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As one of the main consumers of primary energy globally, buildings have been

among the main targets for implementing energy efficiency solutions, such as

building control strategies that maintain occupant comfort and reduce

operating costs. The design of such control schemes relies on a thermal

model of the building to predict indoor temperature. The model should be

sufficiently accurate to describe building dynamics but simple enough to

remain optimal for control purposes. This paper proposes a methodology to

identify thermal RC networks to model building thermal dynamics of a

residential buildings located in humid and rainy climates, a topic not widely

covered in current literature. The candidate models for the methodology are

determined through a parameter dispersion study, which consists of training

the models multiple times and checking if the parameters converge to a single

value regardless of their initial value. Then the effect of the training dataset

characteristics on model performance is studied. The methodology is

established and then tested in a residential case study in Panama from these

conclusions. Results show that a linear model with few parameters and trained

with only 10 days of data can successfully represent a system with prominent

nonlinear phenomena. The model with the best performance during active

operation has a validation root mean square error of 0.36°C, which is

satisfactory for controller design purposes. The model is then used to tune a

proportional integral derivative controller, successfully employed to maintain

the desired indoor temperature. Using the identified model to calibrate the

controller avoids tedious trial and error procedures.
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1 Introduction

The buildings sector accounts for around a third of final

energy consumption. This energy is mostly used by heating,

ventilation, and air conditioning (HVAC) systems (Wang and

Chen 2019). In Panama, a hot and humid tropical climate, most

electrical energy consumption is due to air conditioning systems

in buildings. The residential sector is expected to increase the

electrical energy used for air conditioning by at least 50% by 2050

(Secretaría Nacional de Energía, 2017).

This trend in elevated electrical energy consumption by

HVAC systems has propelled the scientific community and

the industry to reduce HVAC consumption without incurring

costly alternatives such as retrofitting. Consequently, attention

has been focused on improving the thermal performance of

buildings through controller design, operational optimization,

energy management, and ongoing commissioning (Wang and

Chen 2019). A key element required to implement these

strategies is a thermal model that characterizes the building

envelope and systems used to provide cooling, heating, or

ventilation (Cui et al., 2019). A thermal model is also

fundamental for other uses such as demand response, peak

load shifting, cooling load prediction, and energy use

forecasting (Cui et al., 2019).

A control-oriented model of building dynamics should be a

middle ground between a sufficiently accurate representation of

heat transfer processes and a computationally efficient model

resolution for optimal controller performance (Li and Jin 2014).

Several authors have categorized the techniques used to

formulate thermal building models. The most popular

classification, adopted by many authors (Zhao and Magoulès

2012; Derakhtenjani et al., 2015; Harish and Kumar 2016;

Bourdeau et al., 2019; Kathirgamanathan et al., 2021),

categorizes building thermal models as white-box models,

black-box models, and gray-box models.

White box models also called physical models or a forward

approach, represent building thermal dynamics through physical

equations, such as energy balances. Their parametric structure is

derived from physical laws, and the model’s parameters, which

complete the representation, are all known a priori. These can be

obtained from the building’s thermal properties, construction,

occupancy profiles, and climate data.

According to the degree of detail used to describe the

properties and states of the building, white box models can be

further classified into three approaches: computational fluid

dynamics (CFD), zonal approach, and nodal approach

(Foucquier et al., 2013). The CFD approach divides the

system into control volumes, forming a mesh. For each

control volume, Navier-Stokes’s equations are solved. The

zonal approach simplifies CFD, dividing the system into

control surfaces, for each of which the heat transfer equations

are solved (Çengel and Cimbala 2018). Despite the level of detail

these approaches provide, the fine mesh size of these models

makes them too computationally demanding for control or

simulation purposes. Furthermore, such a detailed description

of states is not needed for building energy modeling, as the spatial

variations of temperature, pressure, and CO2 are not significant

in some applications.

On the other hand, the nodal approach divides the system in

zones, each of them constituting a node. A node can represent

building elements, such as walls or windows or a large volume of

indoor air. Heat transfer equations are solved accounting for the

network of nodes (Foucquier et al., 2013). The nodal approach

assumes that states’ variations (such as temperature) for a volume

are not significant, considering them to be uniform. Therefore, a

single node can represent the whole bulk of indoor air within the

room and can be described by a single temperature without

incurring in significant error, which greatly reduces the mesh

size. This results in a more computationally efficient model,

which is why it is the most popular approach to derive building

thermal models.

While the nodal approach reduces the computational

demands of the model, its resolution times are still unsuitable

for control purposes. The resulting high-order model is still time-

consuming to solve. Moreover, the need to know beforehand the

building parameters difficults the modeling procedure since this

information can be difficult to obtain or unavailable. Therefore,

white-box models are used to build reference models, which are

supposed to represent the “real” system. Energy simulation

softwares, such as Energy Plus (EP), TRNSYS, DOE, and ESP-

r, employ the nodal approach to build such models. Then, during

simulation, these reference models are excited to generate the

training and validation data to identify another model type. In

(Gray and Schmidt 2018), the authors use TRNSYS and

MATLAB to model a single zone office. The building

envelope, radiators, and chilled ceilings are modeled in

TRNSYS, while the rest of the HVAC system is modeled in

MATLAB. In (Liu et al., 2016) the authors use EP to model a

multizone office building. The modeled heat sources in EP

include HVAC, lighting, occupant heat gains, infiltration,

equipment, and climate conditions. For both (Liu et al., 2016;

Gray and Schmidt 2018), these models are simulated in the

software to obtain the training and validation data to identify

grey and black-box models.

The difficulty of modeling complex processes using

exclusively physical principles gives way to system

identification, defined by Ljung as “building mathematical

models of dynamical systems based on observed data from

the systems” (Ljung 1999). The system identification process

starts with the excitation of the systems to be modeled and data

recollection. Next, a tunable parametric model structure is

chosen. Model parameters are then regressed from data using

a chosen parameter estimation method. Model performance is

assessed according to an established performance criterion. If the

desired performance is not achieved, one of the main

components of the system identification processes is adjusted,
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and the loop is repeated (Isermann and Münchhof 2011). Black

box and grey box models use the system identification approach

to obtain a suitable representation of processes.

