocks can be commonly observed.

The nonlinear failure criterion developed by Hoek and Brown

(1980) and upgraded by Hoek et al. (2002) is generally known as

Hoek-Brown (HB) failure criterion. Several researchers have

widely employed this HB criterion to produce various stability

solutions for many rock engineering problems in the past. For the

studies of vertically loaded foundations on rock masses, the

bearing capacity solutions to this problem have been proposed

by many previous studies (e.g., Serrano and Olalla, 1994; Serrano

and Olalla, 1998a; Serrano and Olalla, 1998b; Serrano et al., 2000;

Yang and Yin, 2005; Merifield et al., 2006; Saada et al., 2008; Birid

and Choudhury, 2021; Keawsawasvong, 2021; Yodsomjai et al.,

2021; Keawsawasvong et al., 2022a; Jaiswal and Chauhan 2022;

Roy and Koul, 2022). Nevertheless, investigating the bearing

capacity factors for footings on rock masses under inclined and

eccentric loading is quite limited. To the best of authors’

knowledge, only Chihi and Saada (2022) and Keawsawasvong

et al. (2021) considered this problem by employing the kinematic

approach of limit analysis theory and the FELA to perform the

results of footings on rock masses under inclined and eccentric

loading. The influence of the adhesion factor, which is

responsible for lowering the shear strength at the interface

between footings and rocks, has not been looked into or

explored in their studies, though. In addition, the full possible

range of the ratio between rock strengths and rock unit weight

has never been considered in Chihi and Saada (2022) and

Keawsawasvong et al. (2021).

The problem definition of a strip footing resting on rockmass

under inclined and eccentric loading is shown in Figure 1. The

footing is rigid, has a width of B, and is subjected to the ultimate

load (P) with an inclination angle, β (measured from vertical

axis) and an eccentric length of e. The rock is set to obey the HB

failure criterion and has a unit weight of γ. The strength

parameters for the HB model are described later in the next

section. At the contact area between footing and rock, the

adhesion factor is typically defined at the interface and ranges

from 0 (smooth) to 1 (rough). After computing all results, some

selected results of bearing capacity solutions and predicted failure

mechanisms are presented in this paper to portray the effects of

FIGURE 1
Problem definition of foundation on the rock mass.
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dimensionless HB strength parameters, the inclination angle, the

eccentric length, and the adhesion factor. Due to the complex

coupling effects among multi-design parameters, it is useful for

practical engineering to know the impact of each input parameter

on output results. An innovative machine learning regression

approach is established based on the Multivariate Adaptive

Regression splines (MARS) model to analysis the sensitivity of

the input parameters. Moreover, an empirical design equation for

predicting the bearing capacity factors is developed from the

proposed MARS model. These two things can be the theory

guideline and convenient tool for geotechnical practitioners. On

another hand, compare to using the numerical model which

requires a mount of money for software and a certain knowledge

for running computer software, the results from MARS in this

paper is so quick and useful for geotechnical practitioners.

Problem statement

Hoek and Brown (1980) established an empirical yield

criterion for jointed rock masses by employing triaxial

experimental results of intact and jointed rocks. Note that the

widely used model, the 2002 version, now includes the effect of

heavily fractured rocks (Hoek et al., 2002). The HB yield criterion

can be represented mathematically as a function of the major and

minor effective principal stresses (σ1 and σ3) in the following

equations:

−σ3 � − σ1 + σci( −mb
σ1
σci

+ s)
a

(1)

mb � mi exp(GSI − 100
28 − 14D

) (2)

s � exp(GSI − 100
9 − 3D

) (3)

a � 1
2

+ 1
6
(e−GSI

15 − e−
20
3 ) (4)

where σci is the strength of the intact rock mass obtained from a

uniaxial compression test; GSI is the Geological Strength Index;

mi is the yield parameter; D is the disturbance factor related to

impact damage and rock mass stress reduction. In this study,D is

set to be zero according to the assumption of undisturbed in-situ

rock masses. In addition, s, a, and mb are the empirical

parameters determined from GSI and D. Note that a is the

exponential term of the HB failure equation that GSI can

significantly influence. When GSI is less than 30, this

exponential term becomes significantly higher than

0.5 resulting in the difficulty in the optimization technique of

FELA with the HB yield criterion. To ensure the stable of the

solutions, several researchers have limited the lowest value of GSI

to be 30 which is also the selected range of GSI in this study

(GSI = 30–100).

