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Cities are at the forefront of climate change action and planning for futures that

are concomitantly more resilient and equitable, making local goals imperative

for global sustainability. Under the multiple challenges of changing climatic,

ecological and socio-economic conditions, cities need the means to meet

these goals. We know cities are and will continue to be points of concentrated

and diverse populations, socioeconomic vulnerability, amplified exposure,

transformed ecosystems and are responsible for the bulk of the world’s

greenhouse gas emissions. Yet, much is also unknown and intrinsically

uncertain about urban futures: there is a range of potential plausible futures

which have differing implications for both potential mitigation and adaptation

actions. To better assess these plausible futures, the “global change” research

community developed a framework including scenarios that are applicable for

global and regional policy, entitled the Shared Socio-economic Pathways (SSPs)

and scenarios exploring future emissions that will drive climate change, entitled

Representative Concentration Pathways (RCPs). Importantly, this global scale

framework does not include specific city-level perspectives or data at the spatial

scales necessary to address questions of local relevance. While the SSPs address

many of the key population and socioeconomic drivers of climate change, they

do not address important concerns that are particularly relevant to cities, such

as racial justice, ecosystem change or migration. Nevertheless, city-level

impacts will evolve, in part, as a function of the global scale change

characterized by the SSPs, and in part based on demographic and social

processes already underway. As such, applying a modification of this

framework to cities has the potential to help limit local climate impacts, and

create a more resilient, equitable city. To address these needs and respond to
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city and regional stakeholders, we propose a framework for science-based

narratives and quantitative projections for cities andmetropolitan areas, such as

Greater New York City. In this paper, we review a wide-range of existing

approaches to generate estimates of future populations and identify their

vulnerabilities to climate-change hazards, ranging from subnational

population projections or the spatially-explicit allocation of populations

linked to SSPs for the US and selected cities, city-specific population

forecasting without climate considerations, and participatory approaches to

future scenario development and fine-scale, within-city land use change

models. By showcasing the strengths and limitations of various approaches

and modeling efforts, their spatial and temporal scales, and thematic breadth,

we propose a novel framework that leverages state-of-the art quantitative

approaches and couples it with stakeholder engagement that can help cities

plan equitably under uncertainty.
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1 Introduction

Situated on at most 3% of the world’s land area (MacManus

et al., 2021), cities, already home to the majority of the world’s

population, are expected to be the location of most of the world’s

future population growth (UN, 2018). They are also home to

concentrated and diverse populations of people, as well as

frequently located in critical hot spots for threatened species

(Ives et al., 2016; Simkin et al., 2022). Given that cities are

disproportionately located in coastal areas (McGranahan et al.,

2007) and subject to warmer “heat island” effects (Oke et al.,

2017), cities are particularly susceptible to multiple impacts of

climate change (Depietri et al., 2018). Almost two billion urban

residents globally are currently affected by extreme heat, with the

urban poor inequitably impacted (Tuholske et al., 2021), and

sixty percent of those living in the low elevation coastal zone at

risk of storms and seaward hazards live in cities (i.e., about 14%

of the global population) (MacManus et al., 2021). Due to their

physical location, population composition, built-up density, and

level of activity, urban areas are characterized by socioeconomic

vulnerability, amplified exposure, and are responsible for the

bulk of the world’s greenhouse gas emissions (Seto et al., 2014).

Cities, because they tend to have their own means of local

governance, are also uniquely situated to address the impacts

of climate change at the local level, including matters ranging

from housing and public health to biodiversity and equity

(Lopez-Cantu et al., 2020). As such, cities are at the forefront

of climate change action and planning for futures that are more

resilient and equitable, making local goals imperative for global

sustainability. Under the challenges of changing climatic and

socio-economic conditions, as well as corresponding changes to

urban ecosystems and the surrounding natural landscapes (Ives

et al., 2016; Planchuelo et al., 2019; Adem Esmail et al., 2022;

Simkin et al., 2022), cities are pressed to meet these goals. Yet,

much is intrinsically uncertain about urban futures: there is a

range of plausible futures which have differing implications for

both currently planned and potential future mitigation and

adaptation actions.

To explore and assess these plausible futures, the global

change research community developed the Shared Socio-

economic Pathways (SSPs), a framework including scenarios

that are applicable for global and regional policy (O’Neill

et al., 2014), and the Representative Concentration Pathways

(RCPs), scenarios exploring future emissions that will drive

climate change (Riahi et al., 2017). Notably, specific city-level

perspectives or data at the spatial scales necessary to address

questions of local relevance are missing from the global scale

framework (O’Neill et al., 2020). While the SSPs address many of

the key population and socioeconomic drivers of climate change,

they do not address important concerns that are particularly

relevant to cities, such as racial justice or migration. Nevertheless,

city-level impacts will evolve, in part, as a function of the global

scale change characterized by the SSPs, and in part based on

demographic and social processes already underway. Thus,

applying a modification of this framework to cities has the

potential to help limit local climate impacts and create a more

resilient, equitable city.

Potential futures will be driven by interconnected climate

change, the socio-economic and demographic characteristics of

the population, and structural racism that underpins current and

future inequities and will lead to themost significant implications

for cities’most vulnerable populations. In 2021, the EPA released

a report on climate change and social vulnerability which

analyzed climate change impacts in six categories: air quality

and health, extreme temperature and health, extreme

temperature and labor, coastal flooding and traffic, coastal

flooding and property, and inland flooding and property

(EPA, 2021). This report demonstrated that minorities are
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most likely to live in areas that are projected to have the highest

levels of climate change impact. For example, in comparison to

others, Blacks and African Americans are 40% more likely to live

in areas that have the highest projected increases in climate-

driven mortality rates due to extreme temperature changes;

Hispanics and Latinos are 43% more likely to live in areas

that have the highest projected losses of hours of labor in

“weather-exposed industries” (such as agriculture and

construction) due to extreme heat; and, American Indians and

Alaska Natives are 48% more likely to live in areas that have the

highest projected percentage of land underwater due to sea level

rise. Disparities are also predictable across other harms. Minority

communities are more likely to have higher exposure to air

pollution than other groups (Tessum et al., 2021). In comparison

to the average American, African Americans are 75% more likely

to live in “fence-line” communities—“communities that are next

to a company, industrial, or service facility and are directly

affected in some way by the facility’s operation (e.g., noise,

odor, traffic, and chemical emissions)” (NAACP, 2017).

Studies of urban areas across the US show that tree canopy is

also unevenly distributed with low-income areas having

significantly lower tree cover than high-income areas, and that

these associations are correlated with housing segregation (Locke

et al., 2021; Zhou et al., 2021) and differential heat exposure

(McDonald et al., 2021). Vulnerabilities are neither solely place-

based nor only associated with race and ethnicity, but are salient

across a variety of dimensions. For example, the NRDC found

that violations of the Safe Drinking Water Act (which guarantees

access to clear and drinkable water for all Americans) were

increased in areas predominantly composed of communities

of color, low-income individuals, non-native English speakers,

crowded housing conditions, and areas with less access to

transportation (NRDC, 2019).

The inequitable impacts of climate change as well as the

uneven distribution of environmental benefits and burdens

(such as access to nature, tree canopy, placement of

undesirable land uses and polluting facilities) are evident

within cities (Rohat et al., 2021). For example, in New York

City (NYC), heat waves disproportionately cause blackouts in

low-income neighborhoods (Con Edison Media Relations 2019;

Ortiz et al., 2022) and non-Hispanic Blacks living in rent-

assisted housing face higher odds of mortality during warm

seasons than other New Yorkers (Madrigano et al., 2015).

Disparities persist across hazards (Foster et al., 2019).

Lieberman-Cribbin et al. (2021) found that higher social

vulnerability households were more likely to be exposed to

flooding associated with Superstorm Sandy and were more

likely to be lower income or older. Similarly, New Yorkers in

low-income neighborhoods have, on average, 21% less access to

public parks than residents in high-income neighborhoods and

neighborhoods that are predominantly home to communities

of color have, on average, 33% less access to public parks than

predominantly White areas (the national average is 42% less

access for low-income neighborhoods and 44% less access for

communities of color) (Trust for Public Land, 2021). These

disparities in access to ecosystem services today arise due to

systemic inequities, for example through the legacy of redlining

and housing discrimination in New York City (Herreros-Cantis

and McPhearson, 2021) and throughout many cities in the US

(Hoffman et al., 2020; Schell et al., 2020). Understanding the

past is the first necessary step in projecting the future (Smith

et al., 2006; Hamstead, 2021a).

Given that these disparities exist in the present day, what

might they be like in the future and how will these conditions

impact population vulnerability under different climate and

demographic regimes? City-specific or even state-level

demographic projections to date tend to be undertaken at

spatial and temporal scales traditionally much shorter and

more coarse than would be useful for planning with respect to

climate change vulnerability (Jones and O’Neill, 2013). Further,

local-scale forecasts do not typically have thematic breadth—that

is, they focus on forecasting population by age and sex but not by

race or ethnic groups or other characteristics associated with

social or economic variation or vulnerability (Wilson et al., 2022).

These shortcomings arise in part from (and are exacerbated by)

disciplinary traditions which have been important in developing

rigorous and different types of methods for population, land-use

and climate projections, but they have concomitantly contributed

to creating methodological silos that fail to respond to the needs

of urban places in preparing systematically and equitably for

their futures (Balk et al., 2021).

The objective of this paper is to develop a framework for

multi-scale and multi-disciplinary modeling, which couples

population and land use projections for cities and their

surroundings using a climate and racial justice lens, with New

York City as a case study. This work has not been performed to

date, but is necessary for local climate adaptation planning. The

framework builds on prior work that forecasts population futures

in a demographically informed way, including efforts to model

future population consistent with climate change outcomes—but

also takes into account stakeholder engagement and the

complexities that are apparent in cities regarding spatial

distributions of resources (e.g., infrastructure and nature) and

spatial distributions of vulnerable communities and populations.

By proposing an integrated framework, we aim to close gaps in

spatial, temporal and thematic coverage that heretofore exist

from more discipline-specific approaches (Mohtat and Khirfan,

2021).

In order to develop this new framework, we address three

intertwined research questions: 1) What are the key prevailing

concepts for modeling (urban and total) population futures for

the US and selected cities and what are their strengths and

limitations in the context of long-term local applications that

inform mitigation and adaptation responses to alternative

climate scenarios?; 2) What are the strengths and limitations

of current fine-scale, spatially-explicit, social-ecologically

Frontiers in Built Environment frontiersin.org03

Balk et al. 10.3389/fbuil.2022.949433

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


nuanced, and participatory approaches to modeling urban

futures in the context of long-term local applications that

inform mitigation and adaptation responses to alternative

climate scenarios?; and 3) How can the methodological

strengths and associated data of various discipline-specific

approaches (with ever-improving spatial resolution of an

expansive range of socioeconomic variables), be leveraged and

integrated to create socio-demographically and social-

ecologically informed futures for large metropolitan areas,

such as greater New York City, in order to help local and

regional stakeholders adapt to and mitigate against future

climate change with a social equity lens?

This paper is organized as follows: We begin with a short

background to the two traditions—demographic and scenario-

based shared socioeconomic pathways (SSP)—to modeling the

future. Section three lays out the material and methods for this

study, including a discussion of the criteria for our review and the

New York City case study. Section four presents a review of the

strengths and limitations of various approaches and modeling

efforts, their spatial and temporal scales, and thematic breadth.

Section four ends with a proposed novel framework that

leverages state-of-the art quantitative approaches and couples

it with stakeholder engagement that can help cities plan equitably

under uncertainty. The paper concludes in the fifth section with a

discussion of the application and limitations of the framework,

paying particular attention to equity considerations, and

generalization to cities and metro regions throughout the US.

2 Background

Understanding population futures and socioeconomic

pathways associated with different climate scenarios has

largely been shaped by advancements in disciplinary thinking,

and has occurred at a macro-scale (such as global or national

units). In this section, we provide a short summary on population

projections and scenarios that act as a starting point for scaling

work to cities and other downscaled (or local) applications,

which we discuss and build upon in constructing our

framework in later sections.

2.1 Population projections: Understanding
their strengths and limitations in the
context of long-term local applications,
and therefore with respect to alternative
climate scenarios

Population projections provide fundamental demographic

information for socioeconomic and environmental outlooks at

global, national and subnational levels. Different methods,

approaches and models have been developed to project

changes in population sizes, compositions, and spatial

distributions, to cover a range of population trends and

produce a set of plausible demographic futures. The most

frequently used are those that implement a cohort-component

model (Burch, 2018). The cohort-component method is

considered the gold-standard for national-level projections

because it is robust (i.e., replicable and verifiable), has simple

data requirements (which have improved substantially in recent

decades), and is transparent to a wide range of users. This

method is based on information about the current stock (size

and age composition) and on various assumptions on

demographic flows or components of change—fertility,

mortality, and migration—rather than simply extrapolating

trends in population counts over time. The components of

change, particularly those associated with natural increase

(i.e., births minus deaths), and related changes in age-

structure, are more predictable based on past records than

simple population counts. More importantly, the cohort-

component model provides information on the changes in not

only the total population size but also those in the composition

(age, sex, and other characteristics such as race and ethnicity) of

the population. Therefore, the cohort-component model has

been applied to make short-, medium-, and long-term

population projections at the global, national, as well as

subnational levels.

Applying the cohort-component method for projecting

population changes at a city or local level often encounters

the problem of data limitation, especially when the projection

includes population characteristics (or demographic traits) other

than just age and sex. With increases in the number of

demographic traits and spatial resolution, the data

requirements (that is, having information on base year

population and changes in fertility, mortality, and migration)

also increase. While demographic forecasts allow for

understanding future population composition, for example, by

race and ethnicity or foreign-born status, using the cohort

component method requires knowing fertility, mortality, and

migration rates for each subpopulation group. As this data

requirement is arduous, it can mostly be implemented at the

national-level only (Vespa et al., 2018); few cities or states can

produce such projections, with California being a notable

exception (California State Department of Finance, 2020).

Similarly, while fertility rates are reported in the decennial

census data at the county-scale, sub-city data for fertility and

migration has only recently been introduced as a variable in the

micro-data series of the US Census Bureau’s American

Community Survey (ACS) (at the tract-level). County-level

mortality data for the US is reported by the Centers for

Disease Control (CDC) and for NYC is reported by New

York City Department of Health and Mental Hygiene

(DOHMH) for sub-city units (such as modified ZIP codes).

Given the smaller sample sizes in the ACS data series (than in

the decennial census), while the ACS data are suitable for

national, state-level and county-level projections (in most
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cases), they are unlikely to be suitable for application at the sub-

county level. This is the reason that demographers and

geographers develop additional methods for small area

population projections, such as the Hamilton-Perry Method (a

simplified cohort-component model, Hamilton and Perry, 1962)

and methods that proportionally allocate projected city-level

population to sub-city districts based on the current

population distributions (Smith et al., 2006). Such approaches

may be adequate for the short-term (Swanson and Tayman,

2017); but these typically cannot capture the changes of

population across sub-city districts in the long run. As a

result, population projections are typically conducted for small

areas for a short period of no more than 40 or 50 years, and in

contrast to national or global estimates, with only one medium

scenario. This has been accepted as a standard for state and local

projections because most are undertaken for shorter-term

planning objectives (for which there is greater certainty) and

have not taken into account the long-term impacts of climate

change.

2.2 Scenarios and narratives for
envisioning the future: From global to
more local

Scenarios are effective tools to analyze future trends while

addressing uncertainties (Peterson et al., 2003; Schoemaker 1991;

van Vliet and Kok, 2015; van’t Klooster and van Asselt, 2011).

Several different approaches to scenario development exist (Van

Notten et al., 2003; Borjeson et al., 2006). While there is no

universal scenario typology, literature reviews often include three

types: predictive, exploratory, and backcasting (Borjeson et al.,

2006). Predictive scenarios forecast how the future will unfold,

based on preconceived development patterns. Exploratory

scenarios sketch plausible futures, showing the implications of

change in external drivers. Though not necessarily for prediction,

they focus on what may happen if certain drivers are present,

ultimately exploring uncertainty in outcomes and driving forces

(Van Der Heijden 2000; Shearer 2005). Typically, exploratory

projects include a set of scenarios constructed to cover a wide

scope of plausible developments over a very long-time span. The

third scenario type, backcasting, starts with the end state and

works backwards, hence the name (Lovins 1977; Robinson 1982;

Quist 2007). Backcasted scenarios often include normative

approaches to developing a transformed future end state of

the system, as well as the pathways needed to achieve the

desired end state. In this review, we describe a range of

scenarios and narratives, and their usages for city and

metropolitan applications.