Black-box models also referred to as the inverse approach,

regress the mathematical relations that describe the system

through the available input and output data without using the

system’s physical knowledge. While black-box modeling

techniques can be classified in several ways, in this paper, they

are classified as in (Drgoňa et al., 2020): linear parametric models,

nonlinear parametric models, and nonlinear non-parametric

models. Parametric models are structured through a finite

number of parameters. Non-parametric models, on the other

hand, implicitly contain system parameters and are often

presented through diagrams, characteristic curves, and tables

(Tangirala 2018).

Linear parametric models include autoregressive models,

such as ARX, ARMAX, ARIMAX, and state-space models. In

(Paschke and Zaiczek 2018), the authors use an ARIMAX model

to predict the indoor temperature in a conference room. Model

inputs include heat rejected by radiators and fan coils, exterior

temperature, and solar heat gains. The model is trained with

measured data from sensors located in the room.When validated

with data corresponding to unoccupied periods, the model has an

absolute error of 0.6 K for 95% of predictions with a 4-h horizon.

In (Gorni et al., 2016), the authors use domain knowledge to

estimate the approximate order of an ARMAX model to predict

the indoor temperature in a residential building. Model inputs

include the temperature of adjacent rooms, exterior temperature,

solar radiation, and heat rejected by fan coils. With a seventh

order model, validation results show a maximum error of 0.5 K

(Chen et al., 2016). make use of domain knowledge as well, given

that heat transfer processes have a fractional nature, and use a

FARX model to predict indoor temperature in a residential

building. Model inputs include solar, internal, and infiltration

gains, exterior temperature, and heat rejected or supplied by the

air handling unit. A FARX model of order six results in an

absolute error of 0.264°C, like the one obtained by a 100th order

ARX model. This shows the advantage of incorporating domain

knowledge into model selection. (Liu et al., 2016) model the

indoor temperature of a multizone building with a state-space

model of order 57, the latter determined through a cross-

validation procedure. Model inputs include power

consumption by the HVAC system, exterior temperature, and

internal gains. The model produces an average squared

error of 3%.

Multi-variable regression models are widely used to model

the thermal behavior of buildings and forecast important

quantities such as indoor temperature and heating power.

(Bilous et al., 2018) formulate a nonlinear multivariable

regression model to estimate the indoor temperature taking

into account several internal and external influential factors

such as heating level, outdoor air temperature and solar gains.

Each influential factor is analyzed individually. For example, it is

found that the change of indoor temperature due to disturbances

of outdoor temperature is close to logarithmic. The accuracy of

the regression model is assessed estimating the corrected

determination coefficient, 0.981 and the Fisher’s criterion

1,324.3 which indicates a highly reliable regression. (Cholewa

et al., 2021) develop a modeling methodology that describes the

thermal behavior of a building in terms of an equivalent outdoor

temperature. Three buildings are used to implement the

methodology, a multifamily building (A), a health clinic (B)

and a supermarket (C). It is only possible to obtain a regression

model for buildings A and B due to the type of heating system

available which uses a form of weather compensation for

regulating supply temperature. Building C uses a traditional

ON OFF control. The resulting regression models include a

positive correction coefficient for equivalent outdoor

temperature due to wind velocity and negative due to solar

radiation. For buildings A and B the determination coefficient

obtained is 0.9362 and 0.9116, respectively. This procedure is

used in (Cholewa et al., 2022) to apply a an easy implementable

forecast control that achieves up to 15% energy savings by means

of preheating.

One of the most popular nonlinear parametric black-box

models is artificial neural networks (ANN). ANN’s are used for

describing all sorts of nonlinear behavior in various fields. Their

adaptive nature is an advantage to model time variant

phenomena found in economics, biology, politics, engineering,

etc. For instance, (Anđelković and Bajatović 2020), uses an

ANFIS model to forecast the natural gas consumption 1 hour

ahead, from consumption, weather and calorific values data.

These models establish input-output relations through a

structure that emulates how the human brain works. A simple

ANN architecture typically consists of one input layer, a single

hidden layer, and an output layer (Amasyali and El-Gohary

2018). In (Finck et al., 2019), the authors use ANNs to

predict weather conditions, HVAC system parameters, and

zone and surface temperatures. The ANN used to predict

zone temperature consisted of five hidden layers, and had a

validation performance root mean square error (RMSE) of

0.44°C. The ANN used to model the HVAC system,

consisting of eight hidden layers, had a validation RMSE of

0.14 kWh. (Afram et al., 2017) use neural networks to model the

subsystems of residential HVAC. One of the outputs, zone

temperature, has a maximum absolute error of 0.053°C when

predicted with a neural network consisting of five inputs and

40 hidden units network architecture.

Buildings are one of the research and application areas of

machine learning. From cost analysis to commissioning,

maintenance and operation, ML is used to achieve energy

efficiency, flexibility, and resilience in buildings. A

comprehensive review of how ML has been used in every

stage of a building life cycle is presented by (Hong et al., 2020).

Nonlinear non-parametric models include techniques such

as k-nearest neighbors, support vector machines, decision trees,
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and random forests. (Smarra et al., 2018) model a building using

random forests, obtaining a maximum normalized root mean

squared error (NRMSE) of 0.08°C for all model outputs.

The lack of physical insight in black-box models facilitates

the modeling process, requiring less expert knowledge. However,

this makes the models highly dependent on the quality of training

data, often requiring large and informative datasets, which is the

main shortcoming of black-box models (Li and Jin 2014).