This study has eight input variables: width of footing B, the

unit weight of rock mass γ, the intact rock strength σci, the

Geological Strength Index GSI, the yield parameter mi, load

inclination angle β, loading eccentric length e, and the

adhesion factor α. A dimensionless technique is employed in

the analysis to reduce these input parameters. As a result, for the

output of the ultimate force P, the bearing capacity factor (P/σciB)

for this problem is defined by normalizing the ultimate force by

the intact rock strength σci and the width of footing B. The

function between the output parameter (P/σciB) and all six

dimensionless input parameters can be stated as follows:

P

σciB
∝ f(γB

σci
,
e

B
, GSI,mi, β, α) (5)

where e/B is the dimensionless eccentricity and γB/σci is the

dimensionless strength. Mention that GSI, mi, β, and α are

inherently dimensionless variables that do not require

normalisation. The possible ranges of all these parameters are

summarised in Table 1. Note that these ranks are selected

according to the recommendations by Merifield et al. (2006),

Keawsawasvong et al. (2021), and Yang and Yin (2005).

Numerical methods

The new stability solutions to the bearing capacity of strip

footing on Hoek-Brown rock mass under inclination and

eccentric load are obtained utilizing the lower bound (LB) and

upper bound (UB) finite element limit analysis (FELA)

techniques (Sloan, 2013; Krishnan et al., 2019; Ukritchon

et al., 2019, 2020; Keawsawasvong and Ukritchon, 2021, 2022;

Kumar and Chauhan 2022). The computation is performed with

the OptumG2 finite element program (Krabbenhoft et al., 2015).

In OptumG2, upper bound (UB) analysis is implemented with a

six-noded triangle element such that each node contains two

undetermined velocities. The upper bound analysis incorporates

compatibility equations and velocity boundary conditions, which

can be used to optimize the limit load on foundations. Besides, a

three-noded triangular element with three undetermined stresses

is employed in the lower bound (LB) analysis. The lower bound

assessment aims to optimize the limit force of foundations by

TABLE 1 List of parametric values used for modelling the load on
footing and Hoek-Brown material.

Parameters Selected values

e/B 0.1, 0.2, 0.3, 0.4

β 45°, 60°, 75°, 90°

γB/σci 0, 0.001, 0.002, 0.01

mi 5, 10, 20, 35

GSI 30, 50, 80, 100

α 0.25, 0.5, 0.75, 1

Frontiers in Built Environment frontiersin.org03

Lai et al. 10.3389/fbuil.2022.962331

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.962331


applying equilibrium equations that impose stress boundary

conditions and no violation of the yield criteria. Note that

OptumG2 has been employed in several previous works to

perform various geotechnical stability problems (e.g.,

Keawsawasvong and Ukritchon, 2019a; Keawsawasvong and

Ukritchon, 2019b; Ukritchon and Keawsawasvong, 2019;

Keawsawasvong and Ukritchon, 2020; Srivastava and Chauhan

2020; Yodsomjai et al., 2021a; Yodsomjai et al., 2021b; Chauhan,

2021; Keawsawasvong and Lai, 2021; Keawsawasvong et al.,

2022b; Chauhan et al., 2022; Keawsawasvong et al., 2022c;

Eskandarinejad, 2022).

Figure 2 shows a computational model of a rigid strip footing

on a rock mass simulated using OptumG2. In FELA, a rigid plate

element is used to simulate a footing, while a triangular solid

element made of HB materials is used to simulate an underlying

rock. The roughness (or adhesion factor α) at the plate-rock

contact varies from 0.25 to 1. Note that the smooth case is not

considered since the limit force of a footing with α = 0 cannot be

computed because the smooth footing cannot resist the

horizontal force induced from the inclination angle. A single

point force P with an angle of inclination β and eccentricity e/B is

imparted on the footing.

Additionally, fan meshes are employed at the edges of

footings to acquire more precise bound solutions. The

ultimate force P is calculated using UB and LB FELA to

generate the outcome. The force is then normalized later to be

the bearing capacity factor (P/σciB) which is the dimensionless

output parameter in this study.

To improve the accuracy and correctness of the computed

bound solutions, the adaptive meshing technique based on the

Ciria et al. (2008) scheme is implemented in all numerical

studies. Accordingly, the number of elements is automatically

increased in the zones containing large plastic shear strains so

that the computational efficiency of all simulations is

significantly improved. After a few iteration steps, the

differences between UB and LB solutions become smaller,

thus yielding the tighter UB and LB solutions. In this study,

the adaptive meshing method is set up so that in the first stage, an

initial mesh of typically 3,000 elements is formed, followed by

three phases of mesh adaptivity to reach a final mesh of

5,000 elements. Figure 3 illustrates an example of typical

adaptive meshes after three iteration steps. It can be seen that

the number of meshes significantly increases in the zone

containing large plastic shear strains, which can show the slip

line of the footing failure.