Though not much more than a decade old, there is already a

well-developed framework for exploratory climate change and

socio-economic development scenarios (Moss et al., 2008). This

framework deploys, at least, two sets of data. The first set is

defined as representative concentration pathways (RCPs), which

embody climate changes through projecting different levels of

greenhouse gas (GHG) concentrations in the atmosphere to

2100. The RCPs represent trajectories for emissions that

subsequently affect the radiative forcing of the climate system

(Van Vuuren et al., 2014). A variety of RCPs have been developed

that span a wide range of emissions levels (numbered from 1.9 to

8.5)1. RCP8.5 is sometimes called the reference scenario and by

the end of the century results in the highest global GHG

concentrations and temperatures among all RCPs. Any

deviation from this pathway, that is, any lower numbered

RCP, is arguably a pathway that includes actions to reduce

emissions (i.e., mitigation efforts or slowdown in economic

growth). The second set of data in the framework is the

shared socioeconomic pathways (SSPs), which describe

development trends and conditions. The SSPs offer plausible

alternative tendencies in the evolution of society and natural

systems and include narrative descriptions and quantifications of

selected socioeconomic variables at the national, regional, and

global scales. There are a total of five SSPs, and each is categorized

as a function of the pathways’ global challenges to mitigation and

to adaptation (Riahi et al., 2017). That is, for each SSP, the level of

energy usage; the increase in GDP, trade, population and

urbanization growth; and the scale of international

coordination, among other aspects, result in either benefits or

challenges to climate mitigation or adaptation (O’Neill et al.,

2020). Three of the five SSPs fall along the axis of low-to-high

mitigation and adaptation trade-offs, including pathways

nicknamed “sustainability” (SSP1), “middle-of-the-road”

(SSP2), and “regional rivalry” (SSP3). Off-axis, there is an

“inequality” pathway (SSP4) which has high challenges for

adaptation but low challenges for mitigation, and conversely a

“fossil-fueled development” pathway (SSP5) that is consistent

with high challenges for mitigation but low challenges for

adaptation. All SSPs are reference pathways and assume no

climate impacts, and no new climate policies (Kriegler et al.,

2014). While there can be multiple SSPs consistent with one of

the RCPs, there are some limitations to matching SSPs and RCPs.

For example, the emissions levels of RCP8.5 can only be achieved

through SSP5 (a fossil-fuel development scenario).

Importantly, these scenarios were originally designed for

global, regional, or national-level applications. Assumptions

regarding the broad development and associated socio-

demographic trends driving each scenario are based upon

regional and/or national-level conditions. National-level

1 RCPs are based on projections of greenhouse gas emissions and
concentrations and their combined radiative (or climate) forcing,
ranging from low (1.9) to high (8.5) (Van Vuuren et al., 2014). An
RCP of 2.6 corresponds closely with a 2°C increase, per the Paris
Agreement. See https://climatescenarios.org/primer/mitigation/for
how various RCPs correspond to expected temperature increases,
climate forcings, and to the five different SSPs.
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population projections for each SSP are produced using a multi-

state cohort component model. To apply these models to an SSP

framework, assumptions are made regarding demographic

futures. For example, to be consistent with SSP3, low fertility,

highmortality, lowmigration, and low education are assumed for

the US, while to be consistent with SSP1, medium fertility, low

mortality, high migration, and high education are assumed.

(Details on what constitutes low, medium or high fertility,

mortality or migration is found in the Supplementary Note

for the SSP data sets). The future population (KC and Lutz,

2017), urbanization (Jiang and O’Neill, 2017), and additional

SSP-based socioeconomic data (e.g., Gross Domestic Product,

GDP) associated with each scenario are all produced and

reported at either the national or regional level (see SSP

Database (iiasa.ac.at)). However the scenarios do not yet treat

sub-national or city-scale conditions, or more importantly, the

variation in conditions within the national-level narrative for

each SSP. The original designers of the scenario framework did

anticipate that researchers would further develop (i.e., extend)

the narratives for specific geographies and contexts. The objective

of the original work was to provide a structure in which sub-

national narratives could nest, in an internally consistent fashion,

within the global, regional, and national-level narratives.

To better assess plausible futures and to fulfill a planning

need, the global climate change research community developed a

set of narratives that are applicable for global and regional

socioeconomic scenarios entitled the Shared Socio-economic

Pathways (SSPs) (Moss et al., 2010; Kriegler et al., 2014;

O’Neill et al., 2014; Van Vuuren et al., 2014), and the

corresponding quantitative projections of demographic,

economic, and technological changes under the SSPs for each

country (Riahi et al., 2017). While climate science increasingly

recognizes the importance of multi-scalar models recognizing

urban centers (Sharma et al., 2021; Zhao et al., 2021), the SSP

narratives do not include local or city-level perspectives or details

necessary to address most questions of local importance (O’Neill

et al., 2020). And while the SSPs address key socioeconomic

drivers of climate change, the global SSPs do not address the

nature of changes to the built environment, critical to

understanding future vulnerabilities and consequences of

different urban futures, nor do they speak to concerns that

are prominent in city-life such as those relating to diversity,

racial justice, or migration. Recent work to extend these

narratives to regions (e.g., Absar and Preston 2015; Reimann

et al., 2021) and cities (e.g., Kamei et al., 2016; Lino et al., 2019;

Rohat et al., 2021) are just beginning to emerge. Similarly, other

scholars use a visioning process to generate plausible scenarios

for climate-adaptation futures—these tend to adopt a business-

as-usual future (one of the five SSPs) along with stakeholder-

driven framings to envision the future (Iwaniec et al., 2020b;

Hamstead et al., 2021b). We review such efforts, and explore the

possibilities arising from integrating different approaches in the

Results section below, but we first describe the methods used to

identify key perspectives and our choice of New York City as a

case study.

3 Material and methods

Frameworks have been developed and applied to address

climate change from a variety of perspectives from urban and

city planning (Solecki et al., 2015), including those with a

focus on nature-based solutions (Albert et al., 2021; Mansur

et al., 2022), to regional planning (Yang and Cui, 2019) to a

variety of sectors such as public health (Bikomeye et al., 2021).

Such framework studies vary in the methods, but all include

some means of expert assessment and review of key literature

or evidence before constructing a framework, typology or set

of best practices. Similarly, in order to create our

interdisciplinary framework, we relied on the expert

judgment of the author team which includes specialization

in demography, ecology, geography, community lawyering,

public policy, public health, sociology, spatial data science,

and urban planning.

3.1 Criteria for inclusion as exemplar
approaches

The goal of our review was to facilitate knowledge of key

strengths and gaps (such as key variables “included” and

“omitted”) in existing approaches across disciplines and to

identify opportunities to fill those gaps. As such, the studies

included in our review (Table 1, and also described in our Results

section) form a narrative. We began by identifying key studies

that pioneered methods to create spatial distributions of future

population scenarios consistent with future climate change

scenarios; then highlight key subnational demographic

projection methods; followed by the identification of hybrid

approaches that combine subnational demographic forecasts

with spatial reallocation refinements; and finally we include

narratives of alternative futures based on participatory

scenario development. Our review did not aim to be

exhaustive, but rather to provide a useful and systematic set

of examples for developing our interdisciplinary framework.

Further, our review brings together scientific traditions from

different eras: while traditional demographic methods to project

the future (for global, national and even state and local

application) date back more than half a century (Smith et al.,

2006); the SSP framework is a little over a decade old (Moss et al.,

2010; O’Neill et al., 2014), with spatially-explicit demographic

projections following thereafter; and the work of participatory

visioning is even more recent (Iwaniec et al., 2021). Our review

has selected examples from these different traditions respecting

their scientific roots but also offering promise for modification

with interdisciplinary collaboration in the future.
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TABLE 1 Concepts and key features for population futures modeling for the US and its cities.

Concept Output Scale Model components

Estimation schema Theme being
forecasted

Spatial Temporal Key variables
Included

Key variables
Omitted

Key strengths

Spatial Distributions of Future Population Scenarios consistent with future climate change scenarios

SRES or SSP-consistent
population futures (linear
interpolation), with spatial
allocation (gravity-type
model)

Population counts Jones
and O’Neill (2013),
(2016)

US, output resolution
7.5′ to 1 km

long-term (c. 2100)
with short-term time
steps 5–10 years

Historic gridded population
counts, surface water, slope/
elevation, mandate for
protection, urban land

Characteristics of
population (age, sex,
fertility, mortality,
migration, race/
ethnicity)

Empirically grounded in
historic trends, downscaling
can accommodate a wide
range of variables, and is
locally adaptive

SSP-consistent population
futures (linear interpolation),
with spatial allocation
(gravity-type model)

Population counts
Zoraghein and O’Neill
(2020a, 2020b)

States, Output
resolution 1 km

long-term (c. 2100)
with 1–10 years steps

Historic gridded population
counts, surface water, slope/
elevation, mandate for
protection, urban land

Characteristics of
population (age, sex,
fertility, mortality,
migration, race/
ethnicity)

Empirically grounded in
historic trends, downscaling
can accommodate a wide
range of variables, and is
locally adaptive

Extension of global SSP to
local scale (using heat risk
model, urban climate
projections under RCPs and
vulnerability projections
under SSPs) to examine
different adaptation strategies

Future heat-related
health risks using urban
climate projections and
vulnerability projections
Rohat et al. (2021)

Metropolitan area of
Houston

historical
(1991–2010) and
future (2050s)

Wide range of population,
vulnerability and socio-
economic data; urban land-
use and vertical building
development see Rohat et al.
(2019)

Characteristics of
population (fertility,
mortality, internal
migration)

Integrated heat-risk model,
urban climate futures, and
vulnerability projections to
examine impact of
adaptation strategies under
different scenarios

Extension of global SSPs to
local scale (using climate
projections under RCPs, land
use projections, vulnerability
projections, and stakeholder
engagement)

Heat-related mortality
Rohat et al. (2019) and
influence of adaptation
strategies on heat-related
mortality Rohat et al.
(2021)

Greater Houston historical
(1991–2010) and
future (2041–2060)

Age, sex, race/ethnicity,
social isolation, poverty, air
conditioning, households’
living arrangement, median
income, construction year of
housing, state level GDP
projections, spatial
population at 1 km scale,
global urban fraction
projections, land use at
parcel-level for Greater
Houston, land use at national
scale, hourly meteorological
forcing data

Characteristics of
population (fertility,
mortality, internal
migration)

Integrated historical trends,
local development plans,
and consultation with local
stakeholders

Extension of global SSPs to
local context (using climate
projections under RCPs,
expert-informed narratives
about future socioeconomic
trends)

Heat-related
vulnerability Lino et al.
(2019)

Boston and two
adjacent
neighborhoods:
Jamaica Plain and
Roxbury

2040 (consistent with
local scenarios
developed by
Metropolitan Area
Planning Council)

Wide range of data on
socioeconomic and racial equity,
economic growth, population
trends, diversity, housing
affordability, institutional
coordination and response
capacity, access to parks/green
spaces, AC, transportation;
prevalence of green spaces and
trees, infrastructure and the built
environment

Characteristics of
population (fertility,
mortality, internal
migration); full
land use

Integrated scenario
matching, consultation with
experts, and a participatory
process with communities

Demographic Projections

Cohort-component
projection

Population counts by age
and sex, US Census, (2005)
and for various states (e.g.,
CA, 2020) also by 7 race/
ethnicity groups

States (US) and
Counties (e.g., CA)

medium-term (c.
2040 for the US, and
to 2060 for CA)

Births, deaths, migration,
population by race and age
groups

Land use or ecological
variables, (race/
ethnicity in many
instances)

The US Census no longer
produces state forecasts but
many states produce
county-level forecasts

City specific cohort-
component model

Population counts, by age
and sex NYC DCP
(2013), SCCG (2016)

New York City and
Southern California
(and their counties)

medium-term (2050),
with 5 years time
steps

Fertility, mortality and net
migration, population by 5-
years age groups; local land
use including housing stock
and building permits

Race/ethnicity Historically the most
accurate method for
producing short-term
population projections at
the county/city-scale

Cohort-component forecasts
with tract-level downscaling

Population counts, by age
and sex NYMTC, (2020)

Counties for New York
Metro area,
Transportation
Analysis Zones (similar
to tracts)

medium-term (2050),
with 5 years time
steps

Fertility, mortality and net
migration, population by 5-
years age groups;
transportation, employment
and some land-use variables
(for NYC only)

Land use or ecological
variables

Many regional transit
authorities have similar type
of projections; approach
includes elements of cohort
component, downscaling
and stakeholder engagement

(Continued on following page)

Frontiers in Built Environment frontiersin.org07

Balk et al. 10.3389/fbuil.2022.949433

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


The spatial extent and scale of examples reviewed are,

with a few exceptions, restricted to the U.S. and to

subnational scales—neighborhoods, counties, cities, states,

regions, and fine to moderate-resolutions for gridded

outputs. Because there are so few examples of city-specific

applications, we include a couple city-specific examples

outside the U.S. We selected studies for inclusion that

showcase methodological advances in projecting new

themes (e.g., characteristics of population vulnerability)

and at new spatial or temporal scales or by climate-

exposures. We intentionally omitted data products that

were exclusively national-level or subnational but relied

exclusively on linear trend extrapolation of singular

variables.

Similarly, we review projections and future scenarios that

include the medium term (i.e., to about 2050) as well as the long

term (i.e., to 2100). Short-term projections and scenarios were

not included.

TABLE 1 (Continued) Concepts and key features for population futures modeling for the US and its cities.

Concept Output Scale Model components

Estimation schema Theme being
forecasted

Spatial Temporal Key variables
Included

Key variables
Omitted

Key strengths

Cohort-component extended
with multiregional
demography SSPs-consistent
population projections

Population counts, by age
and sex Jiang et al. (2020)

US and States long-term (2100)
with single year time
steps

Births, deaths, internal and
international migrants by
single- year age groups

Land use or ecological
variables, race/
ethnicity

Include bilateral migration
flows across all subnational
regions; based on multistate
demography, can extend to
project other demographic
characteristics including
education, race/ethnicity, and
household living arrangement

Hybrid approaches: Subnational demographic forecasts with spatial reallocation refinements

Integrated Climate and Land
Use Scenarios (SRES or SSP-
consistent) use cohort-
component county
demographic forecasts with
spatial allocation

Population counts EPA,
(2017) and housing units
EPA, (2017)

Output resolution
100m; inputs vary

long-term (c. 2100)
with short-term (10-
years) time steps

County-level population
counts by age, fertility,
migration, and housing units
(NHGIS) and county-to-
county migration (IRS);
land use

Race/ethnicity Models population as a
function of housing units,
accounts for detailed
characteristics of landscape
when projecting the
distribution of new housing
units, allows user to assess
impact of population change
on ecosystems (e.g., how
urban expansion may
impact land-use change)

Empirically based spatial
model using machine-
learning and regression-trees
approach (SSP-constant
projections)

Population, by age and
rural/urban residence
Streissnig et al. (2019)

Counties long-term (c. 2100)
with 10-years time
steps

County-level population by
age groups

Land use or ecological
variables, race/
ethnicity

implicitly account for the
effects of demographic rates;
can combine population
projection with projections of
environmental risks and
climate hazards

Modified Hamilton-Perry
Method (using cohort change
ratios and differences)
‘controlled’ to SSPs

Population counts by age
and sex and 4 race/
ethnicity categories
Hauer, (2019)

Counties 2020–2100, with 5-
years time steps

Population counts by age and
4 race/ethnicity groups,
county-to-county migration

Natural components
for demographic
change, land use or
ecological variables

Accounts for county-to-
county migration flows

UREx/SETS; Cellular
automata land use change

Land use Mustafa et al.
(2021)

New York City,
4–30 m

long-term (c. 2100)
with short-term time
steps 1 year

Land use land cover (2000,
2018); elevation; stakeholder
input; decadal population
counts and average
household income at the
census tract-level
(2000–2010)

Demographic growth
components of
change, climate
change projections

Flexibility in data inputs.
Probabilistic model that
specifically speaks to
uncertainty in outcomes at
high resolution

Qualitative narratives of alternative futures

Participatory scenario
development

Positive future scenarios
of SETS Iwaniec et al.
(2020a) Hamstead et al.
(2021b)

Neighborhood to
regional in selected
cities

long-term (c. 2100)
with short-term time
steps

Diverse stakeholder
perspectives

Thematic orientation
varies in some part on
stakeholders

Inclusive process; identifies
hard to capture concepts
and perceptions

NB: Table is not exhaustive. For example, many states and large localities produce population projections, but most use methods similar to those indicated here; and global models include

the US but are not included here
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3.2 Contextualizing a local application: A
case study of New York City and
surrounding area

Demographically, New York City is one of the largest and

most diverse cities in the US, with approximately 8.5 million

people within its immediate boundaries and over 19 million in

the metropolitan area in 2020 (ACS, 2020), with about 36% being

foreign born (U.S. Census). Economically, it is a major location

for international firm headquarters as well as a globally

significant finance, insurance, real estate (FIRE) industrial

center. Biophysically, the city lies at the head of the Hudson

River estuary along the northeast coast of the US. During

summers, it experiences high heat events and is one of the

most vulnerable cities to tropical storms and hurricanes

within the US and throughout the year the city is buffeted by

Nor’easters. The most vulnerable residents of New York City,

based primarily on their socio-economic status, are those also

most at-risk to the extreme events associated with climate change

including, inter alia, heat, sea-level rise, flooding, and coastal

storms (Kinney et al., 2015; Foster et al., 2019; Herreros-Cantis

et al., 2020). New York City’s government is engaged both in

producing demographic projections as well as preparing the city

and its communities and many agencies for future climate

change, which we describe next.