Grey box models represent a middle ground between white

box and black box models. The model’s parametric structure is

derived from physical principles, as in white box models;

however, unlike these, it is not necessary to know model

parameters beforehand. These can be regressed from input-

output data through parameter estimation techniques, much

like in black-box models. Grey box models make way for the

model to be identified despite limited system information and

permit the incorporation of domain knowledge to facilitate

model order and parameters estimation.

RC networks are the most popular grey box modeling

technique in building thermal modeling. These are based on

an electrical thermal analogy in which building thermal

properties and climate conditions are represented as electrical

components. Temperatures, heat sources, thermal capacitances,

and thermal resistances are analogous to voltages, current

sources, electrical capacitances, and electrical resistances,

respectively. These components are arranged in the circuit to

describe heat exchanges in the building. RC networks could be

classified as white-box models if all parameters are known since

their structure is formulated according to physical principles.

However, the main application of RC networks is as grey-box

models, where thermal resistances, capacitances, and other

model coefficients are regressed from available data.

Several authors have employed RC networks to predict

indoor temperature. (Wang and Chen 2019) compare RC

networks to model the thermal dynamics of a house,

considering solar gains, heat supplied by the heat pump,

internal gains, and outdoor temperature as inputs. The

network with the best performance, in terms of goodness of

fit (72.60%) and physical interpretability of model parameters, is

the network 3R2C. (S. Yang et al., 2018) developed a model that

predicts indoor temperature, specific humidity, and predictive

mean vote (PMV) for a test cell. Heat gains through the envelope

are modeled with different RC network topologies. The roof,

floor, and walls are modeled with a 5R2C network, while the glass

facade is modeled with a 4R1C network. The networks are

coupled with a humidity model consisting of linearized heat

and mass balance equations. PMV is linearized and expressed as

a function of indoor temperature, mean radiant temperature, and

specific humidity. The calibrated model has a mean absolute

percentage error (MAPE) of 1.55% for indoor temperature and

4.93% for specific humidity during validation. The authors

(Wang Z et al., 2019) use a 22R13C network to model a

three-story house. By removing non-identifiable parameters,

this model is reduced to a 10R6C network, considering solar

radiation on the south façade, gross electric demand, and heat

supplied by the geothermal heat pump and solar collectors. The

simplified model has validation RMSE of 0.319°C, 0.416°C, and

0.235°C for temperature predictions in levels two, one, and

basement, respectively.

Grey box models encompass RC network and the coupling of

these with black-box techniques. (Gray and Schmidt 2018)

develop a hybrid model consisting of a 4R4C network that

describes the thermal behavior of the building and a Gaussian

process model (black box model) to correct the error obtained

from the former model. The RMSE of the hybrid model is around

0.2 K, while the RC network’s is 0.4 K. The hybrid model’s

superiority becomes evident when the model is validated with

data corresponding to a different occupancy schedule than the

model was initially trained with. The authors (Cui et al., 2019)

also use a hybrid model to predict the temperature of each story

of a two-story house. A black box model predicts the temperature

difference between the two stories, while a 5R4C network

predicts the average temperature of the house. With these

results, the temperatures for each story are obtained. When

the model is validated for a 24 h prediction horizon, the

authors obtain a maximum mean error (MAE) of 0.499°C and

a RMSE of 0.619°C.

Once the parametric structure of the model is determined

through a black or grey box model technique, the next stage in

the system identification process is model training. Training

refers to estimating the optimal values of model parameters

that allow it to replicate the system dynamics with enough

accuracy according to some performance criteria (Wang and

Chen 2019). Parameter estimation methods include the

prediction error method (PEM), Bayesian estimation, and

subspace identification. The prediction error method defines a

parameter estimation problem as in Eq. 1, interpreted as the

estimated parameters θ̂N that minimize an objective function

V(θ, ZN). The objective or cost function is defined as in Eq. 2,

where ε(k, θ) is the prediction error, the difference between the

measured or reference values and the predicted values by the

model, and ℓ(.) the prediction error norm. Several authors use

PEM (Gray and Schmidt 2018; Cui et al., 2019; Wang Z et al.,

2019) to estimate model parameters. Depending on the

mathematical form of function ℓ(.), cases of PEM arise, such

as the least-squares estimation problem, among the most

common ones, which defines the objective function as the

quadratic norm of the prediction error (Tangirala 2018).

θ̂N � minimizeV(θ, ZN) (1)

VN(θ,ZN) � 1
N
∑N
t�1
ℓ(ε(k, θ)) (2)

Once the estimation problem is defined, the next step is its

solution. Given the estimation problem’s nonlinearity,

optimization algorithms, which are iterative procedures,
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become necessary to find the model parameters that minimize

the cost function. Some examples of optimization algorithms

include the Levenberg-Marquardt, gradient descent, Newton-

Raphson, and nature-inspired algorithms such as genetic

algorithm and particle swarm optimization (Yang 2016). In

(Finck et al., 2019; Wang Z et al., 2019), the parameter

estimation problem is solved with the Levenberg-Marquardt

algorithm in (Cui et al., 2019), it is done through particle

swarm optimization.

Besides the definition of the estimation problem and the

optimization algorithm, model training involves considerations

of the training dataset’s characteristics, such as its length,

sampling interval, and the conditions of data recollection. In

(Hu et al., 2016), the training dataset consists of data collected

during two weekends (when occupancy effects on data are

minimal) in spring and summer in California. The building is

excited through forced response experiments. In (Brastein et al.,

2018), the data used for parameter estimation was collected when

the building was unoccupied and during the winter when solar

radiation is negligible in Norway. Wang et al. (Wang J et al.,

2019) study the amount of training data needed for a robust

model. They conclude that the model has good performance with

10 days of training data, but with 20 days, its parameters are

more consistent.

An essential concept in system identification is model

identifiability, which argues for the possibility of inferring a

unique model from a set of observations (Tangirala 2018).

Some authors study parameter identifiability and dispersion

during the system identification process of grey-box models.