Numerical results and discussion

Verification

It is crucial to validate the established numerical model

before undertaking any parametric studies. The bearing

capacity factors for the cases of γB/σci = 0, β = 90°, e/B = 0,

and α = 1 are used to compare the findings to those reported

earlier by Serrano et al. (2000) using the elasto-plastic

displacement-based finite element approach and Merifield

et al. (2006) using the FELA. Both upper bound (UB) and

lower bound (LB) solutions obtained from the present study

are averaged (AVG = (UB + LB)/2) and then used to make the

comparison. It can be seen from Table 2 that an excellent

agreement can be found between the present study and the

previously published solutions, with the percentage errors

being less than 5% for all values.

Failure mechanisms

The failure mechanisms of strip foundations on rock masses

considering the angle of inclination β, eccentricity e/B, and

adhesion factor α are presented next. It should be noted that

the UB and LB failure mechanisms are slightly different. As a

result, only UB cases are employed in this paper to portray the

impacts of all considered dimensionless parameters for brevity.

The shear dissipations for various cases of β are shown in Figure 4

in which β = 45, 60, and 90°; e/B = 0.3; GSI = 100;mi = 5; γB/σci =

0; and α = 1. From Figure 4, it is found that the influence of β on

the patterns of the failures is significant. A large value of β yields a

bigger size of failure. In addition, for the cases of β = 45° and 60°,

the failures are only extended to the right-hand side of the

footing, which is the direction of the inclined force. However,

the case of β = 90° shows that the failure is expanded uniformly

FIGURE 2
Numerical model used for FELA analysis of bearing on the rock with β = 60° and e/B = 0.3.
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into both sides since there is no inclination angle involved in this

case. The impact of the eccentricity ratio e/B is demonstrated in

Figure 5. Note that the selected cases shown in Figure 5 are β =

45°;GSI = 100;mi = 5; γB/σci = 0; α = 1; and e/B = 0.1, 0.2, 0.4. The

figure makes it abundantly evident that a larger value for e/B

results in a smaller rock mass contributing to the collapse. It

alludes to the notion that increasing eccentrical length reduces

load distribution to rock. As a result, the scenario with e/B =

0.4 has the least length of failure expansion. The effect of the

adhesion factor at the contact area between the footing and rock

FIGURE 3
Final adaptive meshes of bearing on the rock with β = 60° and e/B = 0.3.

FIGURE 4
Shear dissipations for various β with. e/B = 0.3, GSI = 100, mi = 5, γB/σci = 0, and α = 1. (A) β = 45° (B) β = 60° (C) β = 90°.
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is examined in Figure 6. The cases of α = 0.25, 0.5, and 1 are

employed in Figure 6, where the others are β = 90°; GSI = 100;

mi = 5; γB/σci = 0; e/B = 0.3. Clearly, an increase in α causes a

slightly larger failure zone extending below the footing. This

noted behaviour is due to the fact that when the roughness at the

interface increases, it increases the shear strength at the

contact area.

The changes in failure mechanisms due to the HB parameters

are investigated and discussed next. The impact of GSI on the

failure mechanisms is demonstrated in Figure 7 for the cases of

GSI = 50, 80, and 100,mi = 5, β = 90°, α = 1, γB/σci = 0, and e/B =

0.3. In addition, the effect of mi on the failure patterns is

illustrated in Figure 8, where the selected cases of mi = 5, 20,

and 35, GSI = 100, β = 90 °, α = 1, γB/σci = 0, and e/B = 0.3 are

carried out. The size of the failure zone is inversely proportional

TABLE 2 Bearing capacity comparison of a footing on rock mass with γB/σci = 0, β = 90°, e/B = 0, and α = 1.

GSI mi Present study Merifield et al. (2006) Serrano et al. (2000)

30 5 0.235 0.235 0.227

30 10 0.394 0.397 0.393

30 20 0.695 0.713 0.716

30 35 1.142 1.193 1.200

50 5 0.646 0.644 0.638

50 10 1.036 1.037 1.031

50 20 1.747 1.765 1.760

50 35 2.723 2.817 2.801

100 5 6.126 6.124 6.114

100 10 8.904 8.896 8.875

100 20 13.853 13.847 13.809

100 35 20.612 20.668 20.628

FIGURE 5
Shear dissipations for various e/Bwith. β=45°,GSI= 100,mi=
5, γB/σci = 0, and α = 1. (A) e/B = 0.1 (B) e/B = 0.2 (C) e/B = 0.4.

FIGURE 6
Shear dissipations for various αwith β = 90°,GSI = 100,mi= 5,
γB/σci = 0, and e/B = 0.3. (A) α = 0.25 (B) α = 0.5 (C) α = 1.
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to the GSI of the rock mass (refer to Figure 7). Conversely, an

increase in mi causes a bigger size of the failures, as shown in

Figure 8. The findings from Figures 7, 8 are similar to that in the

previous studies by Merifield et al. (2006), Keawsawasvong et al.