The Population Division of the New York City

Department of City Planning (NYC DCP, 2013), produces

short-to-medium term population projections based on the

cohort-component method. The most recent population

projections are produced for each of the city’s five

boroughs (i.e., the counties of Bronx, Kings (Brooklyn),

New York (Manhattan), Richmond (Staten Island), and

Queens) by age and sex with 5-year intervals from 2010 to

2040, constrained by a housing or land-use projection. For

fertility rates and mortality rates, they use the average values

of 2008, 2009, and 2010. Each county’s net migration rate (of

both international and domestic migrants) is separately

calculated using the survival rate method, which compares

total population, as reported in the two censuses, to natural

changes during the intercensal period. For the projection

period, fertility is assumed unchanged, while survival rate

increases by half of the US Census Bureau’s national trend.

However, the projections of total population for the counties

are largely and ultimately determined by local land use

projections. The assumptions on land use and zoning, and

housing constructions act to limit population growth, through

adjusting the crude migration rates. Population projections

are done for each county separately, without accounting for

their interactions through migration.

In addition to its city-specific demographic projection, New

York City participates in a regional effort. The New York

Metropolitan Transportation Council (NYMTC, 2020)—which

is mandated by federal transportation legislation for all urbanized

areas with a population over 50,000 in order to qualify for federal

transportation funds—adopts the DCP population projections

for its Socioeconomic and Demographic (SED) forecasts and

extends the projection period to 2055 and the extent to

include 31 counties in the greater New York metropolitan

area (rather than the five boroughs of New York City).

NYMTC SED projections include input data of the

population by not only age and sex, but also race.

However, the projections do not provide output by race.

Additionally, the single-region cohort-component model

that accounts for net migration does not consider

differences among in-migrants and out-migrants, or by

internal and international migration. The migrants

moving in and out of New York City from (and to)

domestic and foreign origins (and destinations) can have

very different age, gender, and ethnic profiles. NYMTC’s

projection with its focus on transportation, also includes

many additional variables in its model, including those

derived from surveys (and other sources) on commuting,

transportation, jobs and industry development, and more

(NYMTC, 2015). Because NYMTC brings together

representatives from many city and municipal agencies,

part of the production of the final projection includes

engagement with these data producers—that is, the

various city and municipal agencies become stakeholders

in the resulting projections. Unlike DCP’s projections,

NYMTC uses a spatial allocation method to downscale

population into transportation analysis zones (TAZ),

which for New York City are akin to census tracts. The

publicly-available projections of both DCP and NYMTC

produce only one population scenario, based on a set of

assumptions including current fertility levels remaining

unchanged, the same proportions of increase in survival

rates, and the adjusted crude migration rates by housing

limits.

To address climate impacts, New York City’s government has

been a progressive leader in climate mitigation and

adaptation. For example, New York City adopted Local

Law 42 in 2012 requiring regular, local climate

assessments, and establishing city agencies addressing

sustainability, environmental justice and so forth (NYC

Service; Smart Connect, 2022). Currently the New York

City Panel on Climate Change is undertaking the City’s

fourth Assessment (NYC Office of the Mayor, 2019).

However, improvements in our understanding of the key

regional environmental changes expected this century are

cause for additional concern across the metropolitan area

(NPCC, 2019; Solecki and Rosenzweig, 2019) since New

York may suffer changes of greater magnitude than the

globally predicted averages across a number of climate-

related hazards. For example, projected sea-level rise in the

New York City metropolitan area is approximately twice that

of the global average due to regional land subsidence (linked to
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isostatic rebound of formerly glaciated land to the north of the

city) (NPCC, 2015). These and other changes will affect the

city’s water supply, energy demand, public health, and

community resilience, particularly among the city’s most

vulnerable inhabitants (Jones et al., 2015; Marcotullio et al.,

2018). Given its national and international importance and its

current focus on climate planning and the future climate

impacts New York City and the surrounding area will have

to overcome, we consider it a compelling case study for

developing local climate scenarios.

Figure 1 shows the jurisdictional boundaries of New York

City, along with census tract-level population density (for

the whole city in panel A, and a close-up in panel B), and

land-use (same close-up extent in panel C), data which are

key ingredients used in population “downscaling” and land-

use modeling. Panel A also identifies the boundaries of New

York City’s five counties and Public Use Microdata Areas

(PUMA) that correspond to demographic data available

from the American Community Survey (ACS), because

those spatial units are associated with some data series of

relevance to some types of population or land use modeling,

as we discuss below.

New York City’s government operates to serve its five

boroughs (counties), but also participates in regional

planning efforts, some of which we review here. Thus, our

case study considers both extents and we adopt a flexible

spatial extent and scale and temporal units of analysis.

Disciplinary perspectives impact spatial and temporal

scales of the analytical units of inputs and outputs, and

range from fine scale census units (such as block-groups

or tracts), to coarser spatial units such as PUMA and Zip

Codes (which are available throughout the U.S.) and

Neighborhood Tabulation Areas and Community Districts

(which are specific to New York City). As discussed in our

review below, there are trade-offs between spatial, temporal

and thematic specificity, and for that reason, we do not adopt

a single set for our example.

4 Results

In this section we address our three interconnected research

questions, with the ultimate goal of examining global frameworks

that are used to assess and prepare for the impacts of future

climate change and transforming them for use in local and urban

applications.

To limit climate impacts and create a more resilient,

equitable city, it is imperative that we understand

potential future social-ecological and demographic

pathways and how local stakeholders envision the future

and can intervene to foster a more inclusive future (Iwaniec

et al., 2020a; Cook et al., 2021). Adaptation policy, that is,

preparing the population for the impacts of climate change,

is an important local-level consideration. Involving diverse

stakeholders at multiple levels to co-create and co-produce

novel, positive visions of the future can be an important

mechanism for bringing local communities into the

adaptation planning process. However, adaptation is just

one piece of a holistic approach to combating climate

change. Identifying, anticipating, and mitigating future

vulnerabilities is necessary to ensure an equitable future

(Solecki et al., 2019) since populations change in size, age

structure, race/ethnicity compositions, and in their spatial

distributions and concentrations. In order to estimate future

impacts (social, health, economic, etc.), projections and

future scenarios must be richly thematic and the

supporting data must be available at the sub-city level

(Creutzig et al., 2019).

As reviewed above, traditional demographic projections

are a well-known method for projecting future populations,

but when undertaken for cities and other small areas, they

tend to be shorter-term (extending out 30–50 years) and at

coarser resolution (Wilson et al., 2022) than those needed by

the climate-science community and those engaged in local or

even regional adaptation planning. Thus, increasingly new

tools (ranging from those with global extent to local bottom-

up approaches) have been developed to envision population

futures that are consistent with possible future climate

change projection outcomes, which include developing

future scenarios and narratives of plausible demographic

and socioeconomic futures.

Our first two research questions are, respectively, to identify

the prevailing concepts, and their strengths and limitations, for 1)

modeling population futures, and 2) for use of fine-scale

spatially-explicit, social-ecologically informed, and

participatory approaches to modeling urban or city-specific

futures in the US, in the context of long-term local

applications that inform mitigation and adaptation responses

to alternative climate scenarios.

Table 1 highlights key approaches for efforts focused on

subnational and spatially explicit population projections or

future narratives for the United States and some of its cities.

In the following sections, we review the efforts, as well as those

from beyond the US, that have helped to frame each approach.

We structure each subsection starting with the broadest framing

and work our way down to cities, with an application to New

York City, where possible.

When applied to a local context, such as New York City, it

is clear that in order to anticipate future vulnerabilities and

to mitigate against them, or estimate the future costs and

social or health impacts, it is necessary to have richly

thematic projections of the future population of the city.

However, despite the imperative to include measures of

vulnerability as components of future planning, few city

or regional efforts have materialized (as shown in

Table 1). Thus, to address our third research
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question—how can we leverage the methodological strengths

and associated data of various discipline-specific approaches

and advances to create socio-demographically and social-

ecologically informed and integrated projections or future

visions for cities, in order to help local and regional

stakeholders adapt to and mitigate against future climate

change with a social equity lens?—our final subsection

proposes a new framework with suggestions for ways to

implement it in different communities of practice.

4.1 Contextualizing SSPs: Expanding the
SSP framework to the local level

Several research teams have made recent advances in

subnational population projections that correspond to

socioeconomic scenarios (such as the SSPs) based on modified

cohort-component methods and those using spatial downscaling

tools, as shown in Table 1. These studies represent important

advancements in that they provide information on population

change that is more spatially refined and for long-term. These are

described in greater detail below after first expanding the context

of scenario development.

Yet, as regional and local actors begin to plan for the impacts of

climate change, there is an increasing interest in those global

narratives for a range of subnational usages, in order to include

sub-national and local level pathways. In the US, there are

numerous variations of applications to subnational units: Jones

and O’Neill (2013), EPA (2017), and Jiang et al. (2020) represent

three different approaches. These are discussed in the next section

because the ways in which they differ largely involve how the

demographic components of change were incorporated. With less

attention to incorporating demographic methods (but largely

relying on trend extrapolation of population change), studies

have also extended the SSPs regionally to the Great Lakes

(Méthot et al., 2015) and the US South (Absar and Preston, 2015).

The SSPs have been applied even less often at the local, city or

sub-city scales (i.e., a further extension of the SSP narratives at a

finer resolution). Nevertheless, interest in local scenario work is

increasing as initial studies suggest the SSP framework can be

used as a tool for examining local drivers of development. For

example, a study in Flensburg, Germany extended four SSPs to

develop local narratives to aid in adaptation decisions (a so-called

“climate service”) in the flood-prone Baltic coastal city (Reimann

et al., 2021). The authors employ a multi-scale co-production

approach combining a bottom-up participatory approach

involving local stakeholders and experts with a top-down

thematic expansion of key elements associated with the

existing SSP narratives and applied to the local scale. The

authors used an iterative and collaborative process (through

focus groups, workshops, and digital feedback) to develop the

new local scenario elements far from those included in the global

FIGURE 1
Population Density, 2000, with Public Use Microdata Area (PUMA) and county borders ((A), entire city; (B), close-up), and Land Use ((C), close-
up), 2016, New York City.
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SSP framework (for example, care for the elderly and childcare,

inequality between neighborhoods, and the implementation of

adaptation measures). With these additions, the SSP framework

becomes more relevant to local conditions and concerns.

In another study, researchers developed amulti-scale method to

extend the SSPs to the city and neighborhood scale. Using Boston,

Massachusetts as a case study, they combined experts’ elicitation,

and participatory processes to contextualize and make the global

SSPs locally relevant (Lino et al., 2019). The research focused on

developing narratives of future neighborhood-level vulnerability to

extreme heat under multiple plausible socioeconomic trajectories.

The results found that there were large differences in outcomes

suggesting the potential for risk reduction through social and urban

planning policies. Focused on Tokyo’s long-term socioeconomic

scenarios, Kamei and colleagues examine the driving forces of

change and use expert interviews to base the relevant future

narratives (Kamei et al., 2019). The results were three alternative

future pathways to 2050. The research identified the importance of a

city-scale scenario that addresses urban form elements and

infrastructure. In another paper, researchers developed and

quantified extended SSPs for Greater Houston (Rohat et al.,

2019). In this project, the authors operationalized the SSP

framework at the intra-urban scale and provided estimates of

heat-related mortalities under multiple futures for 2041–2060.

They find that the changes in population and vulnerability have

the greatest influence on excess mortality and that socioeconomic

pathways play a critical role in shaping future urban heat related

challenges. We provide a discussion of their method for

incorporating the demographic components of change in the

section below.

4.1.1 Understanding spatial distributions of
populations in the context of the SSPs

One way of estimating spatial population futures has been

to take national-level future population change as given by

the SSPs and then use spatial allocation methods to down-

scale and distribute this population change over space. In

this approach, historical population counts at a local or

regional level are typically used, but the demographic

components of growth (such as fertility, mortality, and

migration) are not, and therefore, these approaches would

be considered future estimates rather than projections.

Recent applications have included more components on

demographic composition, notably age structure and sex

ratio (Rigaud et al., 2021).

A common approach at the global (Jones and O’Neill, 2016),

national (Jones and O’Neill, 2013, 2016; EPA, 2017; Rigaud et al.,

2018; Clement et al., 2021; Rigaud et al., 2021) and state level

(Zoraghein and O’Neill, 2020a; Zoraghein and O’Neill, 2020b),

has been to downscale population forecasts associated with the

SSPs [or the older Special Report on Emissions Scenarios (SRES)

in the case of Jones andO’Neil (2013)] using gravity-based spatial

allocation models. This family of models often employs

additional geospatial data to aid in refining the distribution of

national (or state) level population projections across high-

resolution spatial units (most often grid-cells). Examples

include land-cover land-use data, elevation and slope, mandate

for protection, crop yields, water stress, ecosystem productivity,

roads, and built infrastructure. Projected future changes in the

distribution of the population occur as a function of two factors; 1)

a “neighborhood effect” based on a friction of distance parameter

(the perceived cost, in monetary value and/or time, of travel) that

controls whether cities sprawl or concentrate, and 2) local

characteristics that make each point in space more or less

attractive than its neighbors. The neighborhood effect is defined

to match the narratives accompanying each SSP (Supplementary

Note for the SSP data sets, Jones and O’Neill 2016). The

importance of various local characteristics is determined by

fitting a spatial autoregressive model to historic data, and the

future impact occurs as a function of projections of each pertinent

characteristic (e.g., higher levels of water stress will make a place

less attractive).

In general, when compared to historical patterns of change,

these models tend to work well for predicting broad trends in the

spatial distribution of population (concentration vs. expansion of

population) but it omits variation that occurs within spatial units

(that is, differences between individuals or households or

communities), including household decision making processes

that drive these trends (Rigaud et al., 2018).

4.1.2 Projecting population in the context of the
SSPs

As shown in Table 1, recent work has included

modifications to earlier global-extent national-level

population projections, by simultaneously projecting

population changes for all the US states with a multiregional

population projection model (Jiang et al., 2020). While the

state-level projections are consistent with global-extent

national-level SSPs, they explicitly address the large

variations in demographic variables across the states,

especially the different patterns of internal and international

migration flows between the states. The state-level population

projection outcomes are then downscaled to grid cells at 1 km

resolution (Zoraghein and O’Neill, 2020b), which reveal

significant differences in spatial population distributions

compared to the results downscaled from global national

projections (Jones and O’Neill, 2016).

Several other subnational population projections have been

produced to be consistent with the SSPs. Hauer (2019) derived

changes in population size by age group for each SSP at the county

level, to 2100, using an expanded Hamilton-Perry method. This

model is based on past trends without explicitly accounting for

demographic changes. Although this approach has the advantage

of reducing data requirements for small area population

projections, it does have its limitations for projecting long term

trends like SSPs (Rogers and Woodward 1991; Smith et al., 2006).
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While most of the existing spatial population projections are

the result of downscaling the projected total number of people

(often by rural and urban residence) to grid cells (as described in

the section above), a recent work by Striessnig et al. (2019) uses

complete age structure (somewhat like the Hamilton-Perry

method) with a regression-tree model—that is, it uses a

predictive algorithm in machine learning to explain how a

target variable’s value can be predicted based on other

values—to generate county-level projections of population by

age groups for all counties consistent with the SSPs. Using an

empirically-based spatial model, it reveals wide variations in the

spatial pattern of county-level age structures across SSPs.

For projections to capture the complexities of social

vulnerabilities, many more data inputs are required, and as

such few studies have undertaken this, but for this reason it

also bears additional elaboration. To estimate heat-related risk

and mortality in the 2050s for Greater Houston, Rohat et al.