(Wang Z et al., 2019). simplify the proposed RC networks by

removing non-identifiable parameters, i.e., parameters that

cannot be uniquely determined and therefore have ambiguous

physical meaning. (Brastein et al., 2018) suggest that if the

parameters can be assigned physical interpretation, estimates

must show a low dispersion regardless of the initial guess

parameter. However, the authors conclude that while the

physical interpretability may be questioned, the model may

still be able to represent the building dynamics accurately.

While RC networks have been used by many authors to

predict indoor temperature, there are few models calibrated for

tropical climates, with predominately warm and humid

conditions. Moreover, the models developed for these

conditions remain largely parametrized. For example, while in

(S. Yang et al., 2018) the models are calibrated with data from

Singapore (with a tropical climate), they use several RC networks

to describe building thermal dynamics, with a large number of

parameters. Therefore, there remains the question of what is the

extent to which a linear RC network with few parameters can

accurately describe a system subjected to prominent nonlinear

phenomena, such as solar radiation and humidity. This work

aims to fulfil this gap in research.

This paper describes the development of a methodology to

identify thermal RC networks and determine the model that best

represents building thermal dynamics while remaining suitable

for control purposes. The methodology calibrates models to

represent residential buildings in a tropical climate under two

operating regimes: passive (without HVAC system use and

windows shut all day) and active (with air conditioning). Two

procedures are carried out to formulate the methodology:

candidate model selection, which consists of an evaluation of

the proposed networks’ parameter dispersion, and training

dataset selection, which evaluates the influence of dataset

length and climatic conditions on model performance. The

final methodology, formulated with the candidate model

selection and training dataset selection procedures, is applied

to a case study to determine the model that best represents

building dynamics.

2 Materials and methods

The workflow followed to develop the methodology is

summarized in Figure 1. Two case studies, Case 1, and Case

2 are used to develop and test the methodology, respectively. The

procedures “Evaluation and Selection of Candidate Models” and

“Evaluation and Selection of Training Datasets”, detailed in the

homonymous sections, were applied to Case 1. The main results

from these procedures, shown in the gray squares of Figure 1, are

used to formulate the final methodology, which is then tested in

Case 2.

2.1 Case studies

The case studies, one-story houses located in Panama, are

built in DesignBuilder (DB), a graphical interface for EP. Case

studies one and two are geometrically alike but differ in the

materials used for construction. The thermal characteristics of

each case study are summarized in Table 1. In any case, the house

is occupied by one person all day. There are no elements

surrounding the house that might mitigate solar radiation.

The meteorological data used in DB consist of a typical year

in Panama City. Each case study is studied under two operation

regimes: passive regime, where windows are shut all day, and

there is no air conditioning (AC), and active regime, in which an

AC system is used according to a specified schedule. The house is

equipped with a fan coil AC system, where the supply air mass

flow rate is kept constant to maintain linearity in Eq. 4.

2.2 Training datasets

A dynamic simulation is run in DB to obtain the input and

output data used for model training and validation. Four months

are simulated: February (typically the driest month of the year),

November (typically the rainiest), April, and December
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(2 months with intermediate climate conditions). These months

are divided into twelve possible training datasets, varying in

length, detailed in Table 2.

2.2.1 Sampling interval selection
Careful selection of the sampling interval under which data is

collected is important since data should be able to reflect the

dynamic processes in the system. For the passive regime,

preliminary parameter estimations show that a sampling

timestep of 1 minute or 5 minutes results in consistent

parameter estimates (pointing toward identifiable models).

Therefore, the sampling interval for the passive regime is

chosen as 5 min to work with the least amount of data.

For the active regime, however, the model is more sensitive to

the timestep of data. In this mode of operation, the system is

excited by the temperature setpoint of the AC system. The data

must be able to reflect the evolution of temperature because of a

change in temperature setpoint or AC state (on/off). The tested

data sampling intervals were 1-min, 5-min, and 15-min. A

preliminary study is conducted with a 15-min time step, the

FIGURE 1
Workflow followed in this work.

TABLE 1 Thermal properties for case studies.

Case 1 Case 2

U wall (W/m2-K) 3.767 2.174

U roof (W/m2-K) 2.941 2.326

U floor (W/m2-K) 0.25

SHGC windows 0.72

U windows (W/m2-K) 3.772

Window-wall ratio 30%

Floor area (m2) 47.86

TABLE 2 Datasets for model identification.

February April November December

10 days D1 D4 D7 D10

20 days D2 D5 D8 D11

Full month D3 D6 D9 D12

Frontiers in Built Environment frontiersin.org06

Rivera et al. 10.3389/fbuil.2022.949426

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.949426


preferable sampling interval to work with the least of data and

optimize identification. This timestep did not achieve good

performance. It is possible that a timestep of 15 min lacks

sufficient data points to model this behavior, rendering it

unable to describe the change in indoor temperature when the

AC changes state (from on to off or vice versa).

Ultimately, a 1-min time step is selected as the sampling time

for data in the active regime. Preliminary model identifications

with 1-min and 5-min timesteps result in RMSEs of 0.344 and

0.984°C, respectively, indicating that better performance can be

achieved with data with a higher resolution. Moreover, analyzing

the parameter estimates, only a 1-min timestep resulted in

consistent parameters.

2.3 RC network design

The networks are designed in increasing complexity, starting

from the simplest network, 1R1C, and successively adding states,

resistances and/or inputs, up to the most complex network 4R3C.

This workflow is shown in Figure 2. Networks with more than three

states are not considered for two reasons: previous authors have

found that the appropriate model order model a single-zone case

study with a second or third-order network (Gray and Schmidt

2018; Rouchier et al., 2018;Wang andChen 2019; Austin et al., 2020;

Yang et al., 2020); and among the goals of this work is to identify a

simplified model, i.e., with few parameters.