(2021), and Keawsawasvong (2021). It should be noted that, even

though an increase in mi or GSI can increase the value of the

bearing capacity factors, they have a different impact on the

failure pattern. A large value of GSI means rocks are intact rocks

with few discontinuities. Like soils with high values of strength

parameters, the size of the failure zone becomes smaller when the

internal strength of the rock becomes larger. However, the mi

parameter is the material constant in the HB model that basically

depends on the rock type (Hoek et al., 2002). Thus, the pattern of

failure influenced by mi is quite different from GSI since they

have different meanings. Finally, the influence of the

dimensionless strength γB/σci is shown in Figure 9. The

selected cases are γB/σci = 0, 0.001, and 0.002; β = 60°; GSI =

100;mi = 35; α = 1; e/B = 0.3. It should be noted that the practical

ranges of unit weight (γ) and uniaxial compressive strength (σci)

of rock masses are γ = 22–30 kN/m3 and σci = 0.25–250 MPa. As a

result, the range of γB/σci can be varied from 0 to 0.002. The case

of γB/σci = 0 corresponds to an extremely strong rock mass with a

relatively large uniaxial compressive strength. From Figure 9, a

small impact of the dimensionless strength on the failure

mechanisms can be observed. The size of the failure zone

does not change when the value of γB/σci increases or

decreases, as the range of γB/σci is quite small (γB/σci = 0–0.01).

Numerical results

The solutions of the bearing capacity factor (P/σciB) of strip

footings subjected to inclined and eccentric load and resting on

Hoek-Brown rock mass are presented next. In this study, the

average (AVG) solutions obtained from UB and LB results are

FIGURE 7
Shear dissipations for various GSI with β = 90°, α = 1, mi = 5,
γB/σci = 0, and e/B = 0.3. (A) GSI = 50 (B) GSI = 80 (C) GSI = 100.

FIGURE 8
Shear dissipations for variousmiwith β= 90 °,GSI = 100, α= 1,
γB/σci = 0, and e/B = 0.3. (A) mi = 5 (B) mi = 20 (C) mi = 35.
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used to express all numerical results. Since there are all

5,120 AVG solutions for the bearing capacity factors of this

problem with the consideration of six dimensionless parameters

as mentioned earlier, for brevity, only some of them are

employed to present the influences of six dimensionless

parameters on the bearing capacity factor. Nevertheless, in the

next section, all 5,120 AVG solutions will be used later as the set

of training data to develop the MARS model.

The effect of the roughness or adhesion factor (α) on the

bearing capacity factor (P/σciB) is shown in Figures 10A,B for the

cases of β = 60° and 75°, respectively. Note that the others are set

as GSI = 100; γB/σci = 0; mi = 5. The interface with fully rough

condition (α = 1) produces the strongest shear strength at the

contact area, which results in the highest value of P/σciB. For the

cases with small β, the relationship between α and P/σciB is a

continually increasing line. However, for the cases with large β,

the line of α and P/σciB relation increases from α = 0.25 to α = 0.5;

then, the value of P/σciB converges to the largest constant after α

being higher than 0.5. This is probably due to the reason that the

case with a large value of β induces a small value of lateral force.

As a result, when the value of α is in the range of

0.5–1 corresponding to the rough or fully rough interface, a

small lateral force has a low influence on the bearing capacity

factors so that the tendency of all lines in Figure 10B becomes a

straight line after α > 0.5.

The plots of P/σciB versus e/B are expressed in Figures 11A,B

for the cases of α = 0.75 and α = 1, respectively. In Figure 11, the

other parameters are fixed as GSI = 100; γB/σci = 0; mi = 5. The

relationship between P/σciB and e/B is nonlinear. Since a large

eccentric length generally causes a reduction in the efficiency of

load, that is, applied on the footing, an increase in e/B yields a

FIGURE 9
Shear dissipations for various α with β = 60 °, GSI = 100, mi =
35, α = 1, and e/B = 0.3. (A) γB/σci = 0 (B) γB/σci = 0.001 (C) γB/σci =
0.002.

FIGURE 10
Influence of adhesion factor, α on the stability solutions of
bearing capacity factor on the rockmass (GSI= 100, γB/σci=0, and
mi = 5). (A) β = 60° (B) β = 75°.
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decrease in P/σciB, as can be observed in Figure 11. The plots

showing the relationship between β and P/σciB are shown in

Figures 12A,B for the cases of e/B = 0 and e/B = 0.4, respectively.