(2019), extend the global SSPs to the local scale and combine

extreme-heat projections (to account for urban heat islands) with

population and vulnerability projections. Using the Hamilton-

Perry method, the population projections take into account a

number of variables including population counts by age, sex, and

race/ethnicity (at the census tract-level), and county-level

projections of populations and households under the SSPs and

use several scaling factors (urban, suburban and rural for spatial

patterns, and national age-sex cohorts projections for aggregated

totals) as consistency checks. Their vulnerability projections

include projections of social isolation (single-person

households), poverty (which take into account median

income, persons in poverty, and GDP projections at the

state level under the SSPs), and the prevalence of air

conditioning (which takes into account both the prevalence

of AC and the year the housing units were constructed). In

addition to these projections, the heat-related mortality

modeling also takes into account land use projections and

urban climate projections. By producing these three

independent projections, the study team then estimates

future exposure to extreme heat. In a related paper

(mentioned below), Rohat et al. (2021) take the output of

this study to use with stakeholders to examine the influence of

different adaptation measures on extreme-heat outcomes.

4.1.3 Application of these advancements to cities
To enhance demographic projections and cover the plausible

range of population trends for New York City and other large

cities and their surrounding regions, there exist some

advanced demographic models and approaches. Recall,

city and regional projects often include a single output

for up to a medium-term, and therefore, no confidence

bounds (see Table 1), but for longer-term projections

(needed to plan for climate-change), uncertainty is

intrinsically higher. Some new methods from global efforts

may hold promise: For example, the UN Population Division

recently adopted the Bayesian Hierarchical model to project a

range of population changes under various confidence intervals for

all countries of the world (Raftery et al., 2014; United Nations

Department of Economic and Social Affairs Population Division,

2019) and efforts are underway to apply to subnational units

(Ševčíková et al., 2018), yet these methods have not been widely

adopted for cities. (A similar approach of probabilistic population

projection was developed earlier by the International Institute for

Applied System Analysis (IIASA) based on an expert opinion

method (Lutz et al., 2001).) Although the probabilistic approaches

can be used to assess the uncertainty of demographic trends, the

method cannot be used to investigate the impacts of demographic

determinants on population dynamics and the consistency of

assumptions about changes in sociodemographic variables

(Jiang 2014). It cannot help determine the influence of

socioeconomic and environmental policies, or answer “if . . .

then . . . ?” questions. Therefore, the probabilistic population

projection method is usually not used for developing

projections consistent with the SSP framework.

Instead, an expanded cohort-component

model—multistate (or multiregional) demographic methods

(that is, those that allow for transitions between places (e.g.,

migration between states) or attributes (e.g., level of

educational attainment)—is adopted to develop alternative

scenarios, based on expert opinions, for population

projections at national (KC and Lutz, 2017) and

subnational (KC et al., 2018; Jiang et al., 2020) levels. Since

cities and regions typically use a cohort component method, it

would be a natural extension for them to adopt multistate

methods. The global, national and subnational population

projection results are further spatially allocated, or

downscaled, to grid cells at various resolutions using

gravity models (Jones and O’Neill 2013; Zoraghein and

O’Neill 2020a, 2020b). Local planning and land-use models

use a variety of spatial allocation methods, so this acts as an

entry point for integration with demographic forecasting.

4.2 Participatory visioning and local land-
use approaches tomodeling urban futures

Participatory visioning is an approach that can capture the

nuances of the local context and be a bridge with other

exploratory, larger scale scenarios, such as the SSPs and RCPs

(Cook et al., 2021). Similar to the SSPs, participatory visioning is

an exploratory or backcasting approach to develop and examine

plausible alternative futures and the pathways needed to achieve

those futures. Different from SSPs, the participatory visioning

process can account for local city or neighborhood scale and

context, while also building upon projections for future weather-

related conditions, such as expected climate changes. The

participatory process has the added benefit of integrating

perspectives of diverse stakeholders (notwithstanding that
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some of the above-mentioned SSP extensions are co-produced

with local stakeholders e.g., Reimann et al., 2021 and Rohat et al.,

2021) into the co-production of future scenarios. Examples of the

participatory visioning process at local scale can be drawn from

the Urban Resilience to Extreme Event Sustainability Research

Network (UREx SRN) and the Social-ecological-technological

systems (SETS) Convergence projects (urexsrn.net, http://

convergence.urexsrn.net) both of which utilize a participatory

process—with local community and government

stakeholders—to co-develop resilient, desirable future long-

term scenarios for urban contexts in North and Latin America

(Hamstead. 2021a).

Much of the dominant discourse around urban futures is

dystopian with business-as-usual forecasts making it difficult to

develop actionable plans and policies for generating more

positive futures (McPhearson et al., 2017). Such negative

discourse around urban futures can leave little reason to

invest in long-term social and environmental goods, nor does

it recognize the vast possibility within existing creativity and

innovation at all levels that already drive much of development in

cities. Positive visions, in contrast, are critical to guide urban

planning, motivate actions, inspire innovative strategies, and

move toward transformative change (Iwaniec et al., 2021;

McPhearson et al., 2021). In response, methods to work with

stakeholders to develop alternative resilient, desirable scenarios

have been developed (Iwaniec et al., 2020a; Cook et al., 2021) that

allow for diverse stakeholder perspectives to be articulated as

qualitative futures which can also then be translated into

quantitative futures. Through a co-production process

working with local stakeholders at neighborhood or citywide

scales, a backcasting approach has been used to allow for a

normative goal setting and working backward to develop the

pathways needed to achieve those goals (Iwaniec et al., 2020a).

The most common strategies proposed throughout the

workshops were related to adding green infrastructure, linking

green spaces, relocating people from weather-related hazard

zones, and increasing built-up density (Iwaniec et al., 2020a;

Hamstead et al., 2021b). In the UREx SRN, the scenario

development process integrates creative storytelling through

narratives, drawn vignettes, and design renderings into the

development of future visions that are then coded and

translated into spatialized futures, where possible.

The new visions, goals, targets, and strategies can be

spatialized to examine urban futures where population

density, land use, land cover, and other urban characteristics

can change. The future visions are coded into spatially and

temporally explicit land use transition rules to be

simulated through a land use/cover change (LUCC) model

(as shown in Table 1). Land use change models are widely

used to simulate future land use patterns that assume no

major changes in socioeconomic settings or policies so that

the future changes are just an extrapolation of observed

historical changes (even though many land use change

models that have examined past changes and/or simulated

possible future land use patterns have found that many

demographic variables are important drivers of land use

changes (Puertas et al., 2014; Rienow and Goetzke 2015;

Ku, 2016; Vermeiren et al., 2016; Saganeiti et al., 2021).

In the URExSRN, a Cellular Automata (CA) LUCC model

developed by Mustafa et al. (2021) was used to simulate

multiple future visions. The model allows a wide range of

spatial changes in ecosystem properties and neighborhood-

scale (such as census tracts) social behavior to be examined

together, though only total population and median income

are used currently to model social behavior (Mustafa et al.,

2021). These models optimize fine resolution spatial inputs,

and processes, with the current version of this model to

simulate LUCC in NYC running at 4 m × 4 m resolution,

which is much higher than the previous versions. In terms of

temporal scale, inputs to the LUCC model include inputs

from 2001 to 2016, used along with the future visioning

process to generate annual, long-term (to 2080) simulations.

Figure 2 illustrates an example of the output, that is, future

visions for Baltimore, MD within the URExSRN. For

example, the “Resilience to Multiple-hazards” vision

suggests urban areas within floodplains are converted into

open and green spaces, many ecological corridors are created

along major roads across the region, and many small green

patches are added across the region to increase access to

green space.

4.3 Framework for integrating population
perspectives with scenarios and narratives
to envision the future

To answer our third research question, we propose that

methodological strengths and associated data inputs from

the various disciplinary-specific approaches with

increasingly improved spatial scale and thematic

range—demographic and land-use forecasting, future

visioning processes at sub-city scales—can be leveraged to

forecast diverse populations in large cities, like New York.

Below we set forth a framework, illustrated in Figure 3, that

draws on the core principles of the methods and typical data

inputs described above. The funnel is symbolic of the

potential to develop a multi-level modeling approach to

produce detailed high-resolution data outputs at the sub-

city scale enabling a more holistic approach to climate

impacts, adaptation, and vulnerability research within the

context of the SSP/RCP or related narrative frameworks. The

diagram also includes examples of possible data outputs that

could result. Towards this end, we suggest some ways to

develop fuller, more interdisciplinary and inclusive models.

Furthermore, these ingredients can be tailored to a wide-

range of disciplines and communities and therefore, we offer
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a mix of suggested improvements to be implemented

depending on the application. As noted in the diagram,

and as the examples below describe, users must consider

inherent trade-offs between thematic breadth, spatial

resolution and temporal scale.

The remainder of this section is organized around four

recommendations that act as entry points for implementation

of the Framework.

4.3.1 Undertake city and regional demographic
forecasting at higher spatial resolutions and with
more demographic variables, including race and
ethnicity

The state-level work of Jiang and O’Neill (2020a) is an

excellent example of a demographic projection methodology

that could refine its spatial resolution and expand its thematic

breadth. It would adapt its multistate cohort-component model

to project changes in population by age, sex, race and ethnicity,

among other factors: NYC county-level forecasts by race and

ethnicity would be the first expansion of the existing state-level

work (Jiang et al., 2020). The demographic inputs to this type of

modeling include age-, gender-, and race/ethnicity-specific

fertility, mortality, and migration rates, which can be derived

from the censuses and ACS data at county (and possibly, finer-

resolution PUMA)-level. Because the ingredients for this type of

estimation are micro-data samples (that is, knowing the

demographic behavior of individuals by their age, sex, and

race), this process depends on the size of this micro-data

samples (i.e., whether the sample is 5% or 1% of the

population), and the size of the population. For example,

PUMA data are groups of 100,000–200,000 persons. In New

York City, this results in many sub-county units (as shown in

Figure 1).

This approach could produce model results consistent

with different SSPs, including SSP1 (the “sustainability”

and most climate-friendly scenario), SSP2 (the “business as

usual” scenario), and SSP4 (the “inequality” scenario, a future

that best highlights the challenges through the lens of racial

and social justice principles across and within regions). To

develop the SSP population scenarios requires different

assumptions about future changes in fertility, mortality,

international and domestic migration, based on historical

data and understanding of future plausible trends. Whether

the same assumption framework that is adopted in national or

state-level work would be used, or whether alternative

methods that would be generated by engagement with local

stakeholders depends on the desired outputs and their

intended uses. While the multistate cohort component

model can be used to project population by age, sex and

race, the PUMA level is certainly the smallest spatial unit

that this type of modeling could possibly support. This leaves

the matter of population redistribution to spatial downscaling

methods to which we now turn.

4.3.2 Model spatial refinements of future
population based on historical patterns of
population by race, ethnicity and other
characteristics at a neighborhood scale

A second example comes from understanding the spatial

distribution of future populations. Population downscaling models

such as those described above use ancillary data to spatially allocate

current and future population. The maps shown here provide clear

examples of neighborhood level change: Figure 4 shows changes in

the spatial distribution of population by racial and ethnic groups in

New York City from 1980 to 2020 (data for 1990 and 2010 are

available but not shown).2 From the top, this map shows changes in

percent of population by racial and ethnic groups: Non-Hispanic

Asian and Pacific Islander population, Non-Hispanic Black

population, all races of Hispanic ethnicity, and white population.

To provide further context from 1980 to 2020, the Asian population

increased from around 249 thousand to 1.4 million; the Hispanic

population increased from 1.4 million to 2.4 million, the Black

population increased from 1.69 million to 1.77 million, and the

white population decreased from 3.7 million to 2.7 million. Total

population of the city increased from 7.07 million to 8.5 million over

this period with increases in population density throughout the city

(not shown).

As seen in Figure 4, there have been significant changes in the

spatial distribution of population by race and ethnicity in New York

City. In 1980, the Asian population was much smaller and largely

concentrated in Chinatown on the lower east side of Manhattan. By

2020, it has spread to Queens with high concentrations in Flushing

and Forest Hills and western Brooklyn. TheHispanic population also

grew substantially from 1980 to 2020, and continued to concentrate

in the South Bronx, northern Brooklyn and northern Queens, while

also increasing across the city, The Black population remained largely

concentrated in Harlem, northern Brooklyn and southeastern

Queens, though in decreasing shares in all three neighborhoods.

While trend data are not necessarily the most robust choice for

modeling population futures, and as noted above there are caveats to

small-area population projections especially if they represent changes

that are “harder-to-predict,” they can nevertheless provide the basis

for spatially explicit future scenarios, particularly if used in the short

and medium-term and as a basis for engagement and the

development of narratives for the longer-term. This is especially

the case for data on spatially-explicit racial and group compositions,

or other vulnerability metrics, which at a scale finer than borough or

PUMA are unlikely to ever be produced through for example cohort

component forecasting methods.

2 The data in the map represent the population of census tracts, the
boundaries having been harmonized over time and, from NHGIS
(Manson et al., 2021). There have been many changes in the way
the census classifies racial and Hispanic-origin population (Humes and
Hogan, 2009; Strmic-Pawl et al., 2018), but these data have beenmade
consistent over time for the major racial and ethnic groups
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Given that current population downscaling approaches

already use historical population change as one component

to aid in future population change (Jones and O’Neill, 2013),

these data are likely to be useful in predicting future

population distributions by race and ethnicity in spatial

downscaling models. The data in these figures are based on

census tracts, and whether future distributions should be

based on tract-level or somewhat aggregated level-

neighborhood change is an open question. Additional

ancillary data that can be shown to correlate with spatial

population change, and the distribution of the city population

by important demographic characteristics, in the empirical

FIGURE 2
Examples of 2080 land-use simulations: for (A) Business-as-usual (A) and Resilience to Multiple-hazards (B), for Baltimore, MD.

FIGURE 3
Framework for integrated modeling of local and regional population and land use projections with equity considerations.
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record (e.g., migration status, which may indicate where

recent migrants are most likely to settle, an important

characteristic as this group tends to be disproportionately

vulnerable to hazards) are critical to robust methods for

producing future scenarios. Similarly, spatially explicit data

regarding future climate hazards such as sea level rise and/or

flood risk will help to characterize exposure, vulnerability, and

future residential patterns under alternative climate futures.

4.3.3 Use sub-city population projections in
land-use models and projections

A third example comes from incorporating population change

into a multi-level land-use model. Changes in demographic

characteristics directly affect land uses (Hoffmann 2021) and the

LUCC model can help address changes related to ecosystems,

whereas the population projections cannot. Though some LUCC

models include socio-demographic factors such as population

density, household size and type, job access, and unemployment

rate to explain variation in LUC changes (Cammerer et al., 2013;

Achmad et al., 2015; Mustafa et al., 2017; Guo and Zhang, 2021),

currentmodels do not account for the changes in socio-demographic

characteristics that will influence the land-use change process. Rather,

land-use change models make simple projections assuming future

population will change at the same rate as historical changes (Puertas

et al., 2014; Vermeiren et al., 2016;Mustafa et al., 2018; Saganeiti et al.,

2021). Using the existing modeling framework as shown in Mustafa

et al. (2021), it is possible to make the land use-based model more

demographically informed. One means of integrating models would

be through the fine resolution (4 m2) of the LUCC model, allowing

for city-scale scenarios to integrate county or PUMA-level projected

population data, consistent with different SSPs, that would be

generated from the multi-state model as described above.

Another way to integrate across models, would be to add

additional socio-demographics variables to examine the

magnitude and direction of these characteristics on changes in

land uses and urban development, as we illustrate in Table 2.

Based on prior work (see Figure 5 in Mustafa et al., 2021), in

which the prediction of the land-use model for urban

development between 2001 and 2016 in New York City

included only counts of population and median household

income3, here we introduce additional socioeconomic variables

to the prediction of urban development. The performance of this

multinomial logistic regression model is evaluated using the

relative operating characteristic (ROC) method. The ROC is a

method to estimate the quality of a model that predicts the

occurrence of an event by comparing a probability map depicting

the likelihood of change occurring and a binary map showing

where the changes actually occurred (Hu and Lo, 2007) where a

ROC value of 1 means perfect prediction. Adding new variables

to the original variables introduced inMustafa et al. (2021) shows

an improvement in ROC values: ROC values of Mustafa et al.

FIGURE 4
Percent of the population by race and ethnicity, New York
City, 1980–2020, based on decennial census tracts.

3 The LUCC model consists of demand and allocation modules. The
demand module estimates the rate of change from one LUC class to
another in each annual timestep. The model allocates LUCC over a
geographic space according to a transition rule that consists of two
components: the first measures the impact of a set of variables (e.g.,
distance to roads, slope degree) which is calibrated using amultinomial
logistic regression (Mustafa et al., 2018) with fine-level spatial variables
derived from the U.S. National Land Cover Dataset of 2001 and 2016. A
second component measures the impact of the land-use composition
of the neighborhood on each land unit which is calibrated using multi-
objective Markov Chain Monte Carlo optimizer (Mustafa et al., 2021).
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(2021) were 0.63, 0.65, and 0.59 for changes from non-built-up to

low-, med- and high-density built-up respectively, whereas ROC

values with the added variables illustrated here are 0.64, 0.69, and

0.73 respectively.