2.3.1 States
Through the insights gathered from the literature review and

case study knowledge, the states, and circuit nodes, considered

for the networks include indoor air temperature (Ti), wall/roof

temperature (Tw), and/or floor temperature. Indoor air

temperature is included as a state in all candidate models,

while in some networks, either wall/roof temperature or floor

temperature, or both, are included. While indoor air temperature

and wall/roof temperatures are commonly included as states in

RC networks (Joe and Karava 2017; Gray and Schmidt 2018;

Yang et al., 2018; Cui et al., 2019; Wang and Chen 2019; Wang J

et al., 2019), floor temperature is less frequently observed. As in

(Austin et al., 2020), the case studies to be modeled have a

significantly thick concrete slab with thermal inertia that is

important to consider in the thermal network.

2.3.2 Inputs
Model inputs are selected according to the literature review

and the results of sensitivity analysis in DB. The building

components that most affect indoor temperature are

FIGURE 2
RC networks proposed.
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glazing type and external wall construction for both operation

modes.

External wall construction can be associated with ambient

temperature input since this is a boundary condition for the

walls. This is an input considered by many authors in RC

networks (Yang et al., 2018; Cui et al., 2019; Wang Z et al.,

2019; Austin et al., 2020). On the other hand, glazing type can be

associated with effective solar gains, which is the fraction of solar

radiation transmitted through windows. Effective solar gains

(Qsolj) are incorporated in the model differently depending

on the operating regime. For active mode, Qsolj is given by

Eq. 3, where Fj is the solar gain factor, and an estimated

parameter and ϕ is global horizontal irradiance (GHI), a

model input that could be obtained from a weather station.

The subindex j specifies the temperature nodes solar gains are

affecting. For example, different effective solar gains could be

associated with air, wall/roof, and floor temperatures, as seen in

network 4R3C in Figure 2. For the passive regime,Qsol is directly

obtained from the available transmitted solar gains as calculated

by DB. Instead of weather data, this value is used to design a

control scheme that controls solar radiation transmitted through

windows, such as the use of blinds of shading. This is proposed as

further work.

Qsolj � Fj · ϕ (3)

Other inputs included in the proposed networks are internal

gains and mean radiant temperature, both obtained from

DesignBuilder. Internal gains represent heat gains by

occupants or lighting equipment, considered as a constant

input as in (Chen et al., 2016; Liu et al., 2016; Gray and

Schmidt 2018; Yang et al., 2018; Wang J et al., 2019; Yang

et al., 2020). Mean radiant temperature, while considered in

(Yang et al., 2018) as a function of surface temperature and areas,

in this work it is obtained directly from DB for simplicity and

used to model radiative heat gains unaccounted by any of the

inputs mentioned thus far.

In the active regime, a heat source is added to the network

representing the heat extracted by the air conditioning system.

This heat flow is given by Eq. 4, where known constants

correspond to supply air mass flow and specific heat. G is an

estimated parameter, and Ts is the AC supply air temperature.

Qac � G · _m · Cp(Ts − Ti) (4)

2.3.3 State-space representation
Once the RC networks is designed, the equations that

govern the network dynamics are obtained from a heat

balance at each node of the RC network. This results in a

set of ordinary differential equations (ODEs), which can be

rearranged in space state representation. Eqs 5–8 show the

ODEs that describe the dynamics of network 4R3C. These

equations are then rearranged in state-space form, shown in

Eq. 9. Model inputs, outputs, states, and parameters are

summarized in Eqs 10–13.

Ci
dTi

dt
� Tw − Ti

R2
+ Tmr − Ti

R3
+ Qsol1 + Qint + Qac (5)

Cw
dTw

dt
� Tout − Tw

R1
− Tw − Ti
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dt
� − 1

Ci
( 1
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+ 1
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ϕ
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Tmr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

u � [Tout Ts ϕ Qint Tmr ]′ (10)
y � Ti (11)

x � [Ti Tw ]′ (12)
θ � [Ci Cw R1 R2 R2 F1 F2 G ] (13)

2.3.4 Model identification
After the model structure is defined, parameter estimation is

the next step in the system identification procedure. This work

implements model identification in MATLAB’s System

Identification Toolbox.

2.3.5 Parameter estimation
The two main functions used to formulate and solve the

parameter estimation problem are: idgrey, which specifies the

state-space model whose parameters should be identified; and

greyest, the function that solves the nonlinear least-squares

iteration problem using in each iteration the best search

algorithm (Linear Grey-Box Model Estimation, 2022; Linear

ODE Grey-Box Model with Identifiable Parameters, 2022).

Model performance is assessed with the RMSE of indoor

temperature in the validation dataset. Estimated parameters

are thermal Ci, Cw, and Cf, corresponding to the thermal

inertia of indoor air, wall/roof, and floor slab, respectively,

thermal resistances Ri, and other coefficients such as Fj and G.

2.3.6 Initial values and constraints
A critical component of the estimation problem is the

parameter’s initial values. The closer the initial value is to the

actual parameter values, i.e., the parameter that produces a global
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minimum, the faster the estimation problem is solved. It is also

less likely for the algorithm to get stuck in local minima

(Goodfellow et al., 2016). Moreover, the parameter value

constraints could help guide the algorithm toward the possible

solution. The initial values and parameter constraints are chosen

according to domain knowledge.

For the estimation problem, the initial values of model

capacitances are chosen randomly within 50% and 150% of an

approximated physical value. This value is taken as the thermal

mass of the corresponding building element. For resistances and

solar gain factors, the initial values are random values between

1 and 0, while for G, it is between 1 and 2.

All parameters have a minimum constraint of zero since

negative parameters have no physical meaning. The only

parameters with a maximum constraint are thermal

resistances since the actual values of thermal resistances of

construction materials in the case studies are smaller than one.