Also, the other parameters used in Figure 12 are GSI = 100, γB/

σci = 0, and mi = 5. Clearly, the bearing capacity factor for the

footing with β = 90° is the largest since the footing is subjected to

vertical force only. When β becomes smaller (less than 90°), the

bearing capacity factor also becomes lower owing to the

horizontal force induced from the inclined angle.

Figures 13–15 demonstrate the effects of Hoek-Brown

materials, including GSI, mi, and γB/σci, on the bearing

capacity factor P/σciB, respectively. Figures 13A,B present the

impact of GSI on the bearing capacity factor P/σciB for the cases

of γB/σci = 0 and 0.01, β = 45°, e/B = 0, and α = 1. An exponential

relationship between P/σciB and GSI can be observed, where an

increase in GSI causes a nonlinear increase in P/σciB. This

exponentially increasing curve is caused by the exponential

function in the HB model as expressed in Eqs 2–4. Also, a

higher value of GSI corresponding to highly undisturbed rock

mass gives rise to a stronger strength of rock, resulting in a larger

bearing capacity factor, as shown in Figure 13. A relationship

between the mi parameter and the bearing capacity factor P/σciB

is shown in Figure 14. The plots correspond to the cases of GSI =

30 and 50, β = 45°, e/B = 0, and α = 1. Since the mi parameter

FIGURE 11
Influence of eccentricity, e/B on the stability solutions of
bearing capacity factor on the rockmass (GSI= 100, γB/σci=0, and
mi = 5). (A) α = 0.75 (B) α = 1.

FIGURE 12
Influence of load inclination, β on the stability solutions of
bearing capacity factor on the rockmass (GSI = 100, γB/σci=0, and
mi = 5). (A) e/B = 0 (B) e/B = 0.4.
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depends upon the mineralogy, composition, and grain size of the

intact rock in a physical meaning, an increase in mi yields an

increase in rock strength. Thus, the relationship between P/σciB

and mi is linearly correlated. It should also be noted that each

contour line in Figure 14 corresponds to the different values of

γB/σci. It is found that the effect of γB/σci is quite insignificant so

that all contour lines overlap each other. This issue can be

confirmed in Figure 15 showing the influence of γB/σci on P/

σciB for the cases GSI = 30 and 100, β = 45°, e/B = 0, and mi = 5.

Indeed, an increase in rock unit weight causes an increase in rock

strength. However, the effect of γB/σci is quite small since its

range is narrow, as described earlier. From Figures 15, 16, it can

be concluded that the impact of γB/σci is negligible for the

considered range of γB/σci = 0 to 0.01 in this study.

MARS model

By the parametric study in the above part, it is recognized

that considering many input parameters (i.e., six parameters in

the present study) may affect the effectiveness of practical

engineering in designing work. So, it becomes imperative to

suggest some theoretical guidelines and simple tools for

practitioners. For instance, considers the sensitivity of each

FIGURE 13
Influence of GSI on the stability solutions of bearing capacity
factor on the rock mass (β = 45°, e/B = 0, and α = 1). (A) γB/σci =
0 (B) γB/σci = 0.01.

FIGURE 14
Influence of mi on the stability solutions of bearing capacity
factor on the rockmass (β = 45°, e/B = 0, and α= 1). (A)GSI = 30 (B)
GSI = 100.
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parameter on the output results or an empirical equation that

shows a complex relationship between input and output

parameters. These things can be reduced the calculation time

for numerical modelling and selecting the impact parameters of

practitioners. Fortunately, together with the development of

artificial intelligence, machine learning is applied in data

analysis in many scientific fields, including geotechnical

problems, which have significant issues in calculating data

(e.g., Fernández-Cabán et al., 2018; Ghahramani et al., 2020;

Bamer et al., 2021; Wu and Snaiki, 2022). Some machine learning

methods, which can be considered as the successful models in

geotechnical problems, are artificial neural networks ~ ANN,

extreme learning machines ~ ELM, support vector regression ~

SVR, Gaussian process regression ~ GPR, and stochastic gradient

boosting trees ~ SGBT (e.g., Yuan et al., 2021; Keawsawasvong

et al., 2022c). Nevertheless, Multivariate Adaptive Regression

Splines (MARS), a curve-based machine learning method, is

quite an efficient method compared to other methods (e.g.,

Wu and Fan, 2019; Raja and Shukla, 2021; Shiau et al., 2022).

In the present study, MARS is applied to the sensitivity analysis of

the dimensionless input parameter on the output results of the

bearing capacity factor (P/σciB). On the other hand, a correlation

equation that shows the complex relationship between the input

dimensionless parameters and outcomes of the bearing capacity

factor (P/σciB) is also an effective tool for practical engineering.