Moving beyond population size and median household

income as the only predictors of urban expansion, here we

find that while those variables remain important (but lower in

magnitude), a much fuller range of population and

socioeconomic characteristics also influence urban

development. For example, Table 2 shows that the size of the

16 + year old population engaged in the labor force increases all

types of development, but especially the high-density type;

conversely, urban development is unlikely to happen in

neighborhoods with higher fractions of non-citizens.

Neighborhoods with higher percentage of Hispanic residents

saw growth in all types of development, but neighborhoods with

higher percentage of Black residents saw declines in medium-

density development but increases in high-density areas, a

pattern also evident in the maps above. By introducing these

variables, the LUCCmodel is informed by amore comprehensive

range of socio-demographic changes underway in New

York City.

Understanding the importance of housing (and housing

construction), as described above, New York City (and other

large cities or municipalities) already includes some land-use

(and housing) information as constraints on population growth

in its projections at the county-level. Yet, additional information

from census data, such as that on rent burden (defined as more

than 35% of annual income going to rent), can also be

incorporated, perhaps into land-use models or other down-

scaling models. Figure 5 below shows such data for New

York City, from 1980–2020, at the census tract-level, and

while rent burdens are increasing throughout the city,

increases are more pronounced outside of Manhattan, and

in neighborhoods (shown in Figure 4) that have also seen

changes in distributions of the racial or ethnic

subpopulations (Furman Center 2016; Chronopoulos,

2020; Sutton, 2020). New York City’s Comptroller

Affordability Index also found that the median gross rent

and other expenses continuously rose from 2005 to 2017 but

this was not met with a proportional rise in the median

household income (NYC Comptroller Affordability Index,

2019). Without additional protections in place (such as anti-

displacement strategies), the increased rent burden is going

to disproportionately impact the ability of low-income

communities and communities of color to afford

increasing housing costs and stay in their neighborhoods.

Such neighborhood-scale data could be used to refine and

combine local land use and population projections and thus

be attentive to the inclusivity or exclusivity of local

development practices. Rent burden is just one of the

many vulnerability metrics that may be included in these

models (see Figure 3 for a full model).

4.3.4 Engage with stakeholders, experts, and
community members

A final component of the proposed framework is the

integration of participatory approaches. Following the

proposed framework for integrated components of population

and LUCCmodels described above, the participatory component

offers an opportunity to integrate normative goals and develop

positive, alternative visions andmodels for the future (Ortiz et al.,

2021). In particular, this component adds a context-specific

perspective to the local/fine scale modeling that may be

missing from downscaled data. It is also an opportunity to

engage with local stakeholders in planning for the future and

integrating the models into their decision-making process.

Positive visioning is not limited to urban social-ecological

systems. The biodiversity community is also actively engaging

with stakeholders to create scenarios and positive visions as they

relate to nature-based solutions and sustainable development

goals (Albert et al., 2021; Mansur et al., 2022). For example, the

Intergovernmental Science-Policy Platform on Biodiversity and

Ecosystem Services (IPBES) has developed a program of work

around these principles (https://ipbes.net/scenarios-models).

As described above, and demonstrated in a few of the local

SSP studies (Rohat et al., 2021, 2019; Reimann et al., 2021) as well

as the process in place in the NYMTC SED Projections, there

may be previously untapped connections between engaging with

local stakeholders and experts in the development of

assumptions about SSP narratives or other future pathways

that can be used with local population projections; this would

then make further downscaling work more consistent with

stakeholder visioning.

5 Discussion and conclusion

The multi-scale and multi-disciplinary framework proposed

here couples population and land use projection models for cities

and their surrounding areas with climate, social-ecological, and

socioeconomic futures and integrates climate and racial justice

principles to envision sustainable and equitable urban futures.

Our discussion and conclusion addresses key considerations for

future research and implementation of the framework, as well as

some of its limitations.

An equity lens must become part of the standard in planning

for climate adaptation and mitigation. The changing diversity of

population in cities is fundamental to defining the cities’ history

and future. Changes in population sizes, age, and race/ethnicity

compositions and their spatial distributions are largely

determined by the interactions of population movements and

vital rates differentiated by the demographic characteristics

within the city and outside world. The increase in the flow of

people across places brings with it increased complexity of social

formations and interactions. Unfortunately, contemporary

futures exercises have yet to include socio-economic diversity
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variables (race, ethnicity, migration status, education, income,

etc.). Ensuring equitable and just futures for all urban

communities requires adopting new methods for policy-

relevant planning that accommodate aspects of that diversity

and vulnerability in its medium-and long-term forecasting of

population and land use, and consequently with future climate

scenarios. In applying an equity lens, it is important to keep in

mind that the guiding principles of environmental and climate

justice (distributive, procedural, recognitional, and

intergenerational) apply to all aspects of the proposed

framework from data collection to engagement to decision-

making (in analysis, policy or planning) (Newell et al., 2021).

The examples here show how improvements—spatially,

temporally and thematically—can be made to address the lack

of representation of socio-economic diversity variables in the

future models. The proposed framework offers a mix-and-

match approach among different model types that can vary

depending on the given application. Thus, the precise

implementation will depend on the most robust and

appropriate spatial and temporal scales to model. Fitness-

for-use is an important concept that helps a user decide which

models to integrate for which purpose. While there are likely

trade-offs between modeling themes and spatial and temporal

scales (as shown in Figure 3), ideally, the model outputs

should be able to inform solutions for both adaptation and

mitigation measures that simultaneously reduce exposure and

lower emissions levels (Hussein et al., 2013).

Planning for climate change, especially in urban settings,

should include sub-city level vulnerability metrics that are

tailored to the climate hazards anticipated and the adaptation

and mitigation measures contemplated. Primarily due to internal

and international migration, cities are prime locations for “super-

diversity,” a term used to underscore the type of complexity

experienced in cities as it relates to socio-cultural and

sociolinguistic diversity, along with differences and nuances in

nationality, class, religion, identity, educational background, legal

status, mode of entry, etc. (Foner et al., 2019; Vertovec 2019).

With a majority of its residents being immigrants or children of

immigrants, New York City is a prime example of this super-

diversity and the interplay of complexities in social interactions

(Zapatka, 2021). As described above, marginalized populations

are often at heightened risk for experiencing climate impacts and

thus should be more fully captured in projections in order to

ensure equitable climate adaptation and mitigation planning that

reduces vulnerability.

Vulnerability metrics must also adequately represent the

sensitivity of the population for the specific climate risk in

order to generate effective responses (NRC, 2011). For

TABLE 2 Coefficients of multinomial logistic regression model of urban expansion (changes from non-urban to low-, medium- or high-built-up
density urban).

Low density Medium density High density

Intercept −0.443 −0.279 −1.313

Fine-resolution spatial variables

Elevation 0.183* 0.153* 0.012

Slope 0.071* −0.233* −0.368*

Distance to highways 0.056* 0.022 −0.003

Distance to local roads −0.240* −0.175* −0.011

Tract-level socio-demographic variables

Median household income 0.000* 0.001* 0.001*

Population (count) 0.174* 0.248* 0.151*

Population 16 and over in labor force (count) 0.657* 1.184* 1.492*

Language other than English −0.094 −0.298* −0.475*

Language English only −0.703* −1.037* −1.868*

Population not a U.S. citizen −0.217* −0.106* −0.029

Bachelor’s degree or higher 0.061 −0.143* 0.428*

3 years and over enrolled in school 0.307* 0.314* 0.204*

Women had a birth in the past 12 months −0.01 0.086* 0.248*

Average family size −0.071* 0.233* 0.367*

White alone −0.186* −0.272* −0.241*

Black or African American alone −0.043 −0.155* 0.131*

Asian alone 0.007 −0.01 −0.481*

Hispanic or Latino 0.222* 0.437* 0.591*

NB: To be compared withMustafa et al., 2021, Figure 5; grey shaded rows represent additional variables. The built-up density represents percent imperviousness which considers a cell with

impervious surfaces accounting for 20%–49% as low-density, 50%–79% as medium-density, and 80%–100% as high-density. All attributes of the population (other than income and family

size) are measured as counts in this model
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example, in areas with concentrations of vulnerable populations

without legal status, residents may be fearful about participating

in government services (such as disaster readiness or relief,Mendez

et al., 2020) and therefore local governments should develop plans that

minimize these concerns and provide targeted outreach to assuage

their fears. Concentration of residents whose primary language is not

English may need alternative measures for communicating early

weather warnings. Low-income homeowners and renters in flood-

prone areas are likely to experience storms, flooding, or sea-level rise

differently since homeowners are less mobile but renters tend to have

less equity and therefore need different emergency care measures.

AfterHurricane Ida in September 2021,NewYorkCity tookmeasures

to identify those affected and create policies meant to include

vulnerable populations in early warning and rapid response

policies for future extreme weather events (New York City Office

of the Mayor, 2021). The New York City Emergency Management

(NYCEM) office also took on a series of initiatives including

developing a Hazard Mitigation Plan and is currently in the

process of expanding their community resources to include risk

assessments (e.g., the Community Mitigation Pilot Project focused

on the Gowanus community in Brooklyn) (NYCEM) and a

composite Urban Risk Index. Our proposed framework could be

used to evaluate the effectiveness of these measures in the future.

Accurate and thoughtful data collection and inclusive and

sustained engagement are necessary for just policy outcomes

(Newell et al., 2021). As such, those most likely to be

disproportionately affected by a specific climate risk should be

identified early on and their experiences should be centered

throughout the planning process. For example, when planning

for climate hazards such as heat, individuals who are likely to be

more susceptible to increases in temperature must be identified

such as individuals in areas with less tree canopy (due to the heat

island effect), older residents (due to their decreased ability to

adjust to changes in temperature or lack of mobility), individuals

with disabilities (due to increased sensitivity to heat or lack of

mobility) and residents without AC or without access to cooling

centers (due to the lack of ability to cool the environment)

(Herreros-Cantis and McPhearson 2021; McDonald et al., 2021).

Thus, in order to ensure equitable climate mitigation and adaptation

measures, city and regional stakeholders projecting climate impacts

would be better primed to address the needs of residents if they had

access to sub-city level, socio-economically nuanced projections on

the spatial distribution of the population by combinations of key

vulnerability metrics (e.g., age, race/ethnicity, income, housing

tenure, linguistic isolation, disability), aspects of the built-

environment (e.g., access to cooling, basement dwelling) and

their environmental exposures (e.g., tree canopy, flood

proneness). While complex thematic specificity is well beyond

the capacity of current projection and visioning methods, by

using the proposed integrated, multiscale framework it will move

us towards a planning future that takes into account intersecting

vulnerability indicators.

Engagement with local communities is necessary to

identify and prioritize community needs, inform the

decision-making process, understand uncertainty, and

ensure that equity principles are applied. Furthermore, use

of a participatory development of positive future scenarios,

along with long-standing demographic and land use

projection methods, can acknowledge the complexity and

inherent uncertainty of urban systems by integrating local

knowledge of the system, as well as help create support to clear

policy hurdles. Thus, participatory engagement in the process

of modeling urban futures also provides opportunities to work

toward just futures (Newell et al., 2021) and evaluate

FIGURE 5
Percent share of population experiencing rent burden per census tract across New York City from 1980 to 2020. The rent burden is defined as
using 35% or more of total annual income for rent.
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conditions under which positive future outcomes can emerge

(Iwaniec et al., 2020a; Cook et al., 2021; Reimann et al., 2021;

Rohat et al., 2021).

The framework is intended for wide application. While we

have focused on bringing together demographic and urban

ecological approaches, the proposed framework can be applied

in diverse contexts and applications. For example, while cities can

exacerbate biodiversity loss (McKinney 2006), they also provide

an opportunity to address the biodiversity challenge (Ives et al.,

2016; Planchuelo et al., 2019; Adem Esmail et al., 2022;

Frantzeskaki and McPhearson, 2022) and conservation

through future projections and scenario planning (IPBES,

2019). Applying this framework, scenarios and projections

could be developed to address nature-based solutions (Albert

et al., 2021; Mansur et al., 2022) and the impacts of different

urban futures associated with the SSP on conservation outcomes

(e.g., Sanderson et al., 2019).

Existing regulations can be leveraged by cities and

regional authorities to implement this framework. Unlike

national population counts or climate projections, no single

statistical body authoritatively produces state, county or

local projections. Yet population projections may be

useful or necessary not just to adequately plan for the

future but also to comply with federal, state, or local

regulations. For example, federal transportation legislation

mandates that urbanized areas of 50,000 persons or more

designate a Metropolitan Planning Organization in order to

qualify for federal transportation funds (NYMTC). Thus,

many cities and their greater metropolitan area participate in

a regional planning process that includes both modeling

projections and participatory processes. Like NYMTC for

the Greater New York Area, this planning process is often

blended—bringing together demographic, land-use and

transportation or employment information, and relies on

demographic projections with stakeholder feedback. This

provides a useful and real-world example of how the

framework proposed here can be scaled up into city and

regional planning. However, the production of these

projections is only starting to think about the role of

climate change as a constraint on or as an enabler of growth.

Climate change makes it apparent why cities and their

nearby regions need to work together. Because city and

regional planners have not typically considered the

implications of climate change in their planning, their

projections have tended to be fairly short-term. Cities often

have local laws that require long-term climate projections be

made available for local planning needs (Lopez-Cantu et al.,

2020). Yet, these laws do not apply to envisioning population

and socioeconomic futures. Nevertheless, cities and their

surrounding regions are increasingly aware that they must plan

to mitigate and adapt to the impacts of climate change. The

framework proposed here demonstrates that the exchange of

ideas and integration of methods used by those thinking about

climate-change (and the population and socioeconomic futures

likely to accompany those futures) with those working at the

regional scale could be mutually beneficial and highly productive

for envisioning sustainable and equitable urban futures. Thus, a fully

worked application of this new framework will be important in

demonstrating the utility and feasibility for cities and metropolitan

regions to adopt such methods in their own forecasting in

future work.

Data availability statement

The original contributions presented in the study are

included in the article. Further inquiries can be directed to the

corresponding author.

Author contributions

The study was conceived by DB, BJ, PM, and LJ and they

acquired initial funding for it. TM and EC acquired

additional resources for it. DB led the conceptualization,

supervision and project administration, with support from

DT. DB, DT, EC, LJ, PM, BJ, AM, and TM contributed to co-

creation of the methodology and visualization. PJ and AM

led the data acquisition and production of maps and Table 2.

DT led the construction of the conceptual framework

diagram with inputs from all others. DB, DT, LJ, PM, EC,

BJ, AM, and TM contributed to the initial writing. DB and

DT led the revisions with contributions from PM, EC,

and TM.

Funding

This work was made possible by funding from the City

University of New York’s Interdisciplinary Research Grant

(proposal #2828) to DB, BJ, PM, DT, and LJ. We

acknowledge support for TM, AM, and EC from the US

National Science Foundation (awards #1444755, #1927167,

and #1934933).

Acknowledgments

We thank Julie Margolin of the Baruch College Climate

Scholars Program for research assistance and Grace Sinay of

the CUNY Institute for Demographic Research for

administrative support that made this research possible. The

authors also thank David Burgy, formerly an analyst at NYMTC,

for several conversations about local, regional, and state

Frontiers in Built Environment frontiersin.org21

Balk et al. 10.3389/fbuil.2022.949433

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


projection efforts. We thank the reviewers for their thoughtful

comments and suggestions.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

References

Absar, S. M., and Preston, B. L. (2015). Extending the Shared
Socioeconomic Pathways for sub-national impacts, adaptation, and
vulnerability studies. Glob. Environ. Change 33, 83–96. doi:10.1016/j.
gloenvcha.2015.04.004

Achmad, A., Hasyim, S., Dahlan, B., and Aulia, D. N. (2015). Modeling of urban
growth in tsunami-prone city using logistic regression: Analysis of Banda Aceh,
Indonesia. Appl. Geogr. 62, 237–246.

Adem Esmail, B., Cortinovis, C., Suleiman, L., Albert, C., Geneletti, D., and Mörtberg, U.
(2022). Greening cities through urban planning: A literature review on the uptake of
concepts andmethods in stockholm.Urban For. UrbanGreen. 72, 1–13. doi:10.1016/j.ufug.
2022.127584

Albert, C., Brillinger, M., Guerrero, P., Gottwald, S., Henze, J., Schmidt, S., et al.
(2021). Planning nature-based solutions: Principles, steps, and insights. Ambio 50
(8), 1446–1461. doi:10.1007/s13280-020-01365-1

American Community Survey (ACS) (2020). New York-Newark-Jersey city, NY-
NY-pa metro area. Census reporter. Available at: https://censusreporter.org/
profiles/31000US35620-new-york-newark-jersey-city-ny-nj-pa-metro-area/.