2.4 Evaluation and selection of candidate
models

The networks proposed in Figure 2 are selected or discarded

according to a parameter dispersion criterion.We are only interested

in identifiable models, meaning that there exists a unique parameter

vector that produces a global minimum in the cost function (Ljung

1999). Therefore, the model’s parameter estimates must converge to

a unique value regardless of its initial value. To study parameter

estimates convergence, the following procedure is followed:

1) Train model ten times with D1 using a different initial value

for every parameter in each identification.

2) Calculate de coefficient of variation (CV) for the ten

parameter estimates.

3) Repeat steps 1 and 2 for datasets D2-D12.

4) Average the CV obtained for all datasets.

5) If the average CV of each parameter is smaller than or equal to

10%, the model is selected. Otherwise, it is discarded for its

non-identifiability.

6) Repeat steps one to six for all models in Figure 2.

2.5 Evaluation and selection of training
dataset

To determine the best training dataset for the model

identification methodology, it is of interest to study the length of

the training dataset and the month that produces the best model.

The models that were selected from the previous procedure

each have twelve different identified versions, corresponding to

estimates obtained from each of the twelve training datasets.

Each of these versions is validated using the 3 months not used

for training. The validation RMSE is averaged, and the training

dataset that produced the lowest value is selected as the best

training dataset for the methodology.

3 Results

In the following sections, the results of applying the

procedures “Evaluation and selection of candidate models”

and “Evaluation and selection of training datasets” in the

passive and active regime are summarized.

3.1 Evaluation and selection of candidate
models (applied to case 1 in active regime)

This section illustrates the candidate model selection

procedure. Applying this procedure to the proposed models is

shown for a selected network, a discarded network, and a

network selected under special consideration. It is important

to mention that for a model to be selected, its parameters must

converge to a similar value in every iteration of the estimation

process.

3.1.1 Selected model: 1R1C network
The model is trained ten times with different initial values

for every parameter within the bounds established in section

2.3.6. The coefficient of variation is calculated for every

parameter. Then, the twelve CVs for every estimated

parameter are averaged. If each CV is under 10%, the

model can be selected as a final candidate model. This is

summarized in Table 3. It can be seen in Table 3 that 1R1C

TABLE 3 Parameter dispersion in network 1R1C.

Training Dataset CV (%)

Ci R1 F1 G

D1 18.24 17.33 18.23 18.20

D2 0.04 0.00 0.00 0.00

D3 9.08 8.47 9.10 9.05

D4 6.27 5.90 6.28 6.27

D5 0.52 0.52 0.52 0.52

D6 0.14 0.04 0.05 0.04

D7 0.04 0.00 0.00 0.00

D8 0.02 0.00 0.00 0.00

D9 0.02 0.00 0.00 0.00

D10 9.16 9.02 9.16 9.15

D11 10.19 10.64 10.20 10.18

D12 0.03 0.01 0.01 0.01

Avg 4.48 4.33 4.46 4.45
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FIGURE 3
Initial vs. estimated values of parameter Ci when training with D2 in network 1R1C.

FIGURE 4
Initial vs. estimated values of parameter Ci when training with D1 in network 2R1C.
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model is identifiable. Thus, it is selected as a candidate model

for the final methodology.

The results of applying the evaluation and selection of

candidate models procedure to the network 1R1C when

training with dataset D2 can be seen graphically in the scatter

plot of Figure 3. Here, the ten random initial values for the indoor

air capacitance Ci (which correspond to the data points that

produce a higher RMSE, since the parameter is not chosen to be

optimal) are matched to their corresponding estimated value,

which was reached when the optimization was completed. The

parameter reaches the same value regardless of its initial guess.

3.1.2 Model discarded: 2R1C network
As for the previous model, similar tables are generated for 2R1C

network. The model is discarded because it does not meet the CV

criterion. Figure 4 shows the scatter plot for parameter Ci when

training with D1, confirming this conclusion.

3.1.3 Model selected under special
consideration: 2R2Cf network

A model that required further analysis was network

2R2Cf. During preliminary analysis, the network did not

meet the dispersion criterion. However, upon closer study,

it was found that only when training with D5 did the CV was

over 10%; it was over 80%. This caused the average CV to be

higher than 10%, leading the model to be discarded in the first

instance. Figure 5 shows the scatter plot for parameter Ci

when training with D5. Some estimations converge to a value

with a higher RMSE than others, indicating that the algorithm

may have gotten stuck on a local minimum for those

estimations. Since there is a global minimum (around

0.3°C) only the estimations that converged to this value are

considered. When the CV is recalculated for this dataset, the

network does comply with the criterion and the model is

selected as a candidate model for the final methodology.

3.1.4 Final candidate models
The final candidate models are the networks 1R1C and

2R2Cf; the rest are discarded for the active regime.

3.2 Evaluation and selection of training
dataset (applied to case 1 in active regime)

Every final candidate model originates 12 models, one for

every different training dataset available. The performance of

each one is measured by averaging the validation RMSE using

three validation datasets. These three validation datasets

change depending on which training dataset is used. For

example, if D1 is used for training, then D6, D9, and D12 are

used for validating it. The training dataset that produces the

best average validation performance produces a model with

better generalization capabilities. The validation results for

the networks 1R1C and 2R2Cf are shown in Table 4.

FIGURE 5
Initial vs. estimated values of parameter Ci when training with D5 in network 2R2Cf.
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The best training dataset for the active regime appears to be

30 days in April. Nevertheless, considering the standard deviation of

the RMSE across all training datasets is less than 0.04°C, any training

dataset can provide sufficient insights into the thermal dynamics

inside the residence to obtain good validation performance. This

leads us to conclude that amodel trainedwith 10 days to use the least

amount of data of any month would be appropriate for the

methodology in an active regime.

3.3 Evaluation and selection of candidate
models (applied to case 1 in passive
regime)

The only model that complies with the CV criterion for the

passive regime is the 1R1C and is, therefore, the only candidate

model in the final methodology.