Multivariate Adaptive Regression Splines (MARS) is a

nonlinear regression method. As shown in Figure 16, the

MARS model concept is meshing the complex nonlinear

relationship between the input and output variables into many

simple linear relationships. Furthermore, MARS does not need

any assumption between input and output variables. MARS is

suitable for high-dimensional issues that contain many input and

output variables (e.g., Zheng et al., 2019b; Zhang et al., 2019;

Jearsiripongkul et al., 2022; Lai et al., 2022; Sirimontree et al.,

2022; Yodsomjai et al., 2022).

For a brief description, MARS algorithm includes 2 steps,

as shown in Figure 17. Firstly, MARS is partitioned data into

many data groups suitable for the linear regression model. The

boundary of partition data, the pair of Knots as shown in

Figure 16, is determined based on optimizing the model

performance and fitting accuracy. The regression lines are

mathematically expressed by basic functions, as shown in

Eq. 6.

BF � max (0, x − t) � {x − t if x> t
0 otherwise

(6)

FIGURE 15
Influence of γB/σci on the stability solutions of bearing
capacity factor on the rock mass (β = 45°, e/B = 0, and mi = 5). (A)
GSI = 30 (B) GSI = 100.

FIGURE 16
The concept of MARS model.
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where x is an input variable and t is a threshold value. This first

step can be to create an over-fitted model using all input

parameters. On the other hand, this step is often called as a

forward step. The second step (or called “backward”) applies a

pruning algorithm based on the Generalized Cross-Validation

(GCV) value to eliminate the least effective terms to attain the

FIGURE 17
MARS algorithm.

FIGURE 18
Influence of basic function on MARS performance. FIGURE 19

Variation of Relative Important Index, RII on various rockmass
parameters.
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best model (Zhang, 2019; Wang et al., 2020). The GCV value can

be determined by Eq. 7.

GCV � RMSE

[1 − (N − dN)/R]2 (7)

where RMSE is the root mean square error for the training

dataset,N is the number of basic functions, d is the penalty factor,

and R is the number of data points. The detail of MARS can be

seen in Zhang (2019).

In the sensitivity analysis, the importance of each input

variable on the output variable is measured by the Relative

Important Index (RII) (Steinberg et al., 1999; Gan et al.,

2014). MARS determined the RII value by Eq. 8

RII(i) � Δg(i)
max{Δg(i),Δg(2),Δg(3), ....,Δg(n)} (8)

where Δg is the increase in GCV between the over-fitted and

pruned models and when ith parameter is eliminated. The higher

of Δg, the more significant is the deleted parameter.

MARS proposes a correlation function obtained by merging

all basic functions (BFs) to express the complex relationship

between input and output variables mathematically. This

function is expressed in Eq. 9

f(x) � ao +∑N
n�1

angn(X) (9)

where a0 is the constant, N is the number of BFs, gn is the n
th BF,

and an is the coefficient of gn.

TABLE 3 Basic functions and correlation equation obtained from the MARS analysis.

BF Equation BF Equation BF Equation

BF1 max (0, GSI—80) BF18 max (0, 0.5—α) × BF15 BF35 max (0, 0.1—e/B) × BF10

BF2 max (0, 80—GSI) BF19 max (0, β—45) × BF15 BF36 max (0, GSI—50) × BF8

BF3 max (0, β—60) × BF1 BF20 max (0, e/B– 0.1) × BF19 BF37 max (0, 50—GSI) × BF8

BF4 max (0, 60—β) × BF1 BF21 max (0, γB/σci—0.002) × 10–10 BF38 max (0, mi—20) × BF10

BF5 max (0, mi—5) × BF3 BF22 max (0, e/B– 0.2) × BF3 BF39 max (0, 20—mi) × BF10

BF6 max (0, e/B– 0.1) × BF5 BF23 max (0, 0.2—e/B) × BF3 BF40 max (0, β—75) × BF15

BF7 max (0, γB/σci—0.001) × 10–10 BF24 max (0, β—75) × BF18 BF41 max (0, 75—β) × BF15

BF8 max (0, e/B– 0.1) BF25 max (0, 75—β) × BF18 BF42 max (0, e/B—0.1) × BF40

BF10 max (0, β—60) BF26 max (0, e/B—0.1) × BF18 BF43 max (0, 0.1—e/B) × BF40

BF11 max (0, 60—β) BF27 max (0, 0.1—e/B) × BF18 BF44 max (0, α—0.75) × BF41

BF12 max (0, mi—5) BF28 max (0, β—75) × BF26 BF45 max (0, 0.75—α) × BF41

BF13 max (0, β—60) × BF2 BF29 max (0, 75—β) × BF26 BF46 max (0, e/B—0.1) × BF31

BF14 max (0, 60—β) × BF2 BF31 max (0, 0.75—α) × BF1 BF48 max (0, α—0.5)