Balk, D. S. L., Montgomery, M., and Matthews, S. (2021). Revitalizing
urban research: What is the future role of demographers?” A commentary.
Look. Back, Look. Forw. Prog. Prospect Spatial Demogr. Spatial Demogr. 9,
14–17. doi:10.1007/s40980-021-00084-9

Bikomeye, J. C., Rublee, C. S., and Beyer, K. M. (2021). Positive externalities of
climate change mitigation and adaptation for human health: A review and
conceptual framework for public health research. Int. J. Environ. Res. Public
Health 18 (5), 2481. doi:10.3390/ijerph18052481

Börjeson, L., Höjer, M., Dreborg, K. H., Ekvall, T., and Finnveden, G. (2006).
Scenario types and techniques: Towards a user’s guide. Futures 38 (7), 723–739.
doi:10.1016/j.futures.2005.12.002

Burch, T. K. (2018). “The cohort-component population projection: A strange
attractor for demographers,” in Model-based demography (Cham: Springer),
135–151.

California State Department of Finance (2020). Population projections
methodology (2019 baseline) - demographic research unit. Available at: https://
dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_
Methodology.pdf.

Cammerer, H., Thieken, A. H., and Verburg, P. H. (2013). Spatio-temporal
dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in
Tyrol (Austria). Nat. Hazards (Dordr). 68 (3), 1243–1270. doi:10.1007/s11069-012-
0280-8

Chronopoulos, T. (2020). What’s happened to the people?” Gentrification and
racial segregation in Brooklyn. J. Afr. Am. Stud. New. Brunsw. 24 (4), 549–572.
doi:10.1007/s12111-020-09499-y

Clement, V., Rigaud, K., de Sherbinin, A., Jones, B., AdamoSchewe, S. J., Sadiq, N.,
et al. (2021). Groundswell Part 2: Acting on internal climate migration. Washington,
DC: World Bank.

Con Edison Media Relations (2019). Con Edison working to restore power to
approximately 33,000 customer outages in some southeast Brooklyn
neighborhoods. Available at: https://www.coned.com/en/about-us/media-center/
news/20190721/con-edison-working-to-restore-power-to-33000-outages-in-southeast-
brooklyn-neighborhoods.

Cook, E. M., Berbés-Blázquez, M., Mannetti, L. M., Grimm, N. B., Iwaniec, D. M.,
and Muñoz-Erickson, T. A. (2021). “Setting the stage for Co-production,” in
Resilient urban futures. Editors Z. A. Hamstead, D. M. Iwaniec, T. McPhearson,
M. Berbés-Blázquez, E. M. Cook, and T. A. Muñoz-Erickson (Cham, Switzerland:
Springer International Publishing), 99–111.

Creutzig, F., Lohrey, S., Bai, X., Baklanov, A., Dawson, R., Dhakal, S., et al. (2019).
Upscaling urban data science for global climate solutions. Glob. Sustain. 2. doi:10.
1017/sus.2018.16

Depietri, Y., Dahal, K., and McPhearson, T. (2018). Multi-hazard risks in New
York city. Nat. Hazards Earth Syst. Sci. 18 (12), 3363–3381. doi:10.5194/nhess-18-
3363-2018

EPA (2021). Climate change and social vulnerability in the United States: A focus
on six impacts. EPA 430-R-21-003. U.S. Environmental Protection Agency.
Available at: www.epa.gov/cira/social-vulnerability-report.

EPA (2017). Updates to the demographic and spatial allocation models to
produce integrated climate and land use scenarios (iclus) (final report,
version 2). EPA/600/R-16/366F. Washington, DC: U.S. Environmental
Protection Agency.

Foner, N., Duyvendak, J. W., and Kasinitz, P. (2019). Introduction: Super-
diversity in everyday life. Ethn. Racial Stud. 42 (1), 1–16. doi:10.1080/01419870.
2017.1406969

Foster, S., Leichenko, R., Nguyen, K. H., Blake, R., Kunreuther, H., Madajewicz,
M., et al. (2019). New York city panel on climate change 2019 report chapter 6:
Community-based assessments of adaptation and equity. Ann. N. Y. Acad. Sci. 1439
(1), 126–173. doi:10.1111/nyas.14009

Frantzeskaki, N., andMcPhearson, T. (2022). Mainstream nature-based solutions
for urban climate resilience. BioScience 72 (2), 113–115. doi:10.1093/biosci/biab105

Furman Center (2016). State of New York city’s housing and neighborhoods in
2015. Available at: https://furmancenter.org/research/sonychan/2015-report.

Guo, J., and Zhang, M. (2021). Exploring the patterns and drivers of urban
expansion in the Texas triangle megaregion. Land 10 (11), 1244. doi:10.3390/
land10111244

Hamilton, C. H., and Perry, J. (1962). A short method for projecting population
by age from one decennial census to another. Soc. Forces 41, 163–170. doi:10.2307/
2573607

Hamstead, Z. A. (2021a). “How we got here: Producing climate inequity and
vulnerability to urban weather extremes,” in Resilient urban futures. Editors
Z. A. Hamstead, D. M. Iwaniec, T. McPhearson, M. Berbés-Blázquez,
E. M. Cook, and T. A. Muñoz-Erickson (Cham, Switzerland: Springer
International Publishing), 11–28.

Hamstead, Z. A., Iwaniec, D. M., McPhearson, T., Berbés-Blázquez, M., Cook, E.
M., andMunoz-Erickson, T. A. (2021b). Resilient urban futures. Cham, Switzerland:
Springer International Publishing.

Hauer, M. E. (2019). Population projections for US counties by age, sex, and race
controlled to shared socioeconomic pathway. Sci. Data 6 (1), 190005–190015.
doi:10.1038/sdata.2019.5

Herreros-Cantis, P., and McPhearson, T. (2021). Mapping supply of and demand
for ecosystem services to assess environmental justice in New York City. Ecol. Appl.
31 (6), e02390. doi:10.1002/eap.2390

Herreros-Cantis, P., Olivotto, V., Grabowski, Z. J., and McPhearson, T. (2020).
Shifting landscapes of coastal flood risk: Environmental (in) justice of urban change,
sea level rise, and differential vulnerability in New York city. Urban Transform. 2
(1), 9–28. doi:10.1186/s42854-020-00014-w

Hoffman, J. S., Shandas, V., and Pendleton, N. (2020). The effects of historical
housing policies on resident exposure to intra-urban heat: A study of 108 US urban
areas. Climate 8 (1), 12. doi:10.3390/cli8010012

Hoffmann, J. (2021). “Demographic change and land use,” in Sustainable land
management in a European context. Editors T. Weith, T. Barkmann, N. Gaasch,
S. Rogga, C. Strauß, and J. Zscheischler (Cham: Springer), Vol. 8.

Frontiers in Built Environment frontiersin.org22

Balk et al. 10.3389/fbuil.2022.949433

https://doi.org/10.1016/j.gloenvcha.2015.04.004
https://doi.org/10.1016/j.gloenvcha.2015.04.004
https://doi.org/10.1016/j.ufug.2022.127584
https://doi.org/10.1016/j.ufug.2022.127584
https://doi.org/10.1007/s13280-020-01365-1
https://censusreporter.org/profiles/31000US35620-new-york-newark-jersey-city-ny-nj-pa-metro-area/
https://censusreporter.org/profiles/31000US35620-new-york-newark-jersey-city-ny-nj-pa-metro-area/
https://doi.org/10.1007/s40980-021-00084-9
https://doi.org/10.3390/ijerph18052481
https://doi.org/10.1016/j.futures.2005.12.002
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf
https://doi.org/10.1007/s11069-012-0280-8
https://doi.org/10.1007/s11069-012-0280-8
https://doi.org/10.1007/s12111-020-09499-y
https://www.coned.com/en/about-us/media-center/news/20190721/con-edison-working-to-restore-power-to-33000-outages-in-southeast-brooklyn-neighborhoods
https://www.coned.com/en/about-us/media-center/news/20190721/con-edison-working-to-restore-power-to-33000-outages-in-southeast-brooklyn-neighborhoods
https://www.coned.com/en/about-us/media-center/news/20190721/con-edison-working-to-restore-power-to-33000-outages-in-southeast-brooklyn-neighborhoods
https://doi.org/10.1017/sus.2018.16
https://doi.org/10.1017/sus.2018.16
https://doi.org/10.5194/nhess-18-3363-2018
https://doi.org/10.5194/nhess-18-3363-2018
www.epa.gov/cira/social-vulnerability-report
https://doi.org/10.1080/01419870.2017.1406969
https://doi.org/10.1080/01419870.2017.1406969
https://doi.org/10.1111/nyas.14009
https://doi.org/10.1093/biosci/biab105
https://furmancenter.org/research/sonychan/2015-report
https://doi.org/10.3390/land10111244
https://doi.org/10.3390/land10111244
https://doi.org/10.2307/2573607
https://doi.org/10.2307/2573607
https://doi.org/10.1038/sdata.2019.5
https://doi.org/10.1002/eap.2390
https://doi.org/10.1186/s42854-020-00014-w
https://doi.org/10.3390/cli8010012
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


Humes, K., and Hogan, H. (2009). Measurement of race and ethnicity in a
changing, multicultural America. Race Soc. Probl. 1 (3), 111–131. doi:10.1007/
s12552-009-9011-5

Hu, Z., and Lo, C. P. (2007). Modeling urban growth in Atlanta using logistic
regression. Comput. Environ. Urban Syst. 31 (6), 667–688. doi:10.1016/j.
compenvurbsys.2006.11.001

Hussein, Z., Hertel, T., and Golub, A. (2013). Climate change mitigation policies
and poverty in developing countries. Environ. Res. Lett. 8 (3), 035009. doi:10.1088/
1748-9326/8/3/035009

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES)Balvanera, P., Brauman, K., Butchart, S., and Chan, K. (2019).
The global assessment report on biodiversity and ecosystem services: Summary for
policy makers. Report.

Ives, C. D., Lentini, P. E., Threlfall, C. G., Ikin, K., Shanahan, D. F., Garrard, G. E.,
et al. (2016). Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25 (1),
117–126. doi:10.1111/geb.12404

Iwaniec, D. M., Berbés-Blázquez, M., Cook, E. M., Grimm, N. B., Mannetti, L. M.,
McPhearson, T., et al. (2021). “Positive futures,” in Resilient urban futures. Editors
Z. A. Hamstead, D. M. Iwaniec, T. McPhearson, M. Berbés-Blázquez, E. M. Cook,
and T. A. Muñoz-Erickson (Cham, Switzerland: Springer International Publishing),
85–97.

Iwaniec, D. M., Cook, E. M., Davidson, M. J., Berbés-Blázquez, M., Georgescu, M.,
Krayenhoff, E. S., et al. (2020a). The co-production of sustainable future scenarios.
Landsc. Urban Plan. 197, 103744. doi:10.1016/j.landurbplan.2020.103744

Iwaniec, D. M., Cook, E. M., Davidson, M. J., Berbés-Blázquez, M., and Grimm,
N. B. (2020b). Integrating existing climate adaptation planning into future visions:
A strategic scenario for the central Arizona–phoenix region. Landsc. Urban Plan.
200, 103820. doi:10.1016/j.landurbplan.2020.103820

Jiang, L. (2014). Internal consistency of demographic assumptions in the shared
socioeconomic pathways. Popul. Environ. 35 (3), 261–285. doi:10.1007/s11111-014-
0206-3

Jiang, L., and O’Neill, B. C. (2017). Global urbanization projections for the shared
socioeconomic pathways. Glob. Environ. Change 42, 193–199. doi:10.1016/j.
gloenvcha.2015.03.008

Jiang, L., O’Neill, B. C., Zoraghein, H., and Dahlke, S. (2020). Population
scenarios for US states consistent with shared socioeconomic pathways. Environ.
Res. Lett. 15 (9), 094097. doi:10.1088/1748-9326/aba5b1

Jones, B., and O’Neill, B. C. (2013). Historically grounded spatial population
projections for the continental United States. Environ. Res. Lett. 8 (4), 044021.
doi:10.1088/1748-9326/8/4/044021

Jones, B., O’Neill, B. C., McDaniel, L., McGinnis, S., Mearns, L. O., and Tebaldi, C.
(2015). Future population exposure to US heat extremes. Nat. Clim. Chang. 5 (7),
652–655. doi:10.1038/nclimate2631

Jones, B., and O’Neill, B. C. (2016). Spatially explicit global population scenarios
consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11 (8),
084003. doi:10.1088/1748-9326/11/8/084003

Kamei, M., Hanaki, K., and Kurisu, K. (2016). Tokyo’s long-term socioeconomic
pathways: Towards a sustainable future. Sustain. Cities Soc. 27, 73–82. doi:10.1016/j.
scs.2016.07.002

Kamei, M., Kurisu, K., and Hanaki, K. (2019). Evaluation of long-term urban
transitions in a megacity’s building sector based on alternative socioeconomic
pathways. Sustain. Cities Soc. 47, 101366. doi:10.1016/j.scs.2018.11.041

KC, S., Lutz, W., Wurzer, M., and Speringer, M. (2018). Future population and
human capital in heterogeneous India. Proc. Natl. Acad. Sci. U. S. A. 115 (33),
8328–8333. doi:10.1073/pnas.1722359115

KC, S., and Lutz, W. (2017). The human core of the shared socioeconomic
pathways: Population scenarios by age, sex and level of education for all countries
to 2100. Glob. Environ. Change 42, 181–192. doi:10.1016/j.gloenvcha.2014.06.004

Kinney, P. L., Matte, T., Knowlton, K., Madrigano, J., Petkova, E., Weinberger, K.,
et al. (2015). New York city panel on climate change 2015 report chapter 5: Public
health impacts and resiliency. Ann. N. Y. Acad. Sci. 1336, 67–88. doi:10.1111/nyas.
12588

Kriegler, E., Edmonds, J., Hallegatte, S., Ebi, K. L., Kram, T., Riahi, K., et al. (2014).
A new scenario framework for climate change research: The concept of shared
climate policy assumptions. Clim. Change 122 (3), 401–414. doi:10.1007/s10584-
013-0971-5

Ku, C. A. (2016). Incorporating spatial regression model into cellular automata
for simulating land use change. Appl. Geogr. 69, 1–9. doi:10.1016/j.apgeog.2016.
02.005

Lieberman-Cribbin, W., Gillezeau, C., Schwartz, R. M., and Taioli, E. (2021).
Unequal social vulnerability to Hurricane Sandy flood exposure. J. Expo. Sci.
Environ. Epidemiol. 31 (5), 804–809. doi:10.1038/s41370-020-0230-6

Lino, J., Rohat, G., Kirshen, P., and Dao, H. (2019). Extending the shared
socioeconomic pathways at the city scale to inform future vulnerability
assessments—the case of boston, Massachusetts. J. Extreme Events 6 (3-4),
2050009. doi:10.1142/s2345737620500098

Locke, D. H., Hall, B., Grove, J. M., Pickett, S. T. A., Ogden, L. A., Aoki, C., et al.
(2021). Residential housing segregation and urban tree canopy in 37 US Cities.
npj Urban Sustain. 1 (1), 15–19. doi:10.1038/s42949-021-00022-0

Lopez-Cantu, T., Samaras, C., and Webber, M. (2020). Compilation of U.S. City
climate adaptation plans. Carnegie Mellon Univ. doi:10.1184/R1/13125473.v2

Lovins, A. (1977). Soft energy paths: Toward a durable peace. Cambridge, MA:
Friends of the Earth International/Ballinger Publishing Company.

Lutz, W., Sanderson, W., and Scherbov, S. (2001). The end of world population
growth. Nature 412, 543–545. doi:10.1038/35087589

MacManus, K., Balk, D., Engin, H., McGranahan, G., and Inman, R. (2021).
Estimating population and urban areas at risk of coastal hazards, 1990–2015: How
data choices matter. Earth Syst. Sci. Data 13 (12), 5747–5801. doi:10.5194/essd-13-
5747-2021

Madrigano, J., Ito, K., Johnson, S., Kinney, P. L., andMatte, T. (2015). A case-only
study of vulnerability to heat wave–related mortality in New York City
(2000–2011). Environ. health Perspect. 123 (7), 672–678. doi:10.1289/ehp.1408178

Manson, S. M. J., Van Riper, D., Kugler, T., and Ruggles, S. (2021). IPUMS
national historical geographic information system. Report.