3.4 Evaluation and selection of the best
training dataset (applied to case 1 in
passive regime)

For the passive regime, validation performance is slightly

better when training with April and December. This can be

ascribed to these months’ intermediate characteristics

between rainy and sunny. Hence, the data is more

informative than the rest of the training datasets. This

leads us to conclude that a model trained with 10 days, to

use the least amount of data, of April or December would be

appropriate for the final methodology in the passive regime.

3.5 Final methodology

The methodology is formulated from the conclusions

obtained in the previous sections. These are summarized in

the flow diagram of Figure 6. The only candidate models for

the active regime are the 1R1C and 2R2Cf networks. For the

passive regime, only the 1R1C network is considered.

TABLE 4 Validation results for networks in the active regime for Case 1.

Month Training Dataset length
(days)

Average Validation
RMSE, °C

Average Validation
Fit, %

1R1C 2R2Cf 1R1C 2R2Cf

February 10 0.616 0.3293 92.38 95.93

20 0.6416 0.3884 92.06 95.2

28 0.6509 0.3896 91.95 95.18

April 10 0.5985 0.3476 92.43 95.6

20 0.5851 0.3294 92.59 95.83

30 0.5794 0.3265 92.66 95.87

November 10 0.6539 0.4162 91.94 94.86

20 0.6422 0.3893 92.09 95.19

30 0.6415 0.3863 92.1 95.23

December 10 0.6113 0.3959 92.33 95.04

20 0.6073 0.3811 92.38 95.23

31 0.6004 0.3548 92.47 95.55

Standard deviation 0.0261 0.0305 0.24 0.35

FIGURE 6
Final methodology.
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The chosen length for the training dataset is 10 days of

any month for the active regime and 10 days of April or

December for the passive regime. This methodology will be

applied to model Case 2 in active and passive regimes. The

results shown in the following sections are generated using

10 days of December as a training dataset, for both operation

regimes.

3.6 Methodology applied to case 2 in
active regime

The methodology is now implemented to determine the

best model representing Case study two during the active

regime.

3.6.1 Parameter dispersion
The methodology’s first step consists of re-verifying that

the model is identifiable. As it was done for Case 1, the model

is trained ten times, and the parameter dispersion is analyzed.

Both models show highly consistent parameter estimates

(CV < 10%).

3.6.2 Validation and selection of the best model
The models are validated with datasets D3, D6 and

D9 corresponding to the months of April, November, and

December, respectively. Figure 7 plots the indoor temperature

simulated by the 1R1C and 2R2f networks for two randomly

chosen days in April and compares it with the DesignBuilder

reference model data. For active regime, the best model is the

2R2Cf with an average RMSE of 0.3573°C.

3.7 Methodology applied to case 2 in
passive regime

3.7.1 Parameter dispersion
Parameter estimates dispersion for network 1R1C is

reevaluated for the passive regime. The estimates meet the

dispersion criterion (CV < 10%). Therefore, the model is

validated.

3.7.2 Validation
During the validation, model 1R1C had an average validation

RMSE of 0.9911°C. Figure 8 plots the internal temperature

simulated by the 1R1C network for two randomly chosen

days in November.

3.8 Development of a conceptual control
system using the model identified for the
active regime

The thermal models identified have as input the supply

temperature of the air cooled by an air conditioning system

that operates at a constant flow rate (e.g., mini-splits). This by

itself is not a controllable input in real air conditioning

systems; however, if there is a model that relates the supply

temperature to some controllable variable (e.g., refrigerant

flow) it could be feasible to design a controller with the

identified model. However, this is outside the scope of this

research. This section aims to use the gray box thermal model

identified to design a conceptual control scheme where the

FIGURE 7
Simulated indoor temperature by models in active regime. FIGURE 8

Simulated indoor temperature by model in the passive
regime.
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manipulated variable is the supply temperature of the air

conditioner, which is one of the model inputs.

The controller is designed in MATLAB Simulink with the

assistance of the Control System Toolbox, taking the 2R2Cf

model as the control loop plant. The controller gains are

adjusted with the PID Tuner in MATLAB. The

controller gains are automatically adjusted to achieve, on a

step input, a settling time of approximately 300 s (5 min) and

that the overshoot is below 15%. The controller’s

performance is validated in a control loop that uses as a

plant a black box state-space model obtained with

N4SID, whose validation RMSE for 1 month of

training was 0.218°C. Both control loops are shown in

Figure 9.

In Figure 10 the response of both loops is plotted; the

starting point is an initial condition of 21.59°C, and it is

desired to achieve a set point of 18°C. In both responses,

the design objective is achieved. The identified model can

successfully be used to tune a controller that will control

another plant, avoiding the need for a tedious trial and error

procedure.

4 Discussion

4.1 Active regime

The candidate models for this regime are networks 1R1C

and 2R2Cf. These were the only identifiable models.

Coincidentally, these were models with few parameters

that resulted in an equal or better performance than

models with more parameters. These results are similar to

the conclusions presented by (Brastein et al., 2018). By

reducing the number of free parameters in the estimation

procedure, they could obtain consistent parameter estimates.

The RC network with the best performance and physical

interpretability in (Z. Wang and Chen 2019) also considered

two states, indoor temperature and building envelope

temperature. The latter state is comparable to floor

temperature in the 2R2Cf network.

The model discarded 2R1C showed the particularity of

always resulting in a null value for the parameter multiplying

the global horizontal irradiance. One possible explanation is

found by analyzing the Pearson correlation coefficient of

FIGURE 9
Control loop implemented in Simulink.
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inputs to outputs, shown in Figure 11. This network, unlike

1R1C, includedmean radiant temperature as an input. The global

horizontal irradiance and the mean radiant temperature are

highly correlated with the output, indicating good estimators.

However, the mean radiant temperature is a better estimator,

having a higher correlation index. Since this temperature

FIGURE 10
Closed-loop response.

FIGURE 11
Pearson correlation coefficient for model inputs and outputs.
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considers all the radiation exchanges between the surfaces of the

building, it nullifies the effect of the global horizontal irradiance

on the output.