BF15 max (0, GSI—50) × BF12 BF32 max (0, β—60) × BF31 BF49 max (0, 0.5—α)

BF16 max (0, 50—GSI) × BF12 BF33 max (0, 60—β) × BF31 BF50 max (0, mi—5) × BF8

BF17 max (0, α—0.5) × BF15 BF34 max (0, e/B—0.1) × BF10

P/σciB = 0.508708 + (0.0778788 × BF1)—(0.0107436 × BF2) + (0.00173605 × BF3)—(0.00305416 × BF4) + (0.000183561 × BF5)—(0.000319477 × BF6) + (0.0001 × BF7) + (0.0634328 ×

BF10)—(0.013729 × BF11) + (0.0148772 × BF12)—(0.000866225 × BF13) + (0.000147591 × BF14) + (0.00081723 × BF15)—(0.00031283 × BF16)—(0.000283142 × BF17)—(0.0146255 ×

BF18) + (0.00012414 × BF19)—(0.000409864 × BF20) + (0.0002 × BF21)—(0.0156994 × BF22) + (0.0138337 × BF23) + (0.00107819 × BF24) + (0.000570285 × BF25) + (0.0459211 ×

BF26)—(0.00442648 × BF27)—(0.00348082 × BF28)—(0.00139517 × BF29)—(0.193336 × BF31) + (0.00475476 × BF32) + (0.00858671 × BF33)—(0.0826643 × BF34) + (0.0652835 ×

BF35)—(0.0496545 × BF36) + (0.0584928 × BF37) + (0.000497006 × BF38)—(0.00103991 × BF39)—(0.000106445 × BF40) + (0.000276057 × BF42) + (0.00126849 × BF43) +

(0.0000413328 × BF44)—(0.00010996 × BF45) + (0.284044 × BF46) + (0.074536 × BF48)—(0.545053 × BF49)—(0.0504621 × BF50).

FIGURE 20
Comparison between bearing capacity factors from
proposed equation and numerical results.
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Sensitive analysis and correlation
function from MARS model

In the present study, all numerical results of bearing capacity

factors and respective input dimensionless parameters are used

as the training data in the MARS model. To select the optimal

MARS model, the number of basic functions is varied. The

performance of the MARS model is examined through the

coefficient of determination (R2 value) and mean squared

error (MSE). The R2 value varied from 0 to 1. The R2 closed

to 1 means that predicted results and the target value is well

suited. While the lower MSE value is, the better model can be

obtained.

The impact of the number of fundamental functions on the

R2 andMSE values is depicted in Figure 18. It can be seen that the

number of basic function increase, and the value of MSE value

decreases while R2 closes to 1. The value of MSE and R2 become

stable when the number of basic functions is larger than 45.

Hence, the MARS model with 50 basic functions can be

considered as a well model for the current problem and can

be selected for further analysis.

The sensitivity analysis result is shown in Figure 19,

where the relative important index RII of all

dimensionless input parameters is presented. The RII of

100% means that the respective parameter is the most

important. As a result, the geological strength index GSI is

the most important one, while the inclination angle β, the

yield parameter mi, the dimensionless eccentricity loading e/

B, the adhesion factor α, and the dimensionless strength γB/

σci are lower-ranked ones with RII of 84.3, 62.07, 58.17, 24.51,

and 3%, respectively.

On another side, the basic functions of the analysis MARS

model and the correlation equation between the dimensionless

input and output variables are shown in Table 3. To verify the

proposed correlation equation, the comparison between

predicted and numerical values of the bearing capacity factor

(P/σciB) is prepared in Figure 20. It can be seen that a good

agreement between the results from the proposed correlation

equation and numerical is obtained with the value of R2 =

99.33%. This means that the proposed correlation equation can

be an effective tool for practical engineering in predicting the

bearing capacity of a strip footing on rock mass under inclined

and eccentric loading. It is noted that, although the correlation

equation shown in Table 3 seems to be complex, it can be easy to

put as Marco function in excel. The authors prepare a simple

code for practical engineering shown in Appendix 1.

Conclusion

The FELA solutions of the bearing capacity factors for

strip footings on Hoek-Brown rock masses subjected to

inclined and eccentric loading are presented in this paper.