Mansur, A. V., McDonald, R. I., Güneralp, B., Kim, H., de Oliveira, J. A. P.,
Callaghan, C. T., et al. (2022). Nature futures for the urban century: Integrating
multiple values into urban management. Environ. Sci. Policy 131, 46–56. doi:10.
1016/j.envsci.2022.01.013

Marcotullio, P. J., Rosenzweig, C., Solecki, W. D., Romero-Lankao, P., et al.
(2018). “The urban energy supply sector: Challenges and opportunities for low-
carbon, resilient and just cities,” in Climate change and cities: Second assessment
report of the urban climate change research network. Editors C. Rosenzweig,
W. D. Solecki, P. Romero-Lankao, S. Mehrotra, S. Dhakal, and S. A. Ibrahim
(New York: Cambridge University Press), 443–490.

Mayor’s Office of Sustainability (2017). Aligning New York city with the Paris
climate agreement. New York City: Mayor’s Office of Sustainability.

McDonald, R. I., Biswas, T., Sachar, C., Housman, I., Boucher, T. M., Balk, D.,
et al. (2021). The tree cover and temperature disparity in US urbanized areas:
Quantifying the association with income across 5, 723 communities. PloS One 16
(4), e0249715. doi:10.1371/journal.pone.0249715

McGranahan, G., Balk, D., and Anderson, B. (2007). The rising tide: Assessing the
risks of climate change and human settlements in low elevation coastal zones.
Environ. urbanization 19 (1), 17–37. doi:10.1177/0956247807076960

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization.
Biol. Conserv. 127 (3), 247–260. doi:10.1016/j.biocon.2005.09.005

McPhearson, T., Iwaniec, D. M., and Bai, X. (2017). Positive visions for guiding
urban transformations toward sustainable futures. Curr. Opin. Environ. Sustain. 22,
33–40. doi:10.1016/j.cosust.2017.04.004

McPhearson, T., Iwaniec, D. M., Hamstead, Z. A., Berbés-Blázquez, M., Cook, E.
M., Muñoz-Erickson, T. A., et al. (2021). “A vision for resilient urban futures,” in
Resilient urban futures. Editors Z. A. Hamstead, D. M. Iwaniec, T. McPhearson,
M. Berbés-Blázquez, E. M. Cook, and T. A. Muñoz-Erickson (Springer
International Publishing), 173–186.

Méndez, M., Flores-Haro, G., and Zucker, L. (2020). The (in) visible victims of
disaster: Understanding the vulnerability of undocumented Latino/a and
indigenous immigrants. Geoforum 116, 50–62. doi:10.1016/j.geoforum.2020.07.007

Méthot, J., Huang, X., and Grover, H. (2015). Demographics and societal values as
drivers of change in the Great Lakes–St. Lawrence River basin. J. Gt. Lakes. Res. 41,
30–44. doi:10.1016/j.jglr.2014.11.001

Mohtat, N., and Khirfan, L. (2021). The climate justice pillars vis-à-vis urban form
adaptation to climate change: A review. Urban Clim. 39, 100951. doi:10.1016/j.
uclim.2021.100951

Moss, R. H., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J. A.,
et al. (2008). Towards new scenarios for analysis of emissions, climate change,
impacts, and response strategies (No. PNNL-SA-63186). Pacific Northwest
National Lab.(PNNL). Richland, WA (United States): Impacts, and
Response Strategies.

Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van
Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change
research and assessment. Nature 463 (7282), 747–756. doi:10.1038/
nature08823

Mustafa, A., Cools, M., Saadi, I., and Teller, J. (2017). Coupling agent-based,
cellular automata and logistic regression into a hybrid urban expansion model
(HUEM). Land Use Policy 69, 529–540. doi:10.1016/j.landusepol.2017.10.009

Frontiers in Built Environment frontiersin.org23

Balk et al. 10.3389/fbuil.2022.949433

https://doi.org/10.1007/s12552-009-9011-5
https://doi.org/10.1007/s12552-009-9011-5
https://doi.org/10.1016/j.compenvurbsys.2006.11.001
https://doi.org/10.1016/j.compenvurbsys.2006.11.001
https://doi.org/10.1088/1748-9326/8/3/035009
https://doi.org/10.1088/1748-9326/8/3/035009
https://doi.org/10.1111/geb.12404
https://doi.org/10.1016/j.landurbplan.2020.103744
https://doi.org/10.1016/j.landurbplan.2020.103820
https://doi.org/10.1007/s11111-014-0206-3
https://doi.org/10.1007/s11111-014-0206-3
https://doi.org/10.1016/j.gloenvcha.2015.03.008
https://doi.org/10.1016/j.gloenvcha.2015.03.008
https://doi.org/10.1088/1748-9326/aba5b1
https://doi.org/10.1088/1748-9326/8/4/044021
https://doi.org/10.1038/nclimate2631
https://doi.org/10.1088/1748-9326/11/8/084003
https://doi.org/10.1016/j.scs.2016.07.002
https://doi.org/10.1016/j.scs.2016.07.002
https://doi.org/10.1016/j.scs.2018.11.041
https://doi.org/10.1073/pnas.1722359115
https://doi.org/10.1016/j.gloenvcha.2014.06.004
https://doi.org/10.1111/nyas.12588
https://doi.org/10.1111/nyas.12588
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1007/s10584-013-0971-5
https://doi.org/10.1016/j.apgeog.2016.02.005
https://doi.org/10.1016/j.apgeog.2016.02.005
https://doi.org/10.1038/s41370-020-0230-6
https://doi.org/10.1142/s2345737620500098
https://doi.org/10.1038/s42949-021-00022-0
https://doi.org/10.1184/R1/13125473.v2
https://doi.org/10.1038/35087589
https://doi.org/10.5194/essd-13-5747-2021
https://doi.org/10.5194/essd-13-5747-2021
https://doi.org/10.1289/ehp.1408178
https://doi.org/10.1016/j.envsci.2022.01.013
https://doi.org/10.1016/j.envsci.2022.01.013
https://doi.org/10.1371/journal.pone.0249715
https://doi.org/10.1177/0956247807076960
https://doi.org/10.1016/j.biocon.2005.09.005
https://doi.org/10.1016/j.cosust.2017.04.004
https://doi.org/10.1016/j.geoforum.2020.07.007
https://doi.org/10.1016/j.jglr.2014.11.001
https://doi.org/10.1016/j.uclim.2021.100951
https://doi.org/10.1016/j.uclim.2021.100951
https://doi.org/10.1038/nature08823
https://doi.org/10.1038/nature08823
https://doi.org/10.1016/j.landusepol.2017.10.009
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


Mustafa, A., Ebaid, A., Omrani, H., andMcPhearson, T. (2021). Amulti-objective
Markov chain Monte Carlo cellular automata model: Simulating multi-density
urban expansion in NYC. Comput. Environ. Urban Syst. 87, 101602. doi:10.1016/j.
compenvurbsys.2021.101602

Mustafa, A., Van Rompaey, A., Cools, M., Saadi, I., and Teller, J. (2018). Addressing the
determinants of built-up expansion and densification processes at the regional scale.Urban
Stud. 55 (15), 3279–3298. doi:10.1177/0042098017749176

National Research Council (NRC) (2011). Adapting to the impacts of climate
change. Washington, DC: National Academies Press.

National Association for the Advancement of Colored People (NAACP)
Fleischman, L., and Franklin, M., (2017). Fumes across the fence-line: The
health impacts of air pollution from oil and gas facilities on African American
Communities. Report.

Natural Resource Defense Council (NRDC), Fedinick, K. P., Taylor, S., Roberts,
M., Moore, R., and Olson, E. (2019). Watered down justice. Natural Resource
Defense Council Report.

New York City Comptroller Affordability Index (2019). Available at: https://
comptroller.nyc.gov/reports/affordability-index/.

New York City Department of City Planning (DCP) (2013). New York city
population projections by age/sex & borough, 2010-2040. Available at: https://
www1.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/
projections_report_2010_2040.pdf.

New York City Emergency Management (NYCEM). NYC Hazard Mitigation.
Available at: https://nychazardmitigation.com/planning/who-is-involved/.

New York City Office of the Mayor (2019). Mayor de Blasio appoints leadership
team for the fourth New York city panel on climate change. Available at: https://
www1.nyc.gov/office-of-the-mayor/news/635-19/mayor-de-blasio-appoints-leadership-
team-the-fourth-new-york-city-panel-climate-change.

New York City Office of the Mayor (2021). The new normal: Combating storm-
related extreme weather in New York city. Available at: https://www1.nyc.gov/
assets/orr/pdf/publications/WeatherReport.pdf.

New York City Panel on Climate Change (NPCC) (2015). Building
the knowledge base for climate resiliency. Ann. N. Y. Acad. Sci. 1336 (1),
1–150. Available at: https://nyaspubs.onlinelibrary.wiley.com/toc/
17496632/2015/1336/1.

New York City Panel on Climate Change (NPCC) (2019). Advancing tools
and methods for flexible adaptation pathways and science policy integration.
Ann. N. Y. Acad. Sci. 1439 (1), 10. Available at: https://www.nyas.org/annals/
special-issue-advancing-tools-and-methods-forflexible-adaptation-pathways-
and-science-policy-integration-new-york-citypanel-on-climate-change-2019-
report-vol-1439/.

New York City Service. The mayor’s office of long-term planning and
sustainability. Available at: https://www.nycservice.org/organizations/1686
(Accessed May, 2022).

New York Metropolitan Transportation Council (NYMTC). Required planning
products. Available at: https://www.nymtc.org/REQUIRED-PLANNING-
PRODUCTS (Accessed May, 2022).

New York Metropolitan Transportation Council (NYMTC) (2015).
Technical memorandum 1: Existing trends analysis. Available at: https://
www.nymtc.org/Portals/0/Pdf/SED/2055%20SED/Technical%20Memo%201_
Existing%20Trends%20Analysis.pdf?ver=fVG5kIJGwekD__d-_-PoeA%3d%3d.

New York Metropolitan Transportation Council (NYMTC) (2020). Technical
memorandum 4: 2055 SED forecasts executive summary & public comments.
Available at: https://www.nymtc.org/DATA-AND-MODELING/Socioeconomic-
and-Demographic-SED-Forecasts/2055-Forecasts.

Newell, P., Srivastava, S., Naess, L. O., Torres Contreras, G. A., and Price, R.
(2021). Toward transformative climate justice: An emerging research agenda.
WIREs Clim. Change 12 (6), e733. doi:10.1002/wcc.733

Oke, T. R., Mills, G., Christen, A., and Voogt, J. A. (2017). Urban climates.
Cambridge: UK: Cambridge University Press.

O’Neill, B. C., Carter, T. R., Ebi, K., Harrison, P. A., Kemp-Benedict, E.,
Kok, K., et al. (2020). Achievements and needs for the climate change
scenario framework. Nat. Clim. Chang. 10 (12), 1074–1084. doi:10.1038/
s41558-020-00952-0

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., et al.
(2014). A new scenario framework for climate change research: The concept of
shared socioeconomic pathways. Clim. change 122 (3), 387–400. doi:10.1007/
s10584-013-0905-2

Ortiz, L., Mustafa, A., Cantis, P. H., andMcPhearson, T. (2022). Overlapping heat
and COVID-19 risk in New York City.Urban Clim. 41, 101081. doi:10.1016/j.uclim.
2021.101081

Ortiz, L., Mustafa, A., Rosenzweig, B., and McPhearson, T. (2021). “Modeling
urban futures: Data-driven scenarios of climate change and vulnerability in cities,”
in Resilient urban futures. Editors Z. A. Hamstead, D. M. Iwaniec, T. McPhearson,
M. Berbés-Blázquez, E. M. Cook, and T. A. Muñoz-Erickson (Springer
International Publishing), 129–144.

Peterson, G. D., Cumming, G. S., and Carpenter, S. R. (2003). Scenario planning:
A tool for conservation in an uncertain world. Conserv. Biol. 17 (2), 358–366. doi:10.
1046/j.1523-1739.2003.01491.x

Planchuelo, G., von Der Lippe, M., and Kowarik, I. (2019). Untangling the role of
urban ecosystems as habitats for endangered plant species. Landsc. Urban Plan. 189,
320–334. doi:10.1016/j.landurbplan.2019.05.007

Puertas, O. L., Henríquez, C., andMeza, F. J. (2014). Assessing spatial dynamics of
urban growth using an integrated land use model. Application in Santiago
Metropolitan Area, 2010–2045. Land Use Policy 38, 415–425. doi:10.1016/j.
landusepol.2013.11.024

Quist, J. (2007). Backcasting for a sustainable future: The impact after ten years.
Delft, The Netherlands: Eburon Publishers.

Raftery, A. E., Alkema, L., and Gerland, P. (2014). Bayesian population
projections for the united nations. Stat. Sci. 29 (1), 58–68. doi:10.1214/13-sts419

Reimann, L., Vollstedt, B., Koerth, J., Tsakiris, M., Beer, M., and Vafeidis, A. T.
(2021). Extending the shared socioeconomic pathways (SSPs) to support local
adaptation planning—a climate service for Flensburg, Germany. Futures, 127,
102691. doi:10.1016/j.futures.2020.102691

Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O ’Neill, B. C.,
Fujimori, S., et al. (2017). The shared socioeconomic pathways and their
energy, land use, and greenhouse gas emissions implications: An
overview. Glob. Environ. change 42, 153–168. doi:10.1016/j.gloenvcha.
2016.05.009

Rienow, A., and Goetzke, R. (2015). Supporting SLEUTH – enhancing a cellular
automaton with support vector machines for urban growth modeling. Comput.
Environ. Urban Syst. 49, 66–81. doi:10.1016/j.compenvurbsys.2014.05.001

Rigaud, K., de Sherbinin, A., Jones, B., AdamoMaleki, S. D., Abu-Ata, N. E., Casals
Fernandez, A. T., et al. (2021). Groundswell Africa: Internal climate migration in the
lake victoria basin countries. Washington, DC: World Bank.

Rigaud, K., de Sherbinin, A., Jones, B., Bergmann, J., Clement, V., Ober, K., et al.
(2018). Groundswell: Preparing for internal climate migration. Washington, DC:
World Bank.

Robinson, J. B. (1982). Energy backcasting: A proposed method of policy analysis.
Energy Policy 10 (4), 337–344. doi:10.1016/0301-4215(82)90048-9

Rogers, A., and Woodward, J. A. (1991). Assessing state population projections
with transparent multiregional demographic models. Popul. Res. Policy Rev. 10,
1–26. doi:10.1007/bf00122150

Rohat, G., Wilhelmi, O., Flacke, J., Monaghan, A., Gao, J., Dao, H., et al. (2019).
Characterizing the role of socioeconomic pathways in shaping future urban heat-
related challenges. Sci. total Environ. 695, 133941. doi:10.1016/j.scitotenv.2019.
133941

Rohat, G., Wilhelmi, O., Flacke, J., Monaghan, A., Gao, J., van Maarseveen, M.,
et al. (2021). Assessing urban heat-related adaptation strategies under multiple
futures for a major US city. Clim. Change 164 (3), 61–20. doi:10.1007/s10584-021-
02990-9

Saganeiti, L., Mustafa, A., Teller, J., and Murgante, B. (2021). Modeling urban
sprinkling with cellular automata. Sustain. Cities Soc. 65, 102586. doi:10.1016/j.scs.
2020.102586

Sanderson, E. W., Moy, J., Rose, C., Fisher, K., Jones, B., Balk, D., et al. (2019).
Implications of the shared socioeconomic pathways for tiger (Panthera tigris)
conservation. Biol. Conserv. 231, 13–23. doi:10.1016/j.biocon.2018.12.017

Schell, C. J., Dyson, K., Fuentes, T. L., Des Roches, S., Harris, N. C., Miller, D. S.,
et al. (2020). The ecological and evolutionary consequences of systemic racism in
urban environments. Science 369 (6510), eaay4497. doi:10.1126/science.aay4497

Schoemaker, P. J. (1991). When and how to use scenario planning: A heuristic
approach with illustration. J. Forecast. 10 (6), 549–564. doi:10.1002/for.3980100602

Seto, K. C., Dhakal, S., Bigio, A., Blanco, H., Delgado, G. C., Dewar, D., et al.
(2014). “Chapter 12 - human settlements, infrastructure and spatial planning,” in
Climate change 2014: Mitigation of climate change. IPCC working group III
contribution to AR5 (New York: Cambridge University Press).