4.2 Passive regime

In the passive regime, the only identifiable model was the

1R1C. The data used for training in this regime corresponded to

the free response of the building, without any cooling or heating

to induce a forced response. It would seem a first-order model is

accurate enough to emulate building dynamics sufficiently.

4.3 Training dataset characteristics

Results presented in sections 3.2, 3.4 indicate that model

performance is not significantly affected by training dataset length

or the weather conditions of the month during which data was

collected. This could be related to the choice inmodeling technique, a

grey-box model. Since the model structure is based on physical

equations, the model can generalize well regardless of the

characteristics of the training data. This is an advantage of grey-

box models over black-box models, where the latter are more

dependent on the training dataset to achieve good generalization.

4.4 Comparison of operation regimes

The lowest average RMSE obtained for the active regime was

0.3573°C and for the passive 0.99°C. This means that the best

active model has a RMSE almost 3 times less than the best passive

model. This can be explained through the Pearson coefficient of

inputs to outputs for both models, shown in Figure 11. In active

regime, the variable most correlated with the output (used in the

models selected as final candidates) is the supply temperature. In

contrast, for the passive regime, it is the outside temperature. The

superior performance of the model in active mode can be

attributed to the fact that the input most correlated with the

output is controlled by the imposed temperature setpoint. On the

other hand, the most correlated variable in the passive mode is a

measurable disturbance that presents stochastic characteristics

that can decrease the final quality of the identified model.

4.5 Assessment of model performance

Model performance in this paper, as measured by fit, was

over 20% greater than in (Wang and Chen 2019), where fit

percentage was around 70%. The greater fit of the model in this

research could be attributed to the data used for training and

validation. While in this research data was obtained from a

simulation software, in (Wang and Chen 2019) data was

obtained by sensors, which introduces random behavior that

could result in lower performance. The same effect of real data on

model performance can be seen in (Brastein et al., 2018), where

the simulation errors for indoor temperature, as measured by

RMSE, were between 0.330 and 1.899 K, depending on the

dataset used for training. The lowest average RMSE obtained

in this research was 0.3573°C, which is comparable to the best

performance obtained in (Brastein et al., 2018). However, it is of

interest to study how model performance would be affected by

data collected during real building operation and better compare

the results. This is proposed as further work. Comparing the

performance of the networks developed in this research to those

of (Gray and Schmidt 2018), a study in which training data was

obtained from a simulation software as well, the RMSEs obtained

are similar, which serves to validate the methodology developed

thus far.

4.6 Applicability of methodology

The models identified in this research were calibrated for

prediction of indoor temperature in residential, single-zone

buildings located in a tropical climate. Occupant behavior in

these case studies was constant, and its influence on indoor

temperature prediction was negligible, as seen in Figure 11. Air

conditioner operating schedule and setpoint were fixed as well.

The methodology was successfully able to identify a model with

good performance in a case study with these characteristics,

subjected to the same occupant behavior and air conditioner

operation schedule. The main difference in Case 2 was building

materials. Therefore, the applicability of the methodology to

more geometrically complex case studies and subjected to

variable occupant behavior and air conditioner use remains to

be tested and is proposed as further work.

5 Conclusion

This paper proposes a methodology to identify thermal RC

networks to model building dynamics in humid, hot, and rainy

tropical climates. The models are developed towards their

implementation in controller design; therefore, among the

main objectives of the methodology is to identify models with

few parameters to maintain computational efficiency. The

methodology developed allows the identification of models for

two operation regimes: active, for case studies with air

conditioning, and passive, for case studies under free response.

Two residential case studies are analyzed, Case 1 and 2, which

are geometrically identical but built with different materials.

These models are built and simulated in DesignBuilder to

obtain the input and output data needed for system

identification. Case 1 is used to draw the most relevant

conclusions to formulate the methodology, namely identifiable
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candidate models and training dataset characteristics. Once the

methodology is established, Case 2 is used to test it.

The procedures to formulate the methodology first

determine which networks are identifiable models from a

pool of ten proposed networks. For the active regime,

networks 1R1C and 2R2Cf were identifiable; for the passive

regime, only the 1R1C network was identifiable. Therefore,

these models are the candidate models for the methodology.

The second procedure to identify the methodology consists of

determining the optimal amount of training days and the

month in which data should be collected. Results show that the

models behave well regardless of the training dataset

characteristics, which indicates that a model structure

based on physical principles is less dependent on the data

used for parameter estimation. It is concluded that data

collected from any month of the year would achieve a good

performance; however, training dataset length is restricted to

10 days to work with the least amount of data.

The methodology is then applied to Case 2 to identify

which candidate models best describe the thermal dynamics of

the residential building. The best model for the active regime

is network 2R2Cf, with a validation RMSE of 0.3572°C. For the

passive regime, the 1R1C network has a validation RMSE of

0.9911°C. This lower performance in the passive regime is

attributed to the presence of disturbances, such as weather

conditions, that the model cannot account for. Meanwhile, in

an active regime, the output is most correlated to the supply

air temperature of the air conditioner system, which is

controlled by the imposed temperature setpoint. Once the

network that best represents the case study is determined with

the methodology, the model is used to tune a PID controller.

The controller gains are calibrated with the RC network, and it

can be successfully employed to manipulate the supply air

temperature and achieve the desired indoor temperature, with

a settling time of 5 minutes. Using the model to tune PID

controller gains avoids the need for trial-and-error

procedures.

Future work includes the integration of natural ventilation

as model input and accounting for the influence of window

aperture on indoor temperature—a critical weather parameter in

tropical climates in humidity. Therefore, the coupling of the

thermal model developed in this research with a hygric model is

also of interest for future research. This research used the

thermal model to tune a PID controller. However, future

research will include the development of more control-based

schemes, such as model predictive control, using the identified

model.
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