The average bound solutions for this problem can be

represented as a function of six dimensionless parameters,

including the geological strength index (GSI), rock mass yield

parameter mi, the dimensionless strength (γB/σci), the

adhesion factor (α), the inclined angle (β), and the

eccentricity of load (e/B). The results show that all

parameters significantly impact the bearing capacity factor

(P/σciB) except the dimensionless strength. The failure

mechanisms influenced by each dimensionless input

parameter are investigated and discussed in detail. For

practical engineers, it is time-consuming to develop the

algorithm of FELA with the HB failure criterion for

computing the bearing capacity factor. To develop an

optimal machine learning model based on the MARS

approach, 5,120 FELA solutions are then carried out as a

training data set in MARS. A closed-form equation for

obtaining the in the current study is then developed based

on the scheme of MARS. The predicted solutions and those

from FELA are compared to show the accuracy of the closed-

form equation. The sensitivity analysis of six dimensionless

variables is also carried out by using the MARS model. In the

current study, this proposed MARS equation can be used to

predict the bearing capacity factor for strip footings subjected

to inclined and eccentric loading and resting on rock masses

by practical engineers.
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Appendix A: Marco function in
microsoft excel

Function BCF(GSI, mi, Gama, beta, E_B, anpha)

corresponding to (GSI, mi, γB/σci, β, e/B, α), respectively.

BF1 = Max (0, GSI—80)

BF2 = Max (0, 80—GSI)

BF3 = Max (0, beta—60) p BF1

BF4 = Max (0, 60—beta) p BF1

BF5 = Max (0, mi—5) p BF3

BF6 = Max (0, e_B—0.1) p BF5

BF8 = Max (0, e_B—0.1)

BF10 = Max (0, beta—60)

BF11 = Max (0, 60—beta)

BF12 = Max (0, mi—5)

BF13 = Max (0, beta—60) p BF2

BF14 = Max (0, 60—beta) p BF2

BF15 = Max (0, GSI—50) p BF12

BF16 = Max (0, 50—GSI) p BF12

BF17 = Max (0, anpha—0.5) p BF15

BF18 = Max (0, 0.5—anpha) p BF15

BF19 = Max (0, beta—45) p BF15

BF20 = Max (0, e_B—0.1) p BF19

BF22 = Max (0, e_B—0.2) p BF3

BF23 = Max (0, 0.2—e_B) p BF3

BF24 = Max (0, beta—75) p BF18

BF25 = Max (0, 75—beta) p BF18

BF26 = Max (0, e_B—0.1) p BF18

BF27 = Max (0, 0.1—e_B) p BF18

BF28 = Max (0, beta—75) p BF26

BF29 = Max (0, 75—beta) p BF26

BF31 = Max (0, 0.75—anpha) p BF1

BF32 = Max (0, beta - 60) p BF31

BF33 = Max (0, 60—beta) p BF31

BF34 = Max (0, e_B—0.1) p BF10

BF35 = Max (0, 0.1—e_B) p BF10

BF36 = Max (0, GSI—50) p BF8

BF37 = Max (0, 50—GSI) p BF8

BF38 = Max (0, mi—20) p BF10

BF39 = Max (0, 20—mi) p BF10

BF40 = Max (0, beta—75) p BF15

BF41 = Max (0, 75—beta) p BF15

BF42 = Max (0, e_B—0.1) p BF40

BF43 = Max (0, 0.1—e_B) p BF40

BF44 = Max (0, anpha—0.75) p BF41

BF45 = Max (0, 0.75—anpha) p BF41

BF46 = Max (0, e_B—0.1) p BF31

BF48 = Max (0, anpha—0.5)

BF49 = Max (0, 0.5—anpha)

BF50 = Max (0, mi—5) p BF8

BCF = 0.508708 + 0.0778788 p BF1—0.0107436 p BF2 +

0.00173605 p BF3—0.00305416 p BF4 + 0.000183561 p

BF5—0.000319477 p BF6 + 0.0634328 p BF10–0.013729 p BF11

+ 0.0148772 p BF12–0.000866225 p BF13 + 0.000147591 p BF14 +

0.00081723 p BF15–0.00031283 p BF16–0.000283142 p

BF17–0.0146255 p BF18 + 0.00012414 p BF19–0.000409864 p

BF20–0.0156994 p BF22 + 0.0138337 p BF23 + 0.00107819 p

BF24 + 0.000570285 p BF25 + 0.0459211 p BF26–0.00442648 p

BF27–0.00348082 p BF28–0.00139517 p BF29–0.193336 p BF31 +

0.00475476 p BF32 + 0.00858671 p BF33–0.0826643 p BF34 +

0.0652835 p BF35–0.0496545 p BF36 + 0.0584928 p BF37 +

0.000497006 p BF38–0.00103991 p BF39–0.000106445 p BF40

+ 0.000276057 p BF42 + 0.00126849 p BF43 + 0.0000413328 p

BF44–0.00010996 p BF45 + 0.284044 p BF46 + 0.074536 p

BF48–0.545053 p BF49–0.0504621 p BF50.
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