Ševčíková, H., Raftery, A. E., and Gerland, P. (2018). Probabilistic projection of
subnational total fertility rates. Demogr. Res. 38, 1843–1884. doi:10.4054/demres.
2018.38.60

Sharma, A., Wuebbles, D. J., and Kotamarthi, R. (2021). The need for urban-
resolving climate modeling across scales. AGU Adv. 2 (1), e2020AV000271. doi:10.
1029/2020av000271

Frontiers in Built Environment frontiersin.org24

Balk et al. 10.3389/fbuil.2022.949433

https://doi.org/10.1016/j.compenvurbsys.2021.101602
https://doi.org/10.1016/j.compenvurbsys.2021.101602
https://doi.org/10.1177/0042098017749176
https://comptroller.nyc.gov/reports/affordability-index/
https://comptroller.nyc.gov/reports/affordability-index/
https://www1.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/projections_report_2010_2040.pdf
https://www1.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/projections_report_2010_2040.pdf
https://www1.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/projections_report_2010_2040.pdf
https://nychazardmitigation.com/planning/who-is-involved/
https://www1.nyc.gov/office-of-the-mayor/news/635-19/mayor-de-blasio-appoints-leadership-team-the-fourth-new-york-city-panel-climate-change
https://www1.nyc.gov/office-of-the-mayor/news/635-19/mayor-de-blasio-appoints-leadership-team-the-fourth-new-york-city-panel-climate-change
https://www1.nyc.gov/office-of-the-mayor/news/635-19/mayor-de-blasio-appoints-leadership-team-the-fourth-new-york-city-panel-climate-change
https://www1.nyc.gov/assets/orr/pdf/publications/WeatherReport.pdf
https://www1.nyc.gov/assets/orr/pdf/publications/WeatherReport.pdf
https://nyaspubs.onlinelibrary.wiley.com/toc/17496632/2015/1336/1
https://nyaspubs.onlinelibrary.wiley.com/toc/17496632/2015/1336/1
https://www.nyas.org/annals/special-issue-advancing-tools-and-methods-forflexible-adaptation-pathways-and-science-policy-integration-new-york-citypanel-on-climate-change-2019-report-vol-1439/
https://www.nyas.org/annals/special-issue-advancing-tools-and-methods-forflexible-adaptation-pathways-and-science-policy-integration-new-york-citypanel-on-climate-change-2019-report-vol-1439/
https://www.nyas.org/annals/special-issue-advancing-tools-and-methods-forflexible-adaptation-pathways-and-science-policy-integration-new-york-citypanel-on-climate-change-2019-report-vol-1439/
https://www.nyas.org/annals/special-issue-advancing-tools-and-methods-forflexible-adaptation-pathways-and-science-policy-integration-new-york-citypanel-on-climate-change-2019-report-vol-1439/
https://www.nycservice.org/organizations/1686.
https://www.nymtc.org/REQUIRED-PLANNING-PRODUCTS
https://www.nymtc.org/REQUIRED-PLANNING-PRODUCTS
https://www.nymtc.org/Portals/0/Pdf/SED/2055%20SED/Technical%20Memo%201_Existing%20Trends%20Analysis.pdf?ver=fVG5kIJGwekD__d-_-PoeA==%20
https://www.nymtc.org/Portals/0/Pdf/SED/2055%20SED/Technical%20Memo%201_Existing%20Trends%20Analysis.pdf?ver=fVG5kIJGwekD__d-_-PoeA==%20
https://www.nymtc.org/Portals/0/Pdf/SED/2055%20SED/Technical%20Memo%201_Existing%20Trends%20Analysis.pdf?ver=fVG5kIJGwekD__d-_-PoeA==%20
https://www.nymtc.org/DATA-AND-MODELING/Socioeconomic-and-Demographic-SED-Forecasts/2055-Forecasts
https://www.nymtc.org/DATA-AND-MODELING/Socioeconomic-and-Demographic-SED-Forecasts/2055-Forecasts
https://doi.org/10.1002/wcc.733
https://doi.org/10.1038/s41558-020-00952-0
https://doi.org/10.1038/s41558-020-00952-0
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1016/j.uclim.2021.101081
https://doi.org/10.1016/j.uclim.2021.101081
https://doi.org/10.1046/j.1523-1739.2003.01491.x
https://doi.org/10.1046/j.1523-1739.2003.01491.x
https://doi.org/10.1016/j.landurbplan.2019.05.007
https://doi.org/10.1016/j.landusepol.2013.11.024
https://doi.org/10.1016/j.landusepol.2013.11.024
https://doi.org/10.1214/13-sts419
https://doi.org/10.1016/j.futures.2020.102691
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.compenvurbsys.2014.05.001
https://doi.org/10.1016/0301-4215(82)90048-9
https://doi.org/10.1007/bf00122150
https://doi.org/10.1016/j.scitotenv.2019.133941
https://doi.org/10.1016/j.scitotenv.2019.133941
https://doi.org/10.1007/s10584-021-02990-9
https://doi.org/10.1007/s10584-021-02990-9
https://doi.org/10.1016/j.scs.2020.102586
https://doi.org/10.1016/j.scs.2020.102586
https://doi.org/10.1016/j.biocon.2018.12.017
https://doi.org/10.1126/science.aay4497
https://doi.org/10.1002/for.3980100602
https://doi.org/10.4054/demres.2018.38.60
https://doi.org/10.4054/demres.2018.38.60
https://doi.org/10.1029/2020av000271
https://doi.org/10.1029/2020av000271
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433


Shearer, A. W. (2005). Approaching scenario-based studies: Three perceptions
about the future and considerations for landscape planning. Environ. Plann. B.
Plann. Des. 32 (1), 67–87. doi:10.1068/b3116

Simkin, R. D., Seto, K. C., McDonald, R. I., and Jetz, W. (2022). Biodiversity
impacts and conservation implications of urban land expansion projected to 2050.
Proc. Natl. Acad. Sci. U. S. A. 119 (12), e2117297119. doi:10.1073/pnas.2117297119

Smart Cities Connect (2022). NYC mayor creates office of climate and
environmental justice, appoints climate leadership. Available at: https://
smartcitiesconnect.org/nyc-mayor-creates-office-of-climate-and-environmental-
justice-appoints-climate-leadership/.

Smith, S. K., Tayman, J., and Swanson, D. A. (2006). State and local population
projections: Methodology and analysis. New York: Kluwer Academic Publishers.

Solecki, W., Grimm, N., Marcotullio, P., Boone, C., Bruns, A., Lobo, J., et al.
(2019). Extreme events and climate adaptation-mitigation linkages: Understanding
low-carbon transitions in the era of global urbanization. WIREs Clim. Change 10
(6), 616. doi:10.1002/wcc.616

Solecki, W., and Rosenzweig, C. (2019). New York city panel on climate change
2019 report chapter 9: Perspectives on a city in a changing climate 2008-2018, 1439.
Annals of the New York Academy of Sciences.

Solecki, W., Seto, K. C., Balk, D., Bigio, A., Boone, C. G., Creutzig, F., et al. (2015).
A conceptual framework for an urban areas typology to integrate climate change
mitigation and adaptation. Urban Clim. 14, 116–137. doi:10.1016/j.uclim.2015.
07.001

Southern California Council of Governments (SCCG) (2016). Regional
transportation plan/sustainable communities strategy, demographics & growth
forecast appendix. Available at: http://scagrtpscs.net/Documents/2016/final/
f2016RTPSCS_DemographicsGrowthForecast.pd.

State of California (2020). “Methodology report: State of California,” in
demographic research unit. Population projections methodology (2019 baseline)
(Sacramento, California: Department of Finance). Available at: https://dof.ca.
gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_
Methodology.pdf.

Striessnig, E., Gao, J., O’Neill, B. C., and Jiang, L. (2019). Empirically based spatial
projections of US population age structure consistent with the shared
socioeconomic pathways. Environ. Res. Lett. 14 (11), 114038. doi:10.1088/1748-
9326/ab4a3a

Strmic-Pawl, H. V., Jackson, B. A., and Garner, S. (2018). Race counts: Racial and
ethnic data on the US census and the implications for tracking inequality. Sociol.
Race Ethn. 4 (1), 1–13. doi:10.1177/2332649217742869

Supplementary Note for the SSP data sets Supplementary text. Available at:
https://secure.iiasa.ac.at/web-apps/ene/SspDb/static/download/ssp_suplementary%
20text.pdf (Accessed May, 2022).

Sutton, S. (2020). Gentrification and the increasing significance of racial
transition in New York city 1970–2010. Urban Aff. Rev. 56 (1), 65–95. doi:10.
1177/1078087418771224

Swanson, D. A., and Tayman, J. (2017). “A long term test of the accuracy of
the Hamilton-Perry method for forecasting state populations by age,” in The
Frontiers of applied demography. Editor D. Swanson (Cham, Switzerland:
Springer), Vol. 9.

Tessum, C. W., Paolella, D. A., Chambliss, S. E., Apte, J. S., Hill, J. D., and
Marshall, J. D. (2021). PM2. 5 polluters disproportionately and systemically affect
people of color in the United States. Sci. Adv. 7 (18), 4491. doi:10.1126/sciadv.
abf4491

Trust for Public Land (2021). Parks and an equitable recovery: A trust for public
land special report. Available at: https://www.tpl.org/parks-and-an-equitable-
recovery-parkscore-report.

Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., et al. (2021).
Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. U. S. A. 118
(41), e2024792118. doi:10.1073/pnas.2024792118

United Nations Department of Economic and Social Affairs Population Division
(2019). World population prospects 2019: Methodology of the united nations
population estimates and projections. ST/ESA/SER.A/425.

United Nations, Department of Economic and Social Affairs, Population Division
(2018). World urbanization prospects: The 2018 revision. Online edition. Available
at: https://population.un.org/wup/Download/.

U.S. Census. Quick facts: New York city. New York. Available at: https://www.
census.gov/quickfacts/newyorkcitynewyork (Accessed May, 2022).

Van Der Heijden, K. (2000). Scenarios and forecasting: Two perspectives.
Technol. Forecast. Soc. change 65 (1), 31–36. doi:10.1016/s0040-1625(99)00121-3

Van Notten, P. W., Rotmans, J., Van Asselt, M. B., and Rothman, D. S. (2003). An
updated scenario typology. Futures 35 (5), 423–443. doi:10.1016/s0016-3287(02)00090-3

van Vliet, M., and Kok, K. (2015). Combining backcasting and exploratory
scenarios to develop robust water strategies in face of uncertain futures. Mitig.
Adapt. Strateg. Glob. Chang. 20 (1), 43–74. doi:10.1007/s11027-013-9479-6

Van Vuuren, D. P., Kriegler, E., O’Neill, B. C., Ebi, K. L., Riahi, K., Carter, T.
R., et al. (2014). A new scenario framework for climate change research:
Scenario matrix architecture. Clim. Change 122 (3), 373–386. doi:10.1007/
s10584-013-0906-1

van’t Klooster, S. A., and van Asselt, M. B. (2011). Accommodating or
compromising change? A story about ambitions and historic deterministic
scenarios. Futures 43 (1), 86–98. doi:10.1016/j.futures.2010.10.015

Vermeiren, K., Vanmaercke,M., Beckers, J., andVan Rompaey, A. (2016). Assure: A
model for the simulation of urban expansion and intra-urban social segregation. Int.
J. Geogr. Inf. Sci. 30 (12), 2377–2400. doi:10.1080/13658816.2016.1177641

Vertovec, S. (2019). Talking around super-diversity. Ethn. Racial Stud. 42 (1),
125–139. doi:10.1080/01419870.2017.1406128

Vespa, J., Armstrong, D. M., and Medina, L. (2018). Demographic turning
points for the United States: Population projections for 2020 to 2060.
Washington, DC: US Department of Commerce, Economics and Statistics
Administration, US Census Bureau.

Wilson, T., Grossman, I., Alexander, M., Rees, P., and Temple, J. (2022). Methods
for small area population forecasts: State-of-the-art and research needs. Popul. Res.
policy Rev. 41, 865–898. doi:10.1007/s11113-021-09671-6

Yang, S., and Cui, X. (2019). Building regional sustainable development scenarios
with the SSP framework. Sustainability 11 (20), 5712. doi:10.3390/su11205712

Zapatka, K. (2021). Superdiversity in metropolitan New York: Technical report.
MMG Working Paper (Göttingen, Germany: Max Planck Institute for the Study of
Religious and Ethnic Diversity), 21.

Zhao, L., Oleson, K., Bou-Zeid, E., Krayenhoff, E. S., Bray, A., Zhu, Q., et al.
(2021). Global multi-model projections of local urban climates. Nat. Clim. Chang.
11 (2), 152–157. doi:10.1038/s41558-020-00958-8

Zhou, W., Huang, G., Pickett, S. T., Wang, J., Cadenasso, M. L., McPhearson, T.,
et al. (2021). Urban tree canopy has greater cooling effects in socially vulnerable
communities in the US. One Earth 4 (12), 1764–1775. doi:10.1016/j.oneear.2021.
11.010

Zoraghein, H., and O’Neill, B. C. (2020a). A spatial population downscaling
model for integrated human-environment analysis in the United States. Demogr.
Res. 43, 1483–1526. doi:10.4054/demres.2020.43.54

Zoraghein, H., and O’Neill, B. C. (2020b). US state-level projections of the spatial
distribution of population consistent with shared socioeconomic pathways. Sustainability
12 (8), 3374. doi:10.3390/su12083374

Frontiers in Built Environment frontiersin.org25

Balk et al. 10.3389/fbuil.2022.949433

https://doi.org/10.1068/b3116
https://doi.org/10.1073/pnas.2117297119
https://smartcitiesconnect.org/nyc-mayor-creates-office-of-climate-and-environmental-justice-appoints-climate-leadership/
https://smartcitiesconnect.org/nyc-mayor-creates-office-of-climate-and-environmental-justice-appoints-climate-leadership/
https://smartcitiesconnect.org/nyc-mayor-creates-office-of-climate-and-environmental-justice-appoints-climate-leadership/
https://doi.org/10.1002/wcc.616
https://doi.org/10.1016/j.uclim.2015.07.001
https://doi.org/10.1016/j.uclim.2015.07.001
http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS_DemographicsGrowthForecast.pd%20
http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS_DemographicsGrowthForecast.pd%20
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf%20
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf%20
https://dof.ca.gov/wp-content/uploads/Forecasting/Demographics/Documents/Projections_Methodology.pdf%20
https://doi.org/10.1088/1748-9326/ab4a3a
https://doi.org/10.1088/1748-9326/ab4a3a
https://doi.org/10.1177/2332649217742869
https://secure.iiasa.ac.at/web-apps/ene/SspDb/static/download/ssp_suplementary%20text.pdf
https://secure.iiasa.ac.at/web-apps/ene/SspDb/static/download/ssp_suplementary%20text.pdf
https://doi.org/10.1177/1078087418771224
https://doi.org/10.1177/1078087418771224
https://doi.org/10.1126/sciadv.abf4491
https://doi.org/10.1126/sciadv.abf4491
https://www.tpl.org/parks-and-an-equitable-recovery-parkscore-report
https://www.tpl.org/parks-and-an-equitable-recovery-parkscore-report
https://doi.org/10.1073/pnas.2024792118
https://population.un.org/wup/Download/
https://www.census.gov/quickfacts/newyorkcitynewyork
https://www.census.gov/quickfacts/newyorkcitynewyork
https://doi.org/10.1016/s0040-1625(99)00121-3
https://doi.org/10.1016/s0016-3287(02)00090-3
https://doi.org/10.1007/s11027-013-9479-6
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1016/j.futures.2010.10.015
https://doi.org/10.1080/13658816.2016.1177641
https://doi.org/10.1080/01419870.2017.1406128
https://doi.org/10.1007/s11113-021-09671-6
https://doi.org/10.3390/su11205712
https://doi.org/10.1038/s41558-020-00958-8
https://doi.org/10.1016/j.oneear.2021.11.010
https://doi.org/10.1016/j.oneear.2021.11.010
https://doi.org/10.4054/demres.2020.43.54
https://doi.org/10.3390/su12083374
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949433

	Frameworks to envision equitable urban futures in a changing climate: A multi-level, multidisciplinary case study of New Yo ...
	1 Introduction
	2 Background
	2.1 Population projections: Understanding their strengths and limitations in the context of long-term local applications, a ...
	2.2 Scenarios and narratives for envisioning the future: From global to more local

	3 Material and methods
	3.1 Criteria for inclusion as exemplar approaches
	3.2 Contextualizing a local application: A case study of New York City and surrounding area

	4 Results
	4.1 Contextualizing SSPs: Expanding the SSP framework to the local level
	4.1.1 Understanding spatial distributions of populations in the context of the SSPs
	4.1.2 Projecting population in the context of the SSPs
	4.1.3 Application of these advancements to cities

	4.2 Participatory visioning and local land-use approaches to modeling urban futures
	4.3 Framework for integrating population perspectives with scenarios and narratives to envision the future
	4.3.1 Undertake city and regional demographic forecasting at higher spatial resolutions and with more demographic variables ...
	4.3.2 Model spatial refinements of future population based on historical patterns of population by race, ethnicity and othe ...
	4.3.3 Use sub-city population projections in land-use models and projections
	4.3.4 Engage with stakeholders, experts, and community members


	5 Